Properties

Label 936.2.g.f.469.1
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(469,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.1
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40752 - 0.137446i) q^{2} +(1.96222 + 0.386915i) q^{4} -4.18566i q^{5} +2.70923 q^{7} +(-2.70868 - 0.814289i) q^{8} +(-0.575302 + 5.89140i) q^{10} -0.956799i q^{11} -1.00000i q^{13} +(-3.81329 - 0.372372i) q^{14} +(3.70059 + 1.51842i) q^{16} +4.96511 q^{17} -5.59682i q^{19} +(1.61950 - 8.21318i) q^{20} +(-0.131508 + 1.34671i) q^{22} +5.16007 q^{23} -12.5198 q^{25} +(-0.137446 + 1.40752i) q^{26} +(5.31610 + 1.04824i) q^{28} +4.46122i q^{29} +6.37531 q^{31} +(-4.99995 - 2.64584i) q^{32} +(-6.98848 - 0.682433i) q^{34} -11.3399i q^{35} +1.66608i q^{37} +(-0.769259 + 7.87763i) q^{38} +(-3.40834 + 11.3376i) q^{40} -8.64689 q^{41} +7.67092i q^{43} +(0.370200 - 1.87745i) q^{44} +(-7.26289 - 0.709230i) q^{46} -8.01021 q^{47} +0.339928 q^{49} +(17.6218 + 1.72079i) q^{50} +(0.386915 - 1.96222i) q^{52} -0.0797782i q^{53} -4.00484 q^{55} +(-7.33843 - 2.20610i) q^{56} +(0.613176 - 6.27925i) q^{58} +4.70716i q^{59} -8.10132i q^{61} +(-8.97336 - 0.876259i) q^{62} +(6.67387 + 4.41129i) q^{64} -4.18566 q^{65} -13.7670i q^{67} +(9.74262 + 1.92108i) q^{68} +(-1.55863 + 15.9612i) q^{70} +1.15489 q^{71} +1.66608 q^{73} +(0.228995 - 2.34503i) q^{74} +(2.16549 - 10.9822i) q^{76} -2.59219i q^{77} +4.30121 q^{79} +(6.35561 - 15.4894i) q^{80} +(12.1707 + 1.18848i) q^{82} -14.0185i q^{83} -20.7823i q^{85} +(1.05434 - 10.7970i) q^{86} +(-0.779111 + 2.59166i) q^{88} +11.6601 q^{89} -2.70923i q^{91} +(10.1252 + 1.99651i) q^{92} +(11.2745 + 1.10097i) q^{94} -23.4264 q^{95} -6.17018 q^{97} +(-0.478454 - 0.0467216i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40752 0.137446i −0.995266 0.0971889i
\(3\) 0 0
\(4\) 1.96222 + 0.386915i 0.981109 + 0.193458i
\(5\) 4.18566i 1.87189i −0.352152 0.935943i \(-0.614550\pi\)
0.352152 0.935943i \(-0.385450\pi\)
\(6\) 0 0
\(7\) 2.70923 1.02399 0.511996 0.858988i \(-0.328906\pi\)
0.511996 + 0.858988i \(0.328906\pi\)
\(8\) −2.70868 0.814289i −0.957662 0.287895i
\(9\) 0 0
\(10\) −0.575302 + 5.89140i −0.181927 + 1.86302i
\(11\) 0.956799i 0.288486i −0.989542 0.144243i \(-0.953925\pi\)
0.989542 0.144243i \(-0.0460747\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −3.81329 0.372372i −1.01915 0.0995207i
\(15\) 0 0
\(16\) 3.70059 + 1.51842i 0.925148 + 0.379606i
\(17\) 4.96511 1.20422 0.602108 0.798415i \(-0.294328\pi\)
0.602108 + 0.798415i \(0.294328\pi\)
\(18\) 0 0
\(19\) 5.59682i 1.28400i −0.766705 0.641999i \(-0.778105\pi\)
0.766705 0.641999i \(-0.221895\pi\)
\(20\) 1.61950 8.21318i 0.362131 1.83652i
\(21\) 0 0
\(22\) −0.131508 + 1.34671i −0.0280376 + 0.287120i
\(23\) 5.16007 1.07595 0.537974 0.842961i \(-0.319190\pi\)
0.537974 + 0.842961i \(0.319190\pi\)
\(24\) 0 0
\(25\) −12.5198 −2.50396
\(26\) −0.137446 + 1.40752i −0.0269553 + 0.276037i
\(27\) 0 0
\(28\) 5.31610 + 1.04824i 1.00465 + 0.198099i
\(29\) 4.46122i 0.828428i 0.910180 + 0.414214i \(0.135943\pi\)
−0.910180 + 0.414214i \(0.864057\pi\)
\(30\) 0 0
\(31\) 6.37531 1.14504 0.572519 0.819891i \(-0.305966\pi\)
0.572519 + 0.819891i \(0.305966\pi\)
\(32\) −4.99995 2.64584i −0.883875 0.467723i
\(33\) 0 0
\(34\) −6.98848 0.682433i −1.19851 0.117036i
\(35\) 11.3399i 1.91680i
\(36\) 0 0
\(37\) 1.66608i 0.273901i 0.990578 + 0.136951i \(0.0437301\pi\)
−0.990578 + 0.136951i \(0.956270\pi\)
\(38\) −0.769259 + 7.87763i −0.124790 + 1.27792i
\(39\) 0 0
\(40\) −3.40834 + 11.3376i −0.538906 + 1.79263i
\(41\) −8.64689 −1.35042 −0.675208 0.737627i \(-0.735946\pi\)
−0.675208 + 0.737627i \(0.735946\pi\)
\(42\) 0 0
\(43\) 7.67092i 1.16980i 0.811104 + 0.584902i \(0.198867\pi\)
−0.811104 + 0.584902i \(0.801133\pi\)
\(44\) 0.370200 1.87745i 0.0558098 0.283036i
\(45\) 0 0
\(46\) −7.26289 0.709230i −1.07086 0.104570i
\(47\) −8.01021 −1.16841 −0.584205 0.811606i \(-0.698593\pi\)
−0.584205 + 0.811606i \(0.698593\pi\)
\(48\) 0 0
\(49\) 0.339928 0.0485611
\(50\) 17.6218 + 1.72079i 2.49210 + 0.243357i
\(51\) 0 0
\(52\) 0.386915 1.96222i 0.0536555 0.272111i
\(53\) 0.0797782i 0.0109584i −0.999985 0.00547919i \(-0.998256\pi\)
0.999985 0.00547919i \(-0.00174409\pi\)
\(54\) 0 0
\(55\) −4.00484 −0.540012
\(56\) −7.33843 2.20610i −0.980639 0.294802i
\(57\) 0 0
\(58\) 0.613176 6.27925i 0.0805140 0.824506i
\(59\) 4.70716i 0.612820i 0.951900 + 0.306410i \(0.0991278\pi\)
−0.951900 + 0.306410i \(0.900872\pi\)
\(60\) 0 0
\(61\) 8.10132i 1.03727i −0.854996 0.518634i \(-0.826441\pi\)
0.854996 0.518634i \(-0.173559\pi\)
\(62\) −8.97336 0.876259i −1.13962 0.111285i
\(63\) 0 0
\(64\) 6.67387 + 4.41129i 0.834233 + 0.551411i
\(65\) −4.18566 −0.519168
\(66\) 0 0
\(67\) 13.7670i 1.68191i −0.541108 0.840953i \(-0.681995\pi\)
0.541108 0.840953i \(-0.318005\pi\)
\(68\) 9.74262 + 1.92108i 1.18147 + 0.232965i
\(69\) 0 0
\(70\) −1.55863 + 15.9612i −0.186291 + 1.90772i
\(71\) 1.15489 0.137061 0.0685303 0.997649i \(-0.478169\pi\)
0.0685303 + 0.997649i \(0.478169\pi\)
\(72\) 0 0
\(73\) 1.66608 0.194999 0.0974997 0.995236i \(-0.468916\pi\)
0.0974997 + 0.995236i \(0.468916\pi\)
\(74\) 0.228995 2.34503i 0.0266201 0.272604i
\(75\) 0 0
\(76\) 2.16549 10.9822i 0.248399 1.25974i
\(77\) 2.59219i 0.295407i
\(78\) 0 0
\(79\) 4.30121 0.483924 0.241962 0.970286i \(-0.422209\pi\)
0.241962 + 0.970286i \(0.422209\pi\)
\(80\) 6.35561 15.4894i 0.710579 1.73177i
\(81\) 0 0
\(82\) 12.1707 + 1.18848i 1.34402 + 0.131245i
