Properties

Label 936.2.g.b.469.3
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.3
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.b.469.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-1.73205 - 1.00000i) q^{4} +3.46410i q^{5} -1.26795 q^{7} +(-2.00000 + 2.00000i) q^{8} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-1.73205 - 1.00000i) q^{4} +3.46410i q^{5} -1.26795 q^{7} +(-2.00000 + 2.00000i) q^{8} +(4.73205 + 1.26795i) q^{10} -4.73205i q^{11} -1.00000i q^{13} +(-0.464102 + 1.73205i) q^{14} +(2.00000 + 3.46410i) q^{16} -5.46410 q^{17} -0.732051i q^{19} +(3.46410 - 6.00000i) q^{20} +(-6.46410 - 1.73205i) q^{22} -4.00000 q^{23} -7.00000 q^{25} +(-1.36603 - 0.366025i) q^{26} +(2.19615 + 1.26795i) q^{28} +2.00000i q^{29} -6.73205 q^{31} +(5.46410 - 1.46410i) q^{32} +(-2.00000 + 7.46410i) q^{34} -4.39230i q^{35} +8.92820i q^{37} +(-1.00000 - 0.267949i) q^{38} +(-6.92820 - 6.92820i) q^{40} -8.92820 q^{41} +0.535898i q^{43} +(-4.73205 + 8.19615i) q^{44} +(-1.46410 + 5.46410i) q^{46} -6.73205 q^{47} -5.39230 q^{49} +(-2.56218 + 9.56218i) q^{50} +(-1.00000 + 1.73205i) q^{52} -2.92820i q^{53} +16.3923 q^{55} +(2.53590 - 2.53590i) q^{56} +(2.73205 + 0.732051i) q^{58} -10.1962i q^{59} -2.92820i q^{61} +(-2.46410 + 9.19615i) q^{62} -8.00000i q^{64} +3.46410 q^{65} -0.732051i q^{67} +(9.46410 + 5.46410i) q^{68} +(-6.00000 - 1.60770i) q^{70} +8.19615 q^{71} -7.46410 q^{73} +(12.1962 + 3.26795i) q^{74} +(-0.732051 + 1.26795i) q^{76} +6.00000i q^{77} +5.46410 q^{79} +(-12.0000 + 6.92820i) q^{80} +(-3.26795 + 12.1962i) q^{82} +3.26795i q^{83} -18.9282i q^{85} +(0.732051 + 0.196152i) q^{86} +(9.46410 + 9.46410i) q^{88} +17.3205 q^{89} +1.26795i q^{91} +(6.92820 + 4.00000i) q^{92} +(-2.46410 + 9.19615i) q^{94} +2.53590 q^{95} +6.39230 q^{97} +(-1.97372 + 7.36603i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 12 q^{7} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 12 q^{7} - 8 q^{8} + 12 q^{10} + 12 q^{14} + 8 q^{16} - 8 q^{17} - 12 q^{22} - 16 q^{23} - 28 q^{25} - 2 q^{26} - 12 q^{28} - 20 q^{31} + 8 q^{32} - 8 q^{34} - 4 q^{38} - 8 q^{41} - 12 q^{44} + 8 q^{46} - 20 q^{47} + 20 q^{49} + 14 q^{50} - 4 q^{52} + 24 q^{55} + 24 q^{56} + 4 q^{58} + 4 q^{62} + 24 q^{68} - 24 q^{70} + 12 q^{71} - 16 q^{73} + 28 q^{74} + 4 q^{76} + 8 q^{79} - 48 q^{80} - 20 q^{82} - 4 q^{86} + 24 q^{88} + 4 q^{94} + 24 q^{95} - 16 q^{97} - 46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.258819 0.965926i
\(3\) 0 0
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) 3.46410i 1.54919i 0.632456 + 0.774597i \(0.282047\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) −1.26795 −0.479240 −0.239620 0.970867i \(-0.577023\pi\)
