Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [936,2,Mod(469,936)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(936, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("936.469");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
469.1 | −1.40752 | − | 0.137446i | 0 | 1.96222 | + | 0.386915i | − | 4.18566i | 0 | 2.70923 | −2.70868 | − | 0.814289i | 0 | −0.575302 | + | 5.89140i | |||||||||
469.2 | −1.40752 | + | 0.137446i | 0 | 1.96222 | − | 0.386915i | 4.18566i | 0 | 2.70923 | −2.70868 | + | 0.814289i | 0 | −0.575302 | − | 5.89140i | ||||||||||
469.3 | −1.36264 | − | 0.378437i | 0 | 1.71357 | + | 1.03135i | 0.839709i | 0 | −0.482293 | −1.94468 | − | 2.05383i | 0 | 0.317777 | − | 1.14422i | ||||||||||
469.4 | −1.36264 | + | 0.378437i | 0 | 1.71357 | − | 1.03135i | − | 0.839709i | 0 | −0.482293 | −1.94468 | + | 2.05383i | 0 | 0.317777 | + | 1.14422i | |||||||||
469.5 | −1.21070 | − | 0.730889i | 0 | 0.931601 | + | 1.76978i | − | 2.32782i | 0 | −4.85152 | 0.165621 | − | 2.82357i | 0 | −1.70138 | + | 2.81830i | |||||||||
469.6 | −1.21070 | + | 0.730889i | 0 | 0.931601 | − | 1.76978i | 2.32782i | 0 | −4.85152 | 0.165621 | + | 2.82357i | 0 | −1.70138 | − | 2.81830i | ||||||||||
469.7 | −0.913088 | − | 1.07994i | 0 | −0.332541 | + | 1.97216i | − | 0.592273i | 0 | 3.54968 | 2.43345 | − | 1.44163i | 0 | −0.639619 | + | 0.540797i | |||||||||
469.8 | −0.913088 | + | 1.07994i | 0 | −0.332541 | − | 1.97216i | 0.592273i | 0 | 3.54968 | 2.43345 | + | 1.44163i | 0 | −0.639619 | − | 0.540797i | ||||||||||
469.9 | −0.900006 | − | 1.09087i | 0 | −0.379977 | + | 1.96357i | 3.06504i | 0 | −1.53955 | 2.48398 | − | 1.35272i | 0 | 3.34355 | − | 2.75856i | ||||||||||
469.10 | −0.900006 | + | 1.09087i | 0 | −0.379977 | − | 1.96357i | − | 3.06504i | 0 | −1.53955 | 2.48398 | + | 1.35272i | 0 | 3.34355 | + | 2.75856i | |||||||||
469.11 | −0.229270 | − | 1.39551i | 0 | −1.89487 | + | 0.639895i | 1.61588i | 0 | −1.38556 | 1.32741 | + | 2.49759i | 0 | 2.25497 | − | 0.370474i | ||||||||||
469.12 | −0.229270 | + | 1.39551i | 0 | −1.89487 | − | 0.639895i | − | 1.61588i | 0 | −1.38556 | 1.32741 | − | 2.49759i | 0 | 2.25497 | + | 0.370474i | |||||||||
469.13 | 0.229270 | − | 1.39551i | 0 | −1.89487 | − | 0.639895i | 1.61588i | 0 | −1.38556 | −1.32741 | + | 2.49759i | 0 | 2.25497 | + | 0.370474i | ||||||||||
469.14 | 0.229270 | + | 1.39551i | 0 | −1.89487 | + | 0.639895i | − | 1.61588i | 0 | −1.38556 | −1.32741 | − | 2.49759i | 0 | 2.25497 | − | 0.370474i | |||||||||
469.15 | 0.900006 | − | 1.09087i | 0 | −0.379977 | − | 1.96357i | 3.06504i | 0 | −1.53955 | −2.48398 | − | 1.35272i | 0 | 3.34355 | + | 2.75856i | ||||||||||
469.16 | 0.900006 | + | 1.09087i | 0 | −0.379977 | + | 1.96357i | − | 3.06504i | 0 | −1.53955 | −2.48398 | + | 1.35272i | 0 | 3.34355 | − | 2.75856i | |||||||||
469.17 | 0.913088 | − | 1.07994i | 0 | −0.332541 | − | 1.97216i | − | 0.592273i | 0 | 3.54968 | −2.43345 | − | 1.44163i | 0 | −0.639619 | − | 0.540797i | |||||||||
469.18 | 0.913088 | + | 1.07994i | 0 | −0.332541 | + | 1.97216i | 0.592273i | 0 | 3.54968 | −2.43345 | + | 1.44163i | 0 | −0.639619 | + | 0.540797i | ||||||||||
469.19 | 1.21070 | − | 0.730889i | 0 | 0.931601 | − | 1.76978i | − | 2.32782i | 0 | −4.85152 | −0.165621 | − | 2.82357i | 0 | −1.70138 | − | 2.81830i | |||||||||
469.20 | 1.21070 | + | 0.730889i | 0 | 0.931601 | + | 1.76978i | 2.32782i | 0 | −4.85152 | −0.165621 | + | 2.82357i | 0 | −1.70138 | + | 2.81830i | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
24.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.g.f | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 936.2.g.f | ✓ | 24 |
4.b | odd | 2 | 1 | 3744.2.g.f | 24 | ||
8.b | even | 2 | 1 | inner | 936.2.g.f | ✓ | 24 |
8.d | odd | 2 | 1 | 3744.2.g.f | 24 | ||
12.b | even | 2 | 1 | 3744.2.g.f | 24 | ||
24.f | even | 2 | 1 | 3744.2.g.f | 24 | ||
24.h | odd | 2 | 1 | inner | 936.2.g.f | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.g.f | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
936.2.g.f | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
936.2.g.f | ✓ | 24 | 8.b | even | 2 | 1 | inner |
936.2.g.f | ✓ | 24 | 24.h | odd | 2 | 1 | inner |
3744.2.g.f | 24 | 4.b | odd | 2 | 1 | ||
3744.2.g.f | 24 | 8.d | odd | 2 | 1 | ||
3744.2.g.f | 24 | 12.b | even | 2 | 1 | ||
3744.2.g.f | 24 | 24.f | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 36T_{5}^{10} + 432T_{5}^{8} + 2128T_{5}^{6} + 4224T_{5}^{4} + 2880T_{5}^{2} + 576 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\).