\(83\) 14.0185i 1.53873i −0.638810 0.769365i \(-0.720573\pi\)
0.638810 0.769365i \(-0.279427\pi\)
\(84\) 0 0
\(85\) 20.7823i 2.25415i
\(86\) 1.05434 10.7970i 0.113692 1.16427i
\(87\) 0 0
\(88\) −0.779111 + 2.59166i −0.0830535 + 0.276272i
\(89\) 11.6601 1.23596 0.617981 0.786193i \(-0.287951\pi\)
0.617981 + 0.786193i \(0.287951\pi\)
\(90\) 0 0
\(91\) 2.70923i 0.284004i
\(92\) 10.1252 + 1.99651i 1.05562 + 0.208150i
\(93\) 0 0
\(94\) 11.2745 + 1.10097i 1.16288 + 0.113556i
\(95\) −23.4264 −2.40350
\(96\) 0 0
\(97\) −6.17018 −0.626487 −0.313243 0.949673i \(-0.601416\pi\)
−0.313243 + 0.949673i \(0.601416\pi\)
\(98\) −0.478454 0.0467216i −0.0483312 0.00471960i
\(99\) 0 0
\(100\) −24.5665 4.84409i −2.45665 0.484409i
\(101\) 18.2218i 1.81313i 0.422063 + 0.906567i \(0.361306\pi\)
−0.422063 + 0.906567i \(0.638694\pi\)
\(102\) 0 0
\(103\) −1.61651 −0.159280 −0.0796399 0.996824i \(-0.525377\pi\)
−0.0796399 + 0.996824i \(0.525377\pi\)
\(104\) −0.814289 + 2.70868i −0.0798476 + 0.265608i
\(105\) 0 0
\(106\) −0.0109652 + 0.112289i −0.00106503 + 0.0109065i
\(107\) 10.6645i 1.03097i −0.856898 0.515487i \(-0.827611\pi\)
0.856898 0.515487i \(-0.172389\pi\)
\(108\) 0 0
\(109\) 15.0942i 1.44576i 0.690972 + 0.722882i \(0.257183\pi\)
−0.690972 + 0.722882i \(0.742817\pi\)
\(110\) 5.63689 + 0.550449i 0.537456 + 0.0524832i
\(111\) 0 0
\(112\) 10.0258 + 4.11376i 0.947345 + 0.388714i
\(113\) −14.5746 −1.37106 −0.685530 0.728044i \(-0.740430\pi\)
−0.685530 + 0.728044i \(0.740430\pi\)
\(114\) 0 0
\(115\) 21.5983i 2.01405i
\(116\) −1.72611 + 8.75388i −0.160266 + 0.812778i
\(117\) 0 0
\(118\) 0.646979 6.62541i 0.0595593 0.609919i
\(119\) 13.4516 1.23311
\(120\) 0 0
\(121\) 10.0845 0.916776
\(122\) −1.11349 + 11.4028i −0.100811 + 1.03236i
\(123\) 0 0
\(124\) 12.5097 + 2.46670i 1.12341 + 0.221516i
\(125\) 31.4753i 2.81524i
\(126\) 0 0
\(127\) −16.1471 −1.43283 −0.716414 0.697676i \(-0.754218\pi\)
−0.716414 + 0.697676i \(0.754218\pi\)
\(128\) −8.78728 7.12627i −0.776693 0.629879i
\(129\) 0 0
\(130\) 5.89140 + 0.575302i 0.516710 + 0.0504573i
\(131\) 9.42633i 0.823582i −0.911278 0.411791i \(-0.864903\pi\)
0.911278 0.411791i \(-0.135097\pi\)
\(132\) 0 0
\(133\) 15.1631i 1.31480i
\(134\) −1.89222 + 19.3773i −0.163463 + 1.67394i
\(135\) 0 0
\(136\) −13.4489 4.04303i −1.15323 0.346687i
\(137\) 4.68642 0.400388 0.200194 0.979756i \(-0.435843\pi\)
0.200194 + 0.979756i \(0.435843\pi\)
\(138\) 0 0
\(139\) 9.95019i 0.843964i −0.906604 0.421982i \(-0.861334\pi\)
0.906604 0.421982i \(-0.138666\pi\)
\(140\) 4.38759 22.2514i 0.370819 1.88059i
\(141\) 0 0
\(142\) −1.62553 0.158735i −0.136412 0.0133208i
\(143\) −0.956799 −0.0800116
\(144\) 0 0
\(145\) 18.6732 1.55072
\(146\) −2.34503 0.228995i −0.194076 0.0189518i
\(147\) 0 0
\(148\) −0.644630 + 3.26920i −0.0529882 + 0.268727i
\(149\) 6.19106i 0.507191i 0.967310 + 0.253596i \(0.0816132\pi\)
−0.967310 + 0.253596i \(0.918387\pi\)
\(150\) 0 0
\(151\) −8.48441 −0.690451 −0.345226 0.938520i \(-0.612198\pi\)
−0.345226 + 0.938520i \(0.612198\pi\)
\(152\) −4.55743 + 15.1600i −0.369656 + 1.22964i
\(153\) 0 0
\(154\) −0.356286 + 3.64855i −0.0287103 + 0.294009i
\(155\) 26.6849i 2.14338i
\(156\) 0 0
\(157\) 16.0239i 1.27885i −0.768855 0.639423i \(-0.779173\pi\)
0.768855 0.639423i \(-0.220827\pi\)
\(158\) −6.05403 0.591183i −0.481633 0.0470320i
\(159\) 0 0
\(160\) −11.0746 + 20.9281i −0.875524 + 1.65451i
\(161\) 13.9798 1.10176
\(162\) 0 0
\(163\) 16.6039i 1.30052i 0.759712 + 0.650260i \(0.225340\pi\)
−0.759712 + 0.650260i \(0.774660\pi\)
\(164\) −16.9671 3.34561i −1.32491 0.261248i
\(165\) 0 0
\(166\) −1.92678 + 19.7313i −0.149547 + 1.53145i
\(167\) 6.35953 0.492115 0.246058 0.969255i \(-0.420865\pi\)
0.246058 + 0.969255i \(0.420865\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −2.85644 + 29.2514i −0.219079 + 2.24348i
\(171\) 0 0
\(172\) −2.96799 + 15.0520i −0.226307 + 1.14770i
\(173\) 2.02859i 0.154231i −0.997022 0.0771154i \(-0.975429\pi\)
0.997022 0.0771154i \(-0.0245710\pi\)
\(174\) 0 0
\(175\) −33.9190 −2.56403
\(176\) 1.45283 3.54072i 0.109511 0.266892i
\(177\) 0 0
\(178\) −16.4117 1.60263i −1.23011 0.120122i
\(179\) 17.9220i 1.33955i 0.742563 + 0.669777i \(0.233610\pi\)
−0.742563 + 0.669777i \(0.766390\pi\)
\(180\) 0 0
\(181\) 3.41179i 0.253596i 0.991929 + 0.126798i \(0.0404701\pi\)
−0.991929 + 0.126798i \(0.959530\pi\)
\(182\) −0.372372 + 3.81329i −0.0276021 + 0.282660i
\(183\) 0 0
\(184\) −13.9770 4.20179i −1.03040 0.309760i
\(185\) 6.97363 0.512712
\(186\) 0 0
\(187\) 4.75061i 0.347399i
\(188\) −15.7178 3.09927i −1.14634 0.226038i
\(189\) 0 0
\(190\) 32.9731 + 3.21986i 2.39212 + 0.233593i
\(191\) 13.0171 0.941886 0.470943 0.882164i \(-0.343914\pi\)
0.470943 + 0.882164i \(0.343914\pi\)
\(192\) 0 0
\(193\) 2.02198 0.145546 0.0727728 0.997349i \(-0.476815\pi\)
0.0727728 + 0.997349i \(0.476815\pi\)
\(194\) 8.68464 + 0.848065i 0.623521 + 0.0608875i
\(195\) 0 0
\(196\) 0.667012 + 0.131523i 0.0476437 + 0.00939451i
\(197\) 16.5454i 1.17881i 0.807838 + 0.589405i \(0.200638\pi\)
−0.807838 + 0.589405i \(0.799362\pi\)
\(198\) 0 0
\(199\) −1.11725 −0.0791999 −0.0395999 0.999216i \(-0.512608\pi\)
−0.0395999 + 0.999216i \(0.512608\pi\)
\(200\) 33.9121 + 10.1947i 2.39794 + 0.720876i
\(201\) 0 0
\(202\) 2.50451 25.6475i 0.176216 1.80455i
\(203\) 12.0865i 0.848304i
\(204\) 0 0
\(205\) 36.1930i 2.52783i
\(206\) 2.27527 + 0.222183i 0.158526 + 0.0154802i
\(207\) 0 0