−0.239620 + 0.970867i \(0.577023\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 0 0
\(10\) 4.73205 + 1.26795i 1.49641 + 0.400961i
\(11\) 4.73205i 1.42677i −0.700774 0.713384i \(-0.747162\pi\)
0.700774 0.713384i \(-0.252838\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −0.464102 + 1.73205i −0.124036 + 0.462910i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −5.46410 −1.32524 −0.662620 0.748956i \(-0.730555\pi\)
−0.662620 + 0.748956i \(0.730555\pi\)
\(18\) 0 0
\(19\) 0.732051i 0.167944i −0.996468 0.0839720i \(-0.973239\pi\)
0.996468 0.0839720i \(-0.0267606\pi\)
\(20\) 3.46410 6.00000i 0.774597 1.34164i
\(21\) 0 0
\(22\) −6.46410 1.73205i −1.37815 0.369274i
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) −1.36603 0.366025i −0.267900 0.0717835i
\(27\) 0 0
\(28\) 2.19615 + 1.26795i 0.415034 + 0.239620i
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −6.73205 −1.20911 −0.604556 0.796563i \(-0.706649\pi\)
−0.604556 + 0.796563i \(0.706649\pi\)
\(32\) 5.46410 1.46410i 0.965926 0.258819i
\(33\) 0 0
\(34\) −2.00000 + 7.46410i −0.342997 + 1.28008i
\(35\) 4.39230i 0.742435i
\(36\) 0 0
\(37\) 8.92820i 1.46779i 0.679264 + 0.733894i \(0.262299\pi\)
−0.679264 + 0.733894i \(0.737701\pi\)
\(38\) −1.00000 0.267949i −0.162221 0.0434671i
\(39\) 0 0
\(40\) −6.92820 6.92820i −1.09545 1.09545i
\(41\) −8.92820 −1.39435 −0.697176 0.716900i \(-0.745560\pi\)
−0.697176 + 0.716900i \(0.745560\pi\)
\(42\) 0 0
\(43\) 0.535898i 0.0817237i 0.999165 + 0.0408619i \(0.0130104\pi\)
−0.999165 + 0.0408619i \(0.986990\pi\)
\(44\) −4.73205 + 8.19615i −0.713384 + 1.23562i
\(45\) 0 0
\(46\) −1.46410 + 5.46410i −0.215870 + 0.805638i
\(47\) −6.73205 −0.981971 −0.490985 0.871168i \(-0.663363\pi\)
−0.490985 + 0.871168i \(0.663363\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) −2.56218 + 9.56218i −0.362347 + 1.35230i
\(51\) 0 0
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) 2.92820i 0.402220i −0.979569 0.201110i \(-0.935545\pi\)
0.979569 0.201110i \(-0.0644548\pi\)
\(54\) 0 0
\(55\) 16.3923 2.21034
\(56\) 2.53590 2.53590i 0.338874 0.338874i
\(57\) 0 0
\(58\) 2.73205 + 0.732051i 0.358736 + 0.0961230i
\(59\) 10.1962i 1.32743i −0.747987 0.663713i \(-0.768980\pi\)
0.747987 0.663713i \(-0.231020\pi\)
\(60\) 0 0
\(61\) 2.92820i 0.374918i −0.982272 0.187459i \(-0.939975\pi\)
0.982272 0.187459i \(-0.0600252\pi\)
\(62\) −2.46410 + 9.19615i −0.312941 + 1.16791i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) 0.732051i 0.0894342i −0.999000 0.0447171i \(-0.985761\pi\)
0.999000 0.0447171i \(-0.0142386\pi\)
\(68\) 9.46410 + 5.46410i 1.14769 + 0.662620i
\(69\) 0 0