\(208\) 1.51842 3.70059i 0.105284 0.256590i
\(209\) −5.35503 −0.370415
\(210\) 0 0
\(211\) 22.3717i 1.54013i 0.637964 + 0.770066i \(0.279777\pi\)
−0.637964 + 0.770066i \(0.720223\pi\)
\(212\) 0.0308674 0.156542i 0.00211998 0.0107514i
\(213\) 0 0
\(214\) −1.46579 + 15.0104i −0.100199 + 1.02609i
\(215\) 32.1079 2.18974
\(216\) 0 0
\(217\) 17.2722 1.17251
\(218\) 2.07464 21.2454i 0.140512 1.43892i
\(219\) 0 0
\(220\) −7.85837 1.54953i −0.529811 0.104470i
\(221\) 4.96511i 0.333989i
\(222\) 0 0
\(223\) 25.3166 1.69532 0.847661 0.530538i \(-0.178010\pi\)
0.847661 + 0.530538i \(0.178010\pi\)
\(224\) −13.5460 7.16819i −0.905082 0.478945i
\(225\) 0 0
\(226\) 20.5140 + 2.00321i 1.36457 + 0.133252i
\(227\) 0.936542i 0.0621604i 0.999517 + 0.0310802i \(0.00989474\pi\)
−0.999517 + 0.0310802i \(0.990105\pi\)
\(228\) 0 0
\(229\) 3.40878i 0.225259i −0.993637 0.112629i \(-0.964073\pi\)
0.993637 0.112629i \(-0.0359272\pi\)
\(230\) −2.96860 + 30.4000i −0.195744 + 2.00452i
\(231\) 0 0
\(232\) 3.63272 12.0840i 0.238500 0.793354i
\(233\) 13.0000 0.851656 0.425828 0.904804i \(-0.359983\pi\)
0.425828 + 0.904804i \(0.359983\pi\)
\(234\) 0 0
\(235\) 33.5280i 2.18713i
\(236\) −1.82127 + 9.23646i −0.118555 + 0.601243i
\(237\) 0 0
\(238\) −18.9334 1.84887i −1.22727 0.119844i
\(239\) −5.91302 −0.382482 −0.191241 0.981543i \(-0.561251\pi\)
−0.191241 + 0.981543i \(0.561251\pi\)
\(240\) 0 0
\(241\) −12.0209 −0.774333 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(242\) −14.1942 1.38608i −0.912436 0.0891004i
\(243\) 0 0
\(244\) 3.13453 15.8966i 0.200667 1.01767i
\(245\) 1.42282i 0.0909008i
\(246\) 0 0
\(247\) −5.59682 −0.356117
\(248\) −17.2686 5.19134i −1.09656 0.329650i
\(249\) 0 0
\(250\) 4.32615 44.3021i 0.273610 2.80191i
\(251\) 7.48790i 0.472632i 0.971676 + 0.236316i \(0.0759400\pi\)
−0.971676 + 0.236316i \(0.924060\pi\)
\(252\) 0 0
\(253\) 4.93715i 0.310396i
\(254\) 22.7274 + 2.21936i 1.42604 + 0.139255i
\(255\) 0 0
\(256\) 11.3888 + 11.2381i 0.711799 + 0.702383i
\(257\) 19.5397 1.21885 0.609426 0.792843i \(-0.291400\pi\)
0.609426 + 0.792843i \(0.291400\pi\)
\(258\) 0 0
\(259\) 4.51378i 0.280473i
\(260\) −8.21318 1.61950i −0.509360 0.100437i
\(261\) 0 0
\(262\) −1.29561 + 13.2677i −0.0800430 + 0.819683i
\(263\) −14.2733 −0.880130 −0.440065 0.897966i \(-0.645045\pi\)
−0.440065 + 0.897966i \(0.645045\pi\)
\(264\) 0 0
\(265\) −0.333925 −0.0205128
\(266\) −2.08410 + 21.3423i −0.127784 + 1.30858i
\(267\) 0 0
\(268\) 5.32666 27.0138i 0.325377 1.65013i
\(269\) 9.47978i 0.577992i 0.957330 + 0.288996i \(0.0933215\pi\)
−0.957330 + 0.288996i \(0.906679\pi\)
\(270\) 0 0
\(271\) 29.1684 1.77185 0.885926 0.463827i \(-0.153524\pi\)
0.885926 + 0.463827i \(0.153524\pi\)
\(272\) 18.3738 + 7.53913i 1.11408 + 0.457127i
\(273\) 0 0
\(274\) −6.59622 0.644129i −0.398492 0.0389132i
\(275\) 11.9789i 0.722356i
\(276\) 0 0
\(277\) 5.56665i 0.334468i −0.985917 0.167234i \(-0.946516\pi\)
0.985917 0.167234i \(-0.0534835\pi\)
\(278\) −1.36761 + 14.0051i −0.0820240 + 0.839969i
\(279\) 0 0
\(280\) −9.23398 + 30.7162i −0.551836 + 1.83564i
\(281\) 1.67325 0.0998179 0.0499090 0.998754i \(-0.484107\pi\)
0.0499090 + 0.998754i \(0.484107\pi\)
\(282\) 0 0
\(283\) 20.4580i 1.21610i −0.793897 0.608052i \(-0.791951\pi\)
0.793897 0.608052i \(-0.208049\pi\)
\(284\) 2.26615 + 0.446846i 0.134471 + 0.0265154i
\(285\) 0 0
\(286\) 1.34671 + 0.131508i 0.0796328 + 0.00777623i
\(287\) −23.4264 −1.38282
\(288\) 0 0
\(289\) 7.65230 0.450135
\(290\) −26.2828 2.56655i −1.54338 0.150713i
\(291\) 0 0
\(292\) 3.26920 + 0.644630i 0.191316 + 0.0377241i
\(293\) 29.8221i 1.74223i 0.491083 + 0.871113i \(0.336601\pi\)
−0.491083 + 0.871113i \(0.663399\pi\)
\(294\) 0 0
\(295\) 19.7026 1.14713
\(296\) 1.35667 4.51286i 0.0788546 0.262305i
\(297\) 0 0
\(298\) 0.850935 8.71403i 0.0492933 0.504790i
\(299\) 5.16007i 0.298415i
\(300\) 0 0
\(301\) 20.7823i 1.19787i
\(302\) 11.9420 + 1.16615i 0.687183 + 0.0671042i
\(303\) 0 0
\(304\) 8.49834 20.7115i 0.487413 1.18789i
\(305\) −33.9094 −1.94165
\(306\) 0 0
\(307\) 9.81086i 0.559935i −0.960009 0.279968i \(-0.909676\pi\)
0.960009 0.279968i \(-0.0903237\pi\)
\(308\) 1.00296 5.08644i 0.0571488 0.289827i
\(309\) 0 0
\(310\) −3.66773 + 37.5595i −0.208313 + 2.13323i
\(311\) 5.24920 0.297655 0.148827 0.988863i \(-0.452450\pi\)
0.148827 + 0.988863i \(0.452450\pi\)
\(312\) 0 0
\(313\) 3.78596 0.213995 0.106998 0.994259i \(-0.465876\pi\)
0.106998 + 0.994259i \(0.465876\pi\)
\(314\) −2.20242 + 22.5539i −0.124290 + 1.27279i
\(315\) 0 0
\(316\) 8.43991 + 1.66420i 0.474782 + 0.0936187i
\(317\) 15.9601i 0.896407i −0.893931 0.448204i \(-0.852064\pi\)
0.893931 0.448204i \(-0.147936\pi\)
\(318\) 0 0
\(319\) 4.26849 0.238990
\(320\) 18.4642 27.9346i 1.03218 1.56159i
\(321\) 0 0
\(322\) −19.6768 1.92147i −1.09655 0.107079i
\(323\) 27.7888i 1.54621i
\(324\) 0 0
\(325\) 12.5198i 0.694473i
\(326\) 2.28214 23.3703i 0.126396 1.29436i
\(327\) 0 0
\(328\) 23.4216 + 7.04106i 1.29324 + 0.388778i
\(329\) −21.7015 −1.19644
\(330\) 0 0
\(331\) 30.6147i 1.68274i 0.540463 + 0.841368i \(0.318249\pi\)
−0.540463 + 0.841368i \(0.681751\pi\)
\(332\) 5.42397 27.5073i 0.297679 1.50966i
\(333\) 0 0
\(334\) −8.95115 0.874091i −0.489785 0.0478281i
\(335\) −57.6240 −3.14834
\(336\) 0 0
\(337\) −19.8679 −1.08227 −0.541137 0.840934i \(-0.682006\pi\)
−0.541137 + 0.840934i \(0.682006\pi\)
\(338\) 1.40752 + 0.137446i 0.0765589 + 0.00747607i
\(339\) 0 0
\(340\) 8.04098 40.7793i 0.436083 2.21157i
\(341\) 6.09989i 0.330327i
\(342\) 0 0
\(343\) −18.0437 −0.974267
\(344\) 6.24634 20.7780i 0.336780 1.12028i
\(345\) 0 0
\(346\) −0.278821 + 2.85528i −0.0149895 + 0.153501i
\(347\) 3.59683i 0.193088i −0.995329 0.0965440i \(-0.969221\pi\)
0.995329 0.0965440i \(-0.0307788\pi\)
\(348\) 0 0
\(349\) 31.9651i 1.71105i 0.517758 + 0.855527i \(0.326767\pi\)
−0.517758 + 0.855527i \(0.673233\pi\)
\(350\) 47.7416 + 4.66202i 2.55190 + 0.249196i
\(351\) 0 0
\(352\) −2.53154 + 4.78395i −0.134931 + 0.254985i
\(353\) 16.7537 0.891707 0.445854 0.895106i \(-0.352900\pi\)
0.445854 + 0.895106i \(0.352900\pi\)
\(354\) 0 0
\(355\) 4.83399i 0.256562i
\(356\) 22.8796 + 4.51145i 1.21261 + 0.239106i
\(357\) 0 0
\(358\) 2.46330 25.2256i 0.130190 1.33321i
\(359\) 31.7820 1.67739 0.838694 0.544603i \(-0.183320\pi\)
0.838694 + 0.544603i \(0.183320\pi\)
\(360\) 0 0
\(361\) −12.3244 −0.648651
\(362\) 0.468936 4.80216i 0.0246467 0.252396i
\(363\) 0 0
\(364\) 1.04824 5.31610i 0.0549428 0.278639i
\(365\) 6.97363i 0.365017i
\(366\) 0 0
\(367\) 27.8497 1.45374 0.726872 0.686773i \(-0.240973\pi\)
0.726872 + 0.686773i \(0.240973\pi\)
\(368\) 19.0953 + 7.83517i 0.995412 + 0.408436i
\(369\) 0 0
\(370\) −9.81552 0.958497i −0.510284 0.0498299i
\(371\) 0.216137i 0.0112213i
\(372\) 0 0
\(373\) 29.9442i 1.55045i 0.631683 + 0.775227i \(0.282365\pi\)
−0.631683 + 0.775227i \(0.717635\pi\)
\(374\) −0.652952 + 6.68657i −0.0337633 + 0.345754i
\(375\) 0 0
\(376\) 21.6971 + 6.52262i 1.11894 + 0.336379i
\(377\) 4.46122 0.229765
\(378\) 0 0
\(379\) 5.41028i 0.277907i −0.990299 0.138954i \(-0.955626\pi\)
0.990299 0.138954i \(-0.0443739\pi\)
\(380\) −45.9677 9.06403i −2.35809 0.464975i
\(381\) 0 0
\(382\) −18.3219 1.78915i −0.937428 0.0915409i
\(383\) 2.35907 0.120543 0.0602714 0.998182i \(-0.480803\pi\)
0.0602714 + 0.998182i \(0.480803\pi\)
\(384\) 0 0
\(385\) −10.8500 −0.552969
\(386\) −2.84598 0.277913i −0.144857 0.0141454i
\(387\) 0 0
\(388\) −12.1072 2.38734i −0.614651 0.121199i
\(389\) 34.2038i 1.73420i −0.498131 0.867102i \(-0.665980\pi\)
0.498131 0.867102i \(-0.334020\pi\)
\(390\) 0 0
\(391\) 25.6203 1.29567
\(392\) −0.920754 0.276799i −0.0465051 0.0139805i
\(393\) 0 0
\(394\) 2.27409 23.2879i 0.114567 1.17323i
\(395\) 18.0034i 0.905850i
\(396\) 0 0
\(397\) 16.8214i 0.844240i −0.906540 0.422120i \(-0.861286\pi\)
0.906540 0.422120i \(-0.138714\pi\)
\(398\) 1.57255 + 0.153562i 0.0788249 + 0.00769735i
\(399\) 0 0
\(400\) −46.3306 19.0103i −2.31653 0.950517i
\(401\) −3.03043 −0.151333 −0.0756663 0.997133i \(-0.524108\pi\)
−0.0756663 + 0.997133i \(0.524108\pi\)
\(402\) 0 0
\(403\) 6.37531i 0.317577i
\(404\) −7.05028 + 35.7551i −0.350764 + 1.77888i
\(405\) 0 0
\(406\) 1.66124 17.0119i 0.0824457 0.844288i
\(407\) 1.59410 0.0790166
\(408\) 0 0
\(409\) −36.7145 −1.81542 −0.907708 0.419602i \(-0.862169\pi\)
−0.907708 + 0.419602i \(0.862169\pi\)
\(410\) 4.97457 50.9423i 0.245677 2.51586i
\(411\) 0 0
\(412\) −3.17195 0.625454i −0.156271 0.0308139i
\(413\) 12.7528i 0.627523i
\(414\) 0 0
\(415\) −58.6767 −2.88033
\(416\) −2.64584 + 4.99995i −0.129723 + 0.245143i
\(417\) 0 0
\(418\) 7.53731 + 0.736027i 0.368662 + 0.0360002i
\(419\) 18.2783i 0.892956i 0.894795 + 0.446478i \(0.147322\pi\)
−0.894795 + 0.446478i \(0.852678\pi\)
\(420\) 0 0
\(421\) 0.991796i 0.0483372i −0.999708 0.0241686i \(-0.992306\pi\)
0.999708 0.0241686i \(-0.00769385\pi\)
\(422\) 3.07490 31.4886i 0.149684 1.53284i
\(423\) 0 0
\(424\) −0.0649625 + 0.216093i −0.00315486 + 0.0104944i
\(425\) −62.1621 −3.01530
\(426\) 0 0
\(427\) 21.9484i 1.06216i
\(428\) 4.12624 20.9260i 0.199450 1.01150i
\(429\) 0 0
\(430\) −45.1924 4.41309i −2.17937 0.212818i
\(431\) 1.05847 0.0509847 0.0254923 0.999675i \(-0.491885\pi\)
0.0254923 + 0.999675i \(0.491885\pi\)
\(432\) 0 0
\(433\) −26.5935 −1.27800 −0.639002 0.769205i \(-0.720652\pi\)
−0.639002 + 0.769205i \(0.720652\pi\)
\(434\) −24.3109 2.37399i −1.16696 0.113955i
\(435\) 0 0
\(436\) −5.84018 + 29.6181i −0.279694 + 1.41845i
\(437\) 28.8800i 1.38152i
\(438\) 0 0
\(439\) 28.5184 1.36111 0.680554 0.732698i \(-0.261739\pi\)
0.680554 + 0.732698i \(0.261739\pi\)
\(440\) 10.8478 + 3.26110i 0.517149 + 0.155467i
\(441\) 0 0
\(442\) −0.682433 + 6.98848i −0.0324600 + 0.332408i
\(443\) 8.16454i 0.387909i −0.981011 0.193955i \(-0.937869\pi\)
0.981011 0.193955i \(-0.0621315\pi\)
\(444\) 0 0
\(445\) 48.8051i 2.31358i
\(446\) −35.6335 3.47966i −1.68730 0.164766i
\(447\) 0 0
\(448\) 18.0810 + 11.9512i 0.854249 + 0.564641i
\(449\) −1.19420 −0.0563577 −0.0281788 0.999603i \(-0.508971\pi\)
−0.0281788 + 0.999603i \(0.508971\pi\)
\(450\) 0 0
\(451\) 8.27333i 0.389576i
\(452\) −28.5985 5.63912i −1.34516 0.265242i
\(453\) 0 0
\(454\) 0.128724 1.31820i 0.00604130 0.0618662i
\(455\) −11.3399 −0.531624
\(456\) 0 0
\(457\) −15.9989 −0.748397 −0.374198 0.927349i \(-0.622082\pi\)
−0.374198 + 0.927349i \(0.622082\pi\)
\(458\) −0.468523 + 4.79792i −0.0218926 + 0.224192i
\(459\) 0 0
\(460\) 8.35672 42.3806i 0.389634 1.97601i
\(461\) 6.35688i 0.296069i 0.988982 + 0.148035i \(0.0472947\pi\)
−0.988982 + 0.148035i \(0.952705\pi\)
\(462\) 0 0
\(463\) 17.3832 0.807866 0.403933 0.914789i \(-0.367643\pi\)
0.403933 + 0.914789i \(0.367643\pi\)
\(464\) −6.77402 + 16.5092i −0.314476 + 0.766419i
\(465\) 0 0
\(466\) −18.2977 1.78679i −0.847624 0.0827715i
\(467\) 1.59410i 0.0737661i 0.999320 + 0.0368831i \(0.0117429\pi\)
−0.999320 + 0.0368831i \(0.988257\pi\)
\(468\) 0 0
\(469\) 37.2980i 1.72226i