\(70\) −6.00000 1.60770i −0.717137 0.192156i
\(71\) 8.19615 0.972704 0.486352 0.873763i \(-0.338327\pi\)
0.486352 + 0.873763i \(0.338327\pi\)
\(72\) 0 0
\(73\) −7.46410 −0.873607 −0.436804 0.899557i \(-0.643889\pi\)
−0.436804 + 0.899557i \(0.643889\pi\)
\(74\) 12.1962 + 3.26795i 1.41777 + 0.379891i
\(75\) 0 0
\(76\) −0.732051 + 1.26795i −0.0839720 + 0.145444i
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 5.46410 0.614759 0.307380 0.951587i \(-0.400548\pi\)
0.307380 + 0.951587i \(0.400548\pi\)
\(80\) −12.0000 + 6.92820i −1.34164 + 0.774597i
\(81\) 0 0
\(82\) −3.26795 + 12.1962i −0.360885 + 1.34684i
\(83\) 3.26795i 0.358704i 0.983785 + 0.179352i \(0.0574001\pi\)
−0.983785 + 0.179352i \(0.942600\pi\)
\(84\) 0 0
\(85\) 18.9282i 2.05305i
\(86\) 0.732051 + 0.196152i 0.0789391 + 0.0211517i
\(87\) 0 0
\(88\) 9.46410 + 9.46410i 1.00888 + 1.00888i
\(89\) 17.3205 1.83597 0.917985 0.396615i \(-0.129815\pi\)
0.917985 + 0.396615i \(0.129815\pi\)
\(90\) 0 0
\(91\) 1.26795i 0.132917i
\(92\) 6.92820 + 4.00000i 0.722315 + 0.417029i
\(93\) 0 0
\(94\) −2.46410 + 9.19615i −0.254153 + 0.948511i
\(95\) 2.53590 0.260178
\(96\) 0 0
\(97\) 6.39230 0.649040 0.324520 0.945879i \(-0.394797\pi\)
0.324520 + 0.945879i \(0.394797\pi\)
\(98\) −1.97372 + 7.36603i −0.199376 + 0.744081i
\(99\) 0 0
\(100\) 12.1244 + 7.00000i 1.21244 + 0.700000i
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 0 0
\(103\) 6.92820 0.682656 0.341328 0.939944i \(-0.389123\pi\)
0.341328 + 0.939944i \(0.389123\pi\)
\(104\) 2.00000 + 2.00000i 0.196116 + 0.196116i
\(105\) 0 0
\(106\) −4.00000 1.07180i −0.388514 0.104102i
\(107\) 4.92820i 0.476427i 0.971213 + 0.238214i \(0.0765619\pi\)
−0.971213 + 0.238214i \(0.923438\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 6.00000 22.3923i 0.572078 2.13502i
\(111\) 0 0
\(112\) −2.53590 4.39230i −0.239620 0.415034i
\(113\) −2.53590 −0.238557 −0.119279 0.992861i \(-0.538058\pi\)
−0.119279 + 0.992861i \(0.538058\pi\)
\(114\) 0 0
\(115\) 13.8564i 1.29212i
\(116\) 2.00000 3.46410i 0.185695 0.321634i
\(117\) 0 0
\(118\) −13.9282 3.73205i −1.28220 0.343563i
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) −11.3923 −1.03566
\(122\) −4.00000 1.07180i −0.362143 0.0970359i
\(123\) 0 0
\(124\) 11.6603 + 6.73205i 1.04712 + 0.604556i
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −10.9282 2.92820i −0.965926 0.258819i
\(129\) 0 0
\(130\) 1.26795 4.73205i 0.111207 0.415028i
\(131\) 19.8564i 1.73486i 0.497557 + 0.867431i \(0.334230\pi\)
−0.497557 + 0.867431i \(0.665770\pi\)
\(132\) 0 0
\(133\) 0.928203i 0.0804854i
\(134\) −1.00000 0.267949i −0.0863868 0.0231473i
\(135\) 0 0
\(136\) 10.9282 10.9282i 0.937086 0.937086i