\(470\) 4.60829 47.1913i 0.212565 2.17677i
\(471\) 0 0
\(472\) 3.83299 12.7502i 0.176427 0.586874i
\(473\) 7.33952 0.337472
\(474\) 0 0
\(475\) 70.0710i 3.21508i
\(476\) 26.3950 + 5.20464i 1.20981 + 0.238554i
\(477\) 0 0
\(478\) 8.32269 + 0.812721i 0.380671 + 0.0371730i
\(479\) 17.9730 0.821206 0.410603 0.911814i \(-0.365318\pi\)
0.410603 + 0.911814i \(0.365318\pi\)
\(480\) 0 0
\(481\) 1.66608 0.0759665
\(482\) 16.9196 + 1.65222i 0.770667 + 0.0752565i
\(483\) 0 0
\(484\) 19.7880 + 3.90186i 0.899457 + 0.177357i
\(485\) 25.8263i 1.17271i
\(486\) 0 0
\(487\) 27.5020 1.24623 0.623117 0.782129i \(-0.285866\pi\)
0.623117 + 0.782129i \(0.285866\pi\)
\(488\) −6.59682 + 21.9439i −0.298624 + 0.993353i
\(489\) 0 0
\(490\) −0.195561 + 2.00265i −0.00883455 + 0.0904705i
\(491\) 6.45310i 0.291224i 0.989342 + 0.145612i \(0.0465152\pi\)
−0.989342 + 0.145612i \(0.953485\pi\)
\(492\) 0 0
\(493\) 22.1504i 0.997606i
\(494\) 7.87763 + 0.769259i 0.354431 + 0.0346106i
\(495\) 0 0
\(496\) 23.5924 + 9.68041i 1.05933 + 0.434663i
\(497\) 3.12887 0.140349
\(498\) 0 0
\(499\) 37.8522i 1.69450i −0.531197 0.847249i \(-0.678257\pi\)
0.531197 0.847249i \(-0.321743\pi\)
\(500\) −12.1783 + 61.7614i −0.544629 + 2.76205i
\(501\) 0 0
\(502\) 1.02918 10.5394i 0.0459346 0.470395i
\(503\) 4.57973 0.204200 0.102100 0.994774i \(-0.467444\pi\)
0.102100 + 0.994774i \(0.467444\pi\)
\(504\) 0 0
\(505\) 76.2702 3.39398
\(506\) −0.678591 + 6.94913i −0.0301670 + 0.308927i
\(507\) 0 0
\(508\) −31.6842 6.24757i −1.40576 0.277191i
\(509\) 13.7626i 0.610016i −0.952350 0.305008i \(-0.901341\pi\)
0.952350 0.305008i \(-0.0986591\pi\)
\(510\) 0 0
\(511\) 4.51378 0.199678
\(512\) −14.4853 17.3832i −0.640165 0.768237i
\(513\) 0 0
\(514\) −27.5025 2.68565i −1.21308 0.118459i
\(515\) 6.76618i 0.298154i
\(516\) 0 0
\(517\) 7.66416i 0.337069i
\(518\) 0.620400 6.35323i 0.0272588 0.279145i
\(519\) 0 0
\(520\) 11.3376 + 3.40834i 0.497187 + 0.149466i
\(521\) 32.5790 1.42731 0.713656 0.700496i \(-0.247038\pi\)
0.713656 + 0.700496i \(0.247038\pi\)
\(522\) 0 0
\(523\) 40.2919i 1.76184i 0.473264 + 0.880921i \(0.343076\pi\)
−0.473264 + 0.880921i \(0.656924\pi\)
\(524\) 3.64719 18.4965i 0.159328 0.808024i
\(525\) 0 0
\(526\) 20.0900 + 1.96181i 0.875964 + 0.0855389i
\(527\) 31.6541 1.37887
\(528\) 0 0
\(529\) 3.62631 0.157666
\(530\) 0.470005 + 0.0458966i 0.0204157 + 0.00199362i
\(531\) 0 0
\(532\) 5.86682 29.7532i 0.254359 1.28997i
\(533\) 8.64689i 0.374538i
\(534\) 0 0
\(535\) −44.6379 −1.92986
\(536\) −11.2103 + 37.2904i −0.484212 + 1.61070i
\(537\) 0 0
\(538\) 1.30296 13.3430i 0.0561744 0.575256i
\(539\) 0.325242i 0.0140092i
\(540\) 0 0
\(541\) 28.6390i 1.23129i 0.788025 + 0.615643i \(0.211104\pi\)
−0.788025 + 0.615643i \(0.788896\pi\)
\(542\) −41.0550 4.00907i −1.76346 0.172204i
\(543\) 0 0
\(544\) −24.8253 13.1369i −1.06438 0.563239i
\(545\) 63.1793 2.70630
\(546\) 0 0
\(547\) 6.51086i 0.278384i −0.990265 0.139192i \(-0.955549\pi\)
0.990265 0.139192i \(-0.0444505\pi\)
\(548\) 9.19577 + 1.81325i 0.392824 + 0.0774580i
\(549\) 0 0
\(550\) 1.64645 16.8606i 0.0702050 0.718936i
\(551\) 24.9686 1.06370
\(552\) 0 0
\(553\) 11.6530 0.495534
\(554\) −0.765113 + 7.83517i −0.0325066 + 0.332884i
\(555\) 0 0
\(556\) 3.84988 19.5244i 0.163271 0.828021i
\(557\) 6.44138i 0.272930i −0.990645 0.136465i \(-0.956426\pi\)
0.990645 0.136465i \(-0.0435741\pi\)
\(558\) 0 0
\(559\) 7.67092 0.324445
\(560\) 17.2188 41.9645i 0.727627 1.77332i
\(561\) 0 0
\(562\) −2.35514 0.229982i −0.0993454 0.00970119i
\(563\) 34.3919i 1.44945i −0.689040 0.724724i \(-0.741967\pi\)
0.689040 0.724724i \(-0.258033\pi\)
\(564\) 0 0
\(565\) 61.0043i 2.56647i
\(566\) −2.81187 + 28.7951i −0.118192 + 1.21035i
\(567\) 0 0
\(568\) −3.12823 0.940417i −0.131258 0.0394590i
\(569\) 43.8071 1.83649 0.918244 0.396014i \(-0.129607\pi\)
0.918244 + 0.396014i \(0.129607\pi\)
\(570\) 0 0
\(571\) 29.1661i 1.22056i 0.792185 + 0.610281i \(0.208944\pi\)
−0.792185 + 0.610281i \(0.791056\pi\)
\(572\) −1.87745 0.370200i −0.0785000 0.0154788i
\(573\) 0 0
\(574\) 32.9731 + 3.21986i 1.37627 + 0.134394i
\(575\) −64.6030 −2.69413
\(576\) 0 0
\(577\) −10.5041 −0.437291 −0.218646 0.975804i \(-0.570164\pi\)
−0.218646 + 0.975804i \(0.570164\pi\)
\(578\) −10.7707 1.05178i −0.448004 0.0437481i
\(579\) 0 0
\(580\) 36.6408 + 7.22493i 1.52143 + 0.299999i
\(581\) 37.9793i 1.57565i
\(582\) 0 0
\(583\) −0.0763317 −0.00316134
\(584\) −4.51286 1.35667i −0.186744 0.0561393i
\(585\) 0 0
\(586\) 4.09892 41.9752i 0.169325 1.73398i
\(587\) 39.6896i 1.63817i −0.573675 0.819083i \(-0.694483\pi\)
0.573675 0.819083i \(-0.305517\pi\)
\(588\) 0 0
\(589\) 35.6814i 1.47023i
\(590\) −27.7317 2.70804i −1.14170 0.111488i
\(591\) 0 0
\(592\) −2.52981 + 6.16547i −0.103974 + 0.253399i
\(593\) −18.9670 −0.778882 −0.389441 0.921051i \(-0.627332\pi\)
−0.389441 + 0.921051i \(0.627332\pi\)
\(594\) 0 0
\(595\) 56.3040i 2.30824i
\(596\) −2.39541 + 12.1482i −0.0981199 + 0.497609i
\(597\) 0 0
\(598\) −0.709230 + 7.26289i −0.0290026 + 0.297002i
\(599\) 1.68323 0.0687750 0.0343875 0.999409i \(-0.489052\pi\)
0.0343875 + 0.999409i \(0.489052\pi\)
\(600\) 0 0
\(601\) −7.76439 −0.316716 −0.158358 0.987382i \(-0.550620\pi\)
−0.158358 + 0.987382i \(0.550620\pi\)
\(602\) 2.85644 29.2514i 0.116420 1.19220i
\(603\) 0 0
\(604\) −16.6482 3.28275i −0.677408 0.133573i
\(605\) 42.2105i 1.71610i
\(606\) 0 0
\(607\) −4.45424 −0.180792 −0.0903961 0.995906i \(-0.528813\pi\)