\(137\) −12.9282 −1.10453 −0.552265 0.833668i \(-0.686237\pi\)
−0.552265 + 0.833668i \(0.686237\pi\)
\(138\) 0 0
\(139\) 10.0000i 0.848189i 0.905618 + 0.424094i \(0.139408\pi\)
−0.905618 + 0.424094i \(0.860592\pi\)
\(140\) −4.39230 + 7.60770i −0.371218 + 0.642968i
\(141\) 0 0
\(142\) 3.00000 11.1962i 0.251754 0.939560i
\(143\) −4.73205 −0.395714
\(144\) 0 0
\(145\) −6.92820 −0.575356
\(146\) −2.73205 + 10.1962i −0.226106 + 0.843840i
\(147\) 0 0
\(148\) 8.92820 15.4641i 0.733894 1.27114i
\(149\) 12.9282i 1.05912i −0.848273 0.529560i \(-0.822357\pi\)
0.848273 0.529560i \(-0.177643\pi\)
\(150\) 0 0
\(151\) −7.12436 −0.579772 −0.289886 0.957061i \(-0.593617\pi\)
−0.289886 + 0.957061i \(0.593617\pi\)
\(152\) 1.46410 + 1.46410i 0.118754 + 0.118754i
\(153\) 0 0
\(154\) 8.19615 + 2.19615i 0.660465 + 0.176971i
\(155\) 23.3205i 1.87315i
\(156\) 0 0
\(157\) 16.9282i 1.35102i 0.737352 + 0.675509i \(0.236076\pi\)
−0.737352 + 0.675509i \(0.763924\pi\)
\(158\) 2.00000 7.46410i 0.159111 0.593812i
\(159\) 0 0
\(160\) 5.07180 + 18.9282i 0.400961 + 1.49641i
\(161\) 5.07180 0.399714
\(162\) 0 0
\(163\) 16.7321i 1.31056i −0.755388 0.655278i \(-0.772552\pi\)
0.755388 0.655278i \(-0.227448\pi\)
\(164\) 15.4641 + 8.92820i 1.20754 + 0.697176i
\(165\) 0 0
\(166\) 4.46410 + 1.19615i 0.346481 + 0.0928394i
\(167\) 5.66025 0.438004 0.219002 0.975724i \(-0.429720\pi\)
0.219002 + 0.975724i \(0.429720\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −25.8564 6.92820i −1.98310 0.531369i
\(171\) 0 0
\(172\) 0.535898 0.928203i 0.0408619 0.0707748i
\(173\) 6.92820i 0.526742i 0.964695 + 0.263371i \(0.0848343\pi\)
−0.964695 + 0.263371i \(0.915166\pi\)
\(174\) 0 0
\(175\) 8.87564 0.670936
\(176\) 16.3923 9.46410i 1.23562 0.713384i
\(177\) 0 0
\(178\) 6.33975 23.6603i 0.475184 1.77341i
\(179\) 10.3923i 0.776757i −0.921500 0.388379i \(-0.873035\pi\)
0.921500 0.388379i \(-0.126965\pi\)
\(180\) 0 0
\(181\) 8.92820i 0.663628i 0.943345 + 0.331814i \(0.107661\pi\)
−0.943345 + 0.331814i \(0.892339\pi\)
\(182\) 1.73205 + 0.464102i 0.128388 + 0.0344015i
\(183\) 0 0
\(184\) 8.00000 8.00000i 0.589768 0.589768i
\(185\) −30.9282 −2.27389
\(186\) 0 0
\(187\) 25.8564i 1.89081i
\(188\) 11.6603 + 6.73205i 0.850411 + 0.490985i
\(189\) 0 0
\(190\) 0.928203 3.46410i 0.0673389 0.251312i
\(191\) 14.5359 1.05178 0.525890 0.850552i \(-0.323732\pi\)
0.525890 + 0.850552i \(0.323732\pi\)
\(192\) 0 0
\(193\) −1.60770 −0.115724 −0.0578622 0.998325i \(-0.518428\pi\)
−0.0578622 + 0.998325i \(0.518428\pi\)
\(194\) 2.33975 8.73205i 0.167984 0.626925i
\(195\) 0 0
\(196\) 9.33975 + 5.39230i 0.667125 + 0.385165i
\(197\) 3.07180i 0.218856i −0.993995 0.109428i \(-0.965098\pi\)