−0.0903961 + 0.995906i \(0.528813\pi\)
\(608\) −14.8083 + 27.9838i −0.600555 + 1.13489i
\(609\) 0 0
\(610\) 47.7281 + 4.66071i 1.93246 + 0.188707i
\(611\) 8.01021i 0.324058i
\(612\) 0 0
\(613\) 20.7056i 0.836293i 0.908380 + 0.418147i \(0.137320\pi\)
−0.908380 + 0.418147i \(0.862680\pi\)
\(614\) −1.34846 + 13.8090i −0.0544195 + 0.557284i
\(615\) 0 0
\(616\) −2.11079 + 7.02140i −0.0850462 + 0.282900i
\(617\) −31.2889 −1.25964 −0.629821 0.776740i \(-0.716872\pi\)
−0.629821 + 0.776740i \(0.716872\pi\)
\(618\) 0 0
\(619\) 13.1646i 0.529129i 0.964368 + 0.264565i \(0.0852282\pi\)
−0.964368 + 0.264565i \(0.914772\pi\)
\(620\) 10.3248 52.3615i 0.414653 2.10289i
\(621\) 0 0
\(622\) −7.38835 0.721481i −0.296246 0.0289287i
\(623\) 31.5898 1.26562
\(624\) 0 0
\(625\) 69.1461 2.76584
\(626\) −5.32881 0.520365i −0.212982 0.0207980i
\(627\) 0 0
\(628\) 6.19988 31.4423i 0.247402 1.25469i
\(629\) 8.27224i 0.329836i
\(630\) 0 0
\(631\) −6.38498 −0.254182 −0.127091 0.991891i \(-0.540564\pi\)
−0.127091 + 0.991891i \(0.540564\pi\)
\(632\) −11.6506 3.50243i −0.463435 0.139319i
\(633\) 0 0
\(634\) −2.19365 + 22.4641i −0.0871208 + 0.892164i
\(635\) 67.5865i 2.68209i
\(636\) 0 0
\(637\) 0.339928i 0.0134684i
\(638\) −6.00798 0.586687i −0.237858 0.0232271i
\(639\) 0 0
\(640\) −29.8282 + 36.7806i −1.17906 + 1.45388i
\(641\) −0.671299 −0.0265147 −0.0132574 0.999912i \(-0.504220\pi\)
−0.0132574 + 0.999912i \(0.504220\pi\)
\(642\) 0 0
\(643\) 2.22333i 0.0876794i −0.999039 0.0438397i \(-0.986041\pi\)
0.999039 0.0438397i \(-0.0139591\pi\)
\(644\) 27.4314 + 5.40900i 1.08095 + 0.213145i
\(645\) 0 0
\(646\) −3.81946 + 39.1133i −0.150274 + 1.53889i
\(647\) 21.6075 0.849480 0.424740 0.905315i \(-0.360366\pi\)
0.424740 + 0.905315i \(0.360366\pi\)
\(648\) 0 0
\(649\) 4.50380 0.176790
\(650\) 1.72079 17.6218i 0.0674950 0.691185i
\(651\) 0 0
\(652\) −6.42431 + 32.5805i −0.251595 + 1.27595i
\(653\) 4.85741i 0.190085i 0.995473 + 0.0950426i \(0.0302987\pi\)
−0.995473 + 0.0950426i \(0.969701\pi\)
\(654\) 0 0
\(655\) −39.4554 −1.54165
\(656\) −31.9986 13.1296i −1.24934 0.512626i
\(657\) 0 0
\(658\) 30.5453 + 2.98278i 1.19078 + 0.116281i
\(659\) 28.1414i 1.09623i 0.836402 + 0.548116i \(0.184655\pi\)
−0.836402 + 0.548116i \(0.815345\pi\)
\(660\) 0 0
\(661\) 25.8016i 1.00356i 0.864994 + 0.501782i \(0.167322\pi\)
−0.864994 + 0.501782i \(0.832678\pi\)
\(662\) 4.20786 43.0908i 0.163543 1.67477i
\(663\) 0 0
\(664\) −11.4151 + 37.9716i −0.442992 + 1.47358i
\(665\) −63.4675 −2.46116
\(666\) 0 0
\(667\) 23.0202i 0.891346i
\(668\) 12.4788 + 2.46060i 0.482818 + 0.0952034i
\(669\) 0 0
\(670\) 81.1069 + 7.92018i 3.13343 + 0.305983i
\(671\) −7.75134 −0.299237
\(672\) 0 0
\(673\) 13.6803 0.527336 0.263668 0.964613i \(-0.415068\pi\)
0.263668 + 0.964613i \(0.415068\pi\)
\(674\) 27.9645 + 2.73076i 1.07715 + 0.105185i
\(675\) 0 0
\(676\) −1.96222 0.386915i −0.0754699 0.0148814i
\(677\) 18.7430i 0.720351i −0.932885 0.360175i \(-0.882717\pi\)
0.932885 0.360175i \(-0.117283\pi\)
\(678\) 0 0
\(679\) −16.7164 −0.641518
\(680\) −16.9228 + 56.2925i −0.648959 + 2.15872i
\(681\) 0 0
\(682\) −0.838404 + 8.58570i −0.0321041 + 0.328764i
\(683\) 30.0389i 1.14941i −0.818362 0.574704i \(-0.805117\pi\)
0.818362 0.574704i \(-0.194883\pi\)
\(684\) 0 0
\(685\) 19.6158i 0.749480i
\(686\) 25.3968 + 2.48003i 0.969654 + 0.0946879i
\(687\) 0 0
\(688\) −11.6477 + 28.3869i −0.444064 + 1.08224i
\(689\) −0.0797782 −0.00303931
\(690\) 0 0
\(691\) 33.8302i 1.28696i −0.765462 0.643481i \(-0.777490\pi\)
0.765462 0.643481i \(-0.222510\pi\)
\(692\) 0.784892 3.98053i 0.0298371 0.151317i
\(693\) 0 0
\(694\) −0.494369 + 5.06261i −0.0187660 + 0.192174i
\(695\) −41.6482 −1.57981
\(696\) 0 0
\(697\) −42.9327 −1.62619
\(698\) 4.39347 44.9915i 0.166295 1.70295i
\(699\) 0 0
\(700\) −66.5564 13.1238i −2.51560 0.496032i
\(701\) 9.20542i 0.347684i 0.984774 + 0.173842i \(0.0556182\pi\)
−0.984774 + 0.173842i \(0.944382\pi\)
\(702\) 0 0
\(703\) 9.32472 0.351689
\(704\) 4.22072 6.38555i 0.159074 0.240664i
\(705\) 0 0
\(706\) −23.5811 2.30272i −0.887486 0.0866640i
\(707\) 49.3670i 1.85664i
\(708\) 0 0
\(709\) 42.5563i 1.59824i −0.601174 0.799119i \(-0.705300\pi\)
0.601174 0.799119i \(-0.294700\pi\)
\(710\) −0.664412 + 6.80394i −0.0249350 + 0.255347i
\(711\) 0 0
\(712\) −31.5833 9.49465i −1.18363 0.355827i
\(713\) 32.8970 1.23200
\(714\) 0 0
\(715\) 4.00484i 0.149773i
\(716\) −6.93429 + 35.1669i −0.259147 + 1.31425i
\(717\) 0 0
\(718\) −44.7337 4.36830i −1.66945 0.163023i
\(719\) −25.0205 −0.933107 −0.466554 0.884493i \(-0.654505\pi\)
−0.466554 + 0.884493i \(0.654505\pi\)
\(720\) 0 0
\(721\) −4.37951 −0.163101
\(722\) 17.3468 + 1.69393i 0.645581 + 0.0630417i
\(723\) 0 0
\(724\) −1.32007 + 6.69467i −0.0490601 + 0.248806i
\(725\) 55.8535i 2.07435i
\(726\) 0 0
\(727\) 17.7041 0.656609 0.328305 0.944572i \(-0.393523\pi\)
0.328305 + 0.944572i \(0.393523\pi\)
\(728\) −2.20610 + 7.33843i −0.0817634 + 0.271980i
\(729\) 0 0
\(730\) −0.958497 + 9.81552i −0.0354756 + 0.363289i
\(731\) 38.0869i 1.40870i
\(732\) 0 0
\(733\) 20.1480i 0.744183i 0.928196 + 0.372092i \(0.121359\pi\)
−0.928196 + 0.372092i \(0.878641\pi\)
\(734\) −39.1990 3.82783i −1.44686 0.141288i
\(735\) 0 0
\(736\) −25.8001 13.6527i −0.951004 0.503246i
\(737\) −13.1722 −0.485206
\(738\) 0 0
\(739\) 12.9725i 0.477202i −0.971118 0.238601i \(-0.923311\pi\)
0.971118 0.238601i \(-0.0766888\pi\)
\(740\) 13.6838 + 2.69820i 0.503026 + 0.0991879i
\(741\) 0 0
\(742\) −0.0297072 + 0.304217i −0.00109059 + 0.0111682i
\(743\) 31.3522 1.15020 0.575100 0.818083i \(-0.304963\pi\)
0.575100 + 0.818083i \(0.304963\pi\)
\(744\) 0 0
\(745\) 25.9137 0.949404
\(746\) 4.11571 42.1471i 0.150687 1.54311i
\(747\) 0 0
\(748\) 1.83808 9.32173i 0.0672070 0.340836i
\(749\) 28.8925i 1.05571i
\(750\) 0 0
\(751\) −13.4231 −0.489814 −0.244907 0.969547i \(-0.578757\pi\)
−0.244907 + 0.969547i \(0.578757\pi\)
\(752\) −29.6425 12.1629i −1.08095 0.443535i
\(753\) 0 0
\(754\) −6.27925 0.613176i −0.228677 0.0223306i
\(755\) 35.5129i 1.29245i
\(756\) 0 0
\(757\) 9.49056i 0.344940i 0.985015 + 0.172470i \(0.0551748\pi\)
−0.985015 + 0.172470i \(0.944825\pi\)
\(758\) −0.743620 + 7.61507i −0.0270095 + 0.276592i
\(759\) 0 0
\(760\) 63.4546 + 19.0759i 2.30174 + 0.691954i
\(761\) 13.4197 0.486466 0.243233 0.969968i \(-0.421792\pi\)
0.243233 + 0.969968i \(0.421792\pi\)
\(762\) 0 0
\(763\) 40.8937i 1.48045i
\(764\) 25.5424 + 5.03653i 0.924093 + 0.182215i
\(765\) 0 0
\(766\) −3.32043 0.324244i −0.119972 0.0117154i
\(767\) 4.70716 0.169966
\(768\) 0 0
\(769\) 6.84250 0.246747 0.123373 0.992360i \(-0.460629\pi\)
0.123373 + 0.992360i \(0.460629\pi\)
\(770\) 15.2716 + 1.49129i 0.550351 + 0.0537424i
\(771\) 0 0
\(772\) 3.96757 + 0.782336i 0.142796 + 0.0281569i
\(773\) 20.6355i 0.742207i 0.928591 + 0.371104i \(0.121021\pi\)
−0.928591 + 0.371104i \(0.878979\pi\)
\(774\) 0 0
\(775\) −79.8174 −2.86713
\(776\) 16.7130 + 5.02431i 0.599962 + 0.180362i
\(777\) 0 0
\(778\) −4.70118 + 48.1425i −0.168545 + 1.72599i
\(779\) 48.3950i 1.73393i
\(780\) 0 0
\(781\) 1.10500i 0.0395400i
\(782\) −36.0610 3.52140i −1.28954 0.125925i
\(783\) 0 0
\(784\) 1.25793 + 0.516154i 0.0449262 + 0.0184341i
\(785\) −67.0706 −2.39385
\(786\) 0 0
\(787\) 4.33162i 0.154406i −0.997015 0.0772028i \(-0.975401\pi\)
0.997015 0.0772028i \(-0.0245989\pi\)
\(788\) −6.40166 + 32.4656i −0.228050 + 1.15654i
\(789\) 0 0
\(790\) −2.47449 + 25.3401i −0.0880386 + 0.901562i
\(791\) −39.4859 −1.40396
\(792\) 0 0
\(793\) −8.10132 −0.287686
\(794\) −2.31203 + 23.6764i −0.0820508 + 0.840244i
\(795\) 0 0
\(796\) −2.19229 0.432282i −0.0777037 0.0153218i
\(797\) 26.9591i 0.954941i −0.878648 0.477471i \(-0.841554\pi\)
0.878648 0.477471i \(-0.158446\pi\)
\(798\) 0 0
\(799\) −39.7716 −1.40702
\(800\) 62.5983 + 33.1253i 2.21319 + 1.17116i
\(801\) 0 0
\(802\) 4.26539 + 0.416521i 0.150616 + 0.0147079i
\(803\) 1.59410i 0.0562545i
\(804\) 0 0
\(805\) 58.5148i 2.06238i
\(806\) −0.876259 + 8.97336i −0.0308649 + 0.316073i
\(807\) 0 0
\(808\) 14.8378 49.3569i 0.521991 1.73637i
\(809\) −0.217636 −0.00765166 −0.00382583 0.999993i \(-0.501218\pi\)
−0.00382583 + 0.999993i \(0.501218\pi\)
\(810\) 0 0
\(811\) 10.9498i 0.384501i −0.981346 0.192251i \(-0.938421\pi\)
0.981346 0.192251i \(-0.0615786\pi\)
\(812\) −4.67644 + 23.7163i −0.164111 + 0.832279i
\(813\) 0 0
\(814\) −2.24372 0.219102i −0.0786425 0.00767953i
\(815\) 69.4984 2.43442
\(816\) 0 0
\(817\) 42.9327 1.50203
\(818\) 51.6764 + 5.04626i 1.80682 + 0.176438i
\(819\) 0 0
\(820\) −14.0036 + 71.0184i −0.489027 + 2.48007i
\(821\) 10.6224i 0.370725i −0.982670 0.185362i \(-0.940654\pi\)
0.982670 0.185362i \(-0.0593459\pi\)
\(822\) 0 0
\(823\) 28.0573 0.978017 0.489008 0.872279i \(-0.337359\pi\)
0.489008 + 0.872279i \(0.337359\pi\)
\(824\) 4.37861 + 1.31631i 0.152536 + 0.0458558i
\(825\) 0 0
\(826\) 1.75282 17.9498i 0.0609882 0.624552i
\(827\) 2.91954i 0.101522i −0.998711 0.0507611i \(-0.983835\pi\)
0.998711 0.0507611i \(-0.0161647\pi\)
\(828\) 0 0
\(829\) 33.7216i 1.17120i −0.810600 0.585600i \(-0.800859\pi\)
0.810600 0.585600i \(-0.199141\pi\)
\(830\) 82.5886 + 8.06487i 2.86669 + 0.279936i
\(831\) 0 0
\(832\) 4.41129 6.67387i 0.152934 0.231375i
\(833\) 1.68778 0.0584780
\(834\) 0 0
\(835\) 26.6189i 0.921183i
\(836\) −10.5077 2.07194i −0.363418 0.0716596i
\(837\) 0 0
\(838\) 2.51228 25.7271i 0.0867854 0.888728i
\(839\) −19.6980 −0.680050 −0.340025 0.940416i \(-0.610436\pi\)
−0.340025 + 0.940416i \(0.610436\pi\)
\(840\) 0 0
\(841\) 9.09751 0.313707
\(842\) −0.136318 + 1.39597i −0.00469784 + 0.0481084i
\(843\) 0 0
\(844\) −8.65596 + 43.8982i −0.297950 + 1.51104i
\(845\) 4.18566i 0.143991i
\(846\) 0 0
\(847\) 27.3213 0.938772
\(848\) 0.121137 0.295227i 0.00415986 0.0101381i
\(849\) 0 0
\(850\) 87.4943 + 8.54392i 3.00103 + 0.293054i
\(851\) 8.59706i 0.294704i
\(852\) 0 0
\(853\) 11.3421i 0.388347i 0.980967 + 0.194174i \(0.0622025\pi\)
−0.980967 + 0.194174i \(0.937798\pi\)
\(854\) −3.01671 + 30.8927i −0.103230 + 1.05713i
\(855\) 0 0
\(856\) −8.68396 + 28.8866i −0.296812 + 0.987324i
\(857\) 15.8724 0.542192 0.271096 0.962552i \(-0.412614\pi\)
0.271096 + 0.962552i \(0.412614\pi\)
\(858\) 0 0
\(859\) 23.4990i 0.801776i −0.916127 0.400888i \(-0.868702\pi\)
0.916127 0.400888i \(-0.131298\pi\)
\(860\) 63.0026 + 12.4230i 2.14837 + 0.423622i
\(861\) 0 0
\(862\) −1.48982 0.145482i −0.0507433 0.00495514i
\(863\) 6.45060 0.219581 0.109790 0.993955i \(-0.464982\pi\)
0.109790 + 0.993955i \(0.464982\pi\)
\(864\) 0 0
\(865\) −8.49099 −0.288702
\(866\) 37.4309 + 3.65517i 1.27195 + 0.124208i
\(867\) 0 0
\(868\) 33.8917 + 6.68286i 1.15036 + 0.226831i
\(869\) 4.11539i 0.139605i
\(870\) 0 0
\(871\) −13.7670 −0.466477
\(872\) 12.2911 40.8854i 0.416228 1.38455i
\(873\) 0 0
\(874\) −3.96943 + 40.6491i −0.134268 + 1.37498i
\(875\) 85.2738i 2.88278i
\(876\) 0 0
\(877\) 43.8038i 1.47915i −0.673074 0.739575i \(-0.735027\pi\)
0.673074 0.739575i \(-0.264973\pi\)