0.993995 0.109428i \(-0.0349020\pi\)
\(198\) 0 0
\(199\) 16.7846 1.18983 0.594915 0.803789i \(-0.297186\pi\)
0.594915 + 0.803789i \(0.297186\pi\)
\(200\) 14.0000 14.0000i 0.989949 0.989949i
\(201\) 0 0
\(202\) −16.3923 4.39230i −1.15336 0.309041i
\(203\) 2.53590i 0.177985i
\(204\) 0 0
\(205\) 30.9282i 2.16012i
\(206\) 2.53590 9.46410i 0.176684 0.659395i
\(207\) 0 0
\(208\) 3.46410 2.00000i 0.240192 0.138675i
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) 7.85641i 0.540857i 0.962740 + 0.270429i \(0.0871654\pi\)
−0.962740 + 0.270429i \(0.912835\pi\)
\(212\) −2.92820 + 5.07180i −0.201110 + 0.348332i
\(213\) 0 0
\(214\) 6.73205 + 1.80385i 0.460194 + 0.123308i
\(215\) −1.85641 −0.126606
\(216\) 0 0
\(217\) 8.53590 0.579455
\(218\) 2.73205 + 0.732051i 0.185038 + 0.0495807i
\(219\) 0 0
\(220\) −28.3923 16.3923i −1.91421 1.10517i
\(221\) 5.46410i 0.367555i
\(222\) 0 0
\(223\) −0.196152 −0.0131353 −0.00656767 0.999978i \(-0.502091\pi\)
−0.00656767 + 0.999978i \(0.502091\pi\)
\(224\) −6.92820 + 1.85641i −0.462910 + 0.124036i
\(225\) 0 0
\(226\) −0.928203 + 3.46410i −0.0617432 + 0.230429i
\(227\) 2.87564i 0.190863i 0.995436 + 0.0954316i \(0.0304231\pi\)
−0.995436 + 0.0954316i \(0.969577\pi\)
\(228\) 0 0
\(229\) 5.32051i 0.351589i 0.984427 + 0.175795i \(0.0562494\pi\)
−0.984427 + 0.175795i \(0.943751\pi\)
\(230\) −18.9282 5.07180i −1.24809 0.334424i
\(231\) 0 0
\(232\) −4.00000 4.00000i −0.262613 0.262613i
\(233\) −16.9282 −1.10900 −0.554502 0.832183i \(-0.687091\pi\)
−0.554502 + 0.832183i \(0.687091\pi\)
\(234\) 0 0
\(235\) 23.3205i 1.52126i
\(236\) −10.1962 + 17.6603i −0.663713 + 1.14958i
\(237\) 0 0
\(238\) 2.53590 9.46410i 0.164378 0.613467i
\(239\) −18.7321 −1.21168 −0.605838 0.795588i \(-0.707162\pi\)
−0.605838 + 0.795588i \(0.707162\pi\)
\(240\) 0 0
\(241\) −30.3923 −1.95774 −0.978870 0.204482i \(-0.934449\pi\)
−0.978870 + 0.204482i \(0.934449\pi\)
\(242\) −4.16987 + 15.5622i −0.268050 + 1.00037i
\(243\) 0 0
\(244\) −2.92820 + 5.07180i −0.187459 + 0.324689i
\(245\) 18.6795i 1.19339i
\(246\) 0 0
\(247\) −0.732051 −0.0465793
\(248\) 13.4641 13.4641i 0.854971 0.854971i
\(249\) 0 0
\(250\) −9.46410 2.53590i −0.598562 0.160384i
\(251\) 6.39230i 0.403479i 0.979439 + 0.201739i \(0.0646594\pi\)
−0.979439 + 0.201739i \(0.935341\pi\)
\(252\) 0 0
\(253\) 18.9282i 1.19001i
\(254\) −1.46410 + 5.46410i −0.0918659 + 0.342848i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 23.8564 1.48812 0.744061 0.668112i \(-0.232897\pi\)
0.744061 + 0.668112i \(0.232897\pi\)
\(258\) 0 0
\(259\) 11.3205i 0.703422i
\(260\) −6.00000 3.46410i −0.372104 0.214834i
\(261\) 0 0
\(262\) 27.1244 + 7.26795i 1.67575 + 0.449015i
\(263\) 27.3205 1.68465 0.842327 0.538966i \(-0.181185\pi\)
0.842327 + 0.538966i \(0.181185\pi\)
\(264\) 0 0
\(265\) 10.1436 0.623116
\(266\) 1.26795 + 0.339746i 0.0777430 + 0.0208312i
\(267\) 0 0
\(268\) −0.732051 + 1.26795i −0.0447171 + 0.0774523i
\(269\) 7.85641i 0.479014i −0.970895 0.239507i \(-0.923014\pi\)
0.970895 0.239507i \(-0.0769857\pi\)
\(270\) 0 0
\(271\) −20.1962 −1.22683 −0.613414 0.789761i \(-0.710204\pi\)
−0.613414 + 0.789761i \(0.710204\pi\)
\(272\) −10.9282 18.9282i −0.662620 1.14769i
\(273\) 0 0
\(274\) −4.73205 + 17.6603i −0.285874 + 1.06689i
\(275\) 33.1244i 1.99747i
\(276\) 0 0
\(277\) 1.85641i 0.111541i −0.998444 0.0557703i \(-0.982239\pi\)
0.998444 0.0557703i \(-0.0177615\pi\)
\(278\) 13.6603 + 3.66025i 0.819288 + 0.219527i
\(279\) 0 0
\(280\) 8.78461 + 8.78461i 0.524981 + 0.524981i
\(281\) −9.32051 −0.556015 −0.278007 0.960579i \(-0.589674\pi\)
−0.278007 + 0.960579i \(0.589674\pi\)
\(282\) 0 0
\(283\) 19.4641i 1.15702i −0.815675 0.578510i \(-0.803634\pi\)
0.815675 0.578510i \(-0.196366\pi\)
\(284\) −14.1962 8.19615i −0.842387 0.486352i
\(285\) 0 0
\(286\) −1.73205 + 6.46410i −0.102418 + 0.382230i
\(287\) 11.3205 0.668228
\(288\) 0 0
\(289\) 12.8564 0.756259
\(290\) −2.53590 + 9.46410i −0.148913 + 0.555751i
\(291\) 0 0
\(292\) 12.9282 + 7.46410i 0.756566 + 0.436804i
\(293\) 32.9282i 1.92369i 0.273602 + 0.961843i \(0.411785\pi\)
−0.273602 + 0.961843i \(0.588215\pi\)
\(294\) 0 0
\(295\) 35.3205 2.05644
\(296\) −17.8564 17.8564i −1.03788 1.03788i
\(297\) 0 0
\(298\) −17.6603 4.73205i −1.02303 0.274120i
\(299\) 4.00000i 0.231326i
\(300\) 0 0
\(301\) 0.679492i 0.0391653i
\(302\) −2.60770 + 9.73205i −0.150056 + 0.560017i
\(303\) 0 0
\(304\) 2.53590 1.46410i 0.145444 0.0839720i
\(305\) 10.1436 0.580820
\(306\) 0 0
\(307\) 0.732051i 0.0417803i −0.999782 0.0208902i \(-0.993350\pi\)
0.999782 0.0208902i \(-0.00665003\pi\)
\(308\) 6.00000 10.3923i 0.341882 0.592157i
\(309\) 0 0
\(310\) −31.8564 8.53590i −1.80932 0.484806i
\(311\) −1.07180 −0.0607760 −0.0303880 0.999538i \(-0.509674\pi\)
−0.0303880 + 0.999538i \(0.509674\pi\)
\(312\) 0 0
\(313\) 0.392305 0.0221744 0.0110872 0.999939i \(-0.496471\pi\)
0.0110872 + 0.999939i \(0.496471\pi\)
\(314\) 23.1244 + 6.19615i 1.30498 + 0.349669i
\(315\) 0 0
\(316\) −9.46410 5.46410i −0.532397 0.307380i
\(317\) 3.46410i 0.194563i 0.995257 + 0.0972817i \(0.0310148\pi\)
−0.995257 + 0.0972817i \(0.968985\pi\)
\(318\) 0 0
\(319\) 9.46410 0.529888
\(320\) 27.7128 1.54919
\(321\) 0 0
\(322\) 1.85641 6.92820i 0.103453 0.386094i
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) 7.00000i 0.388290i
\(326\) −22.8564 6.12436i −1.26590 0.339197i
\(327\) 0 0