\(878\) −40.1401 3.91973i −1.35466 0.132285i
\(879\) 0 0
\(880\) −14.8203 6.08104i −0.499592 0.204992i
\(881\) −54.1923 −1.82579 −0.912893 0.408199i \(-0.866157\pi\)
−0.912893 + 0.408199i \(0.866157\pi\)
\(882\) 0 0
\(883\) 32.4922i 1.09345i −0.837312 0.546725i \(-0.815874\pi\)
0.837312 0.546725i \(-0.184126\pi\)
\(884\) 1.92108 9.74262i 0.0646128 0.327680i
\(885\) 0 0
\(886\) −1.12218 + 11.4917i −0.0377005 + 0.386073i
\(887\) −30.3801 −1.02006 −0.510032 0.860156i \(-0.670366\pi\)
−0.510032 + 0.860156i \(0.670366\pi\)
\(888\) 0 0
\(889\) −43.7463 −1.46720
\(890\) −6.70805 + 68.6940i −0.224854 + 2.30263i
\(891\) 0 0
\(892\) 49.6766 + 9.79536i 1.66330 + 0.327973i
\(893\) 44.8317i 1.50024i
\(894\) 0 0
\(895\) 75.0155 2.50749
\(896\) −23.8068 19.3067i −0.795328 0.644992i
\(897\) 0 0
\(898\) 1.68086 + 0.164138i 0.0560909 + 0.00547734i
\(899\) 28.4416i 0.948582i
\(900\) 0 0
\(901\) 0.396107i 0.0131962i
\(902\) 1.13714 11.6449i 0.0378625 0.387732i
\(903\) 0 0
\(904\) 39.4778 + 11.8679i 1.31301 + 0.394721i
\(905\) 14.2806 0.474703
\(906\) 0 0
\(907\) 29.0224i 0.963671i 0.876262 + 0.481836i \(0.160030\pi\)
−0.876262 + 0.481836i \(0.839970\pi\)
\(908\) −0.362362 + 1.83770i −0.0120254 + 0.0609862i
\(909\) 0 0
\(910\) 15.9612 + 1.55863i 0.529107 + 0.0516679i
\(911\) 48.1729 1.59604 0.798019 0.602632i \(-0.205881\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(912\) 0 0
\(913\) −13.4129 −0.443902
\(914\) 22.5187 + 2.19898i 0.744854 + 0.0727358i
\(915\) 0 0
\(916\) 1.31891 6.68877i 0.0435780 0.221003i
\(917\) 25.5381i 0.843342i
\(918\) 0 0
\(919\) 25.1063 0.828180 0.414090 0.910236i \(-0.364100\pi\)
0.414090 + 0.910236i \(0.364100\pi\)
\(920\) −17.5873 + 58.5029i −0.579835 + 1.92878i
\(921\) 0 0
\(922\) 0.873726 8.94742i 0.0287746 0.294668i
\(923\) 1.15489i 0.0380138i
\(924\) 0 0
\(925\) 20.8589i 0.685837i
\(926\) −24.4672 2.38925i −0.804042 0.0785156i
\(927\) 0 0
\(928\) 11.8037 22.3059i 0.387475 0.732227i
\(929\) 45.7495 1.50099 0.750497 0.660874i \(-0.229814\pi\)
0.750497 + 0.660874i \(0.229814\pi\)
\(930\) 0 0
\(931\) 1.90251i 0.0623523i
\(932\) 25.5087 + 5.02988i 0.835567 + 0.164759i
\(933\) 0 0
\(934\) 0.219102 2.24372i 0.00716925 0.0734169i
\(935\) −19.8845 −0.650291
\(936\) 0 0
\(937\) −41.4498 −1.35411 −0.677053 0.735934i \(-0.736743\pi\)
−0.677053 + 0.735934i \(0.736743\pi\)
\(938\) −5.12645 + 52.4976i −0.167384 + 1.71411i
\(939\) 0 0
\(940\) −12.9725 + 65.7893i −0.423117 + 2.14581i
\(941\) 27.6008i 0.899760i 0.893089 + 0.449880i \(0.148533\pi\)
−0.893089 + 0.449880i \(0.851467\pi\)
\(942\) 0 0
\(943\) −44.6185 −1.45298
\(944\) −7.14746 + 17.4193i −0.232630 + 0.566949i
\(945\) 0 0
\(946\) −10.3305 1.00879i −0.335874 0.0327985i
\(947\) 60.4406i 1.96405i −0.188740 0.982027i \(-0.560440\pi\)
0.188740 0.982027i \(-0.439560\pi\)
\(948\) 0 0
\(949\) 1.66608i 0.0540831i
\(950\) 9.63096 98.6262i 0.312470 3.19986i
\(951\) 0 0
\(952\) −36.4361 10.9535i −1.18090 0.355005i
\(953\) 23.3201 0.755412 0.377706 0.925926i \(-0.376713\pi\)
0.377706 + 0.925926i \(0.376713\pi\)
\(954\) 0 0
\(955\) 54.4853i 1.76310i
\(956\) −11.6026 2.28784i −0.375256 0.0739940i
\(957\) 0 0
\(958\) −25.2973 2.47031i −0.817319 0.0798121i
\(959\) 12.6966 0.409994
\(960\) 0 0
\(961\) 9.64452 0.311114
\(962\) −2.34503 0.228995i −0.0756069 0.00738310i
\(963\) 0 0
\(964\) −23.5876 4.65106i −0.759705 0.149801i
\(965\) 8.46334i 0.272445i
\(966\) 0 0
\(967\) −28.4046 −0.913432 −0.456716 0.889613i \(-0.650974\pi\)
−0.456716 + 0.889613i \(0.650974\pi\)
\(968\) −27.3158 8.21173i −0.877962 0.263935i
\(969\) 0 0
\(970\) 3.54972 36.3510i 0.113975 1.16716i
\(971\) 32.3884i 1.03939i 0.854351 + 0.519697i \(0.173955\pi\)
−0.854351 + 0.519697i \(0.826045\pi\)
\(972\) 0 0
\(973\) 26.9574i 0.864213i
\(974\) −38.7096 3.78003i −1.24033 0.121120i
\(975\) 0 0
\(976\) 12.3012 29.9797i 0.393753 0.959627i
\(977\) −40.7641 −1.30416 −0.652079 0.758151i \(-0.726103\pi\)
−0.652079 + 0.758151i \(0.726103\pi\)
\(978\) 0 0
\(979\) 11.1563i 0.356558i
\(980\) 0.550512 2.79189i 0.0175854 0.0891835i
\(981\) 0 0
\(982\) 0.886952 9.08286i 0.0283038 0.289846i
\(983\) −44.1753 −1.40897 −0.704486 0.709718i \(-0.748822\pi\)
−0.704486 + 0.709718i \(0.748822\pi\)
\(984\) 0 0
\(985\) 69.2534 2.20660
\(986\) 3.04449 31.1772i 0.0969562 0.992883i
\(987\) 0 0
\(988\) −10.9822 2.16549i −0.349389 0.0688935i
\(989\) 39.5825i 1.25865i
\(990\) 0 0
\(991\) 27.7306 0.880893 0.440446 0.897779i \(-0.354820\pi\)
0.440446 + 0.897779i \(0.354820\pi\)
\(992\) −31.8762 16.8680i −1.01207 0.535561i
\(993\) 0 0
\(994\) −4.40394 0.430050i −0.139685 0.0136404i
\(995\) 4.67644i 0.148253i
\(996\) 0 0
\(997\) 15.5011i 0.490925i −0.969406 0.245463i \(-0.921060\pi\)
0.969406 0.245463i \(-0.0789398\pi\)
\(998\) −5.20263 + 53.2777i −0.164686 + 1.68648i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.1 24
3.2 odd 2 inner 936.2.g.f.469.24 yes 24
4.3 odd 2 3744.2.g.f.1873.11 24
8.3 odd 2 3744.2.g.f.1873.12 24
8.5 even 2 inner 936.2.g.f.469.2 yes 24
12.11 even 2 3744.2.g.f.1873.24 24
24.5 odd 2 inner 936.2.g.f.469.23 yes 24
24.11 even 2 3744.2.g.f.1873.23 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.1 24 1.1 even 1 trivial
936.2.g.f.469.2 yes 24 8.5 even 2 inner
936.2.g.f.469.23 yes 24 24.5 odd 2 inner
936.2.g.f.469.24 yes 24 3.2 odd 2 inner
3744.2.g.f.1873.11 24 4.3 odd 2
3744.2.g.f.1873.12 24 8.3 odd 2
3744.2.g.f.1873.23 24 24.11 even 2
3744.2.g.f.1873.24 24 12.11 even 2