\(328\) 17.8564 17.8564i 0.985955 0.985955i
\(329\) 8.53590 0.470599
\(330\) 0 0
\(331\) 17.5167i 0.962803i −0.876500 0.481401i \(-0.840128\pi\)
0.876500 0.481401i \(-0.159872\pi\)
\(332\) 3.26795 5.66025i 0.179352 0.310647i
\(333\) 0 0
\(334\) 2.07180 7.73205i 0.113364 0.423079i
\(335\) 2.53590 0.138551
\(336\) 0 0
\(337\) 1.46410 0.0797547 0.0398773 0.999205i \(-0.487303\pi\)
0.0398773 + 0.999205i \(0.487303\pi\)
\(338\) −0.366025 + 1.36603i −0.0199092 + 0.0743020i
\(339\) 0 0
\(340\) −18.9282 + 32.7846i −1.02653 + 1.77800i
\(341\) 31.8564i 1.72512i
\(342\) 0 0
\(343\) 15.7128 0.848412
\(344\) −1.07180 1.07180i −0.0577874 0.0577874i
\(345\) 0 0
\(346\) 9.46410 + 2.53590i 0.508793 + 0.136331i
\(347\) 7.07180i 0.379634i −0.981819 0.189817i \(-0.939211\pi\)
0.981819 0.189817i \(-0.0607895\pi\)
\(348\) 0 0
\(349\) 9.60770i 0.514288i −0.966373 0.257144i \(-0.917219\pi\)
0.966373 0.257144i \(-0.0827815\pi\)
\(350\) 3.24871 12.1244i 0.173651 0.648074i
\(351\) 0 0
\(352\) −6.92820 25.8564i −0.369274 1.37815i
\(353\) 11.0718 0.589292 0.294646 0.955606i \(-0.404798\pi\)
0.294646 + 0.955606i \(0.404798\pi\)
\(354\) 0 0
\(355\) 28.3923i 1.50691i
\(356\) −30.0000 17.3205i −1.59000 0.917985i
\(357\) 0 0
\(358\) −14.1962 3.80385i −0.750290 0.201040i
\(359\) −31.5167 −1.66339 −0.831693 0.555236i \(-0.812628\pi\)
−0.831693 + 0.555236i \(0.812628\pi\)
\(360\) 0 0
\(361\) 18.4641 0.971795
\(362\) 12.1962 + 3.26795i 0.641016 + 0.171760i
\(363\) 0 0
\(364\) 1.26795 2.19615i 0.0664586 0.115110i
\(365\) 25.8564i 1.35339i
\(366\) 0 0
\(367\) −22.2487 −1.16137 −0.580687 0.814127i \(-0.697216\pi\)
−0.580687 + 0.814127i \(0.697216\pi\)
\(368\) −8.00000 13.8564i −0.417029 0.722315i
\(369\) 0 0
\(370\) −11.3205 + 42.2487i −0.588525 + 2.19641i
\(371\) 3.71281i 0.192760i
\(372\) 0 0
\(373\) 14.7846i 0.765518i 0.923848 + 0.382759i \(0.125026\pi\)
−0.923848 + 0.382759i \(0.874974\pi\)
\(374\) 35.3205 + 9.46410i 1.82638 + 0.489377i
\(375\) 0 0
\(376\) 13.4641 13.4641i 0.694358 0.694358i
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 14.5885i 0.749359i −0.927154 0.374679i \(-0.877753\pi\)
0.927154 0.374679i \(-0.122247\pi\)
\(380\) −4.39230 2.53590i −0.225320 0.130089i
\(381\) 0 0
\(382\) 5.32051 19.8564i 0.272221 1.01594i
\(383\) 10.3397 0.528336 0.264168 0.964477i \(-0.414903\pi\)
0.264168 + 0.964477i \(0.414903\pi\)
\(384\) 0 0
\(385\) −20.7846 −1.05928
\(386\) −0.588457 + 2.19615i −0.0299517 + 0.111781i
\(387\) 0 0
\(388\) −11.0718 6.39230i −0.562085 0.324520i
\(389\) 2.00000i 0.101404i 0.998714 + 0.0507020i \(0.0161459\pi\)
−0.998714 + 0.0507020i \(0.983854\pi\)
\(390\) 0 0
\(391\) 21.8564 1.10533
\(392\) 10.7846 10.7846i 0.544705 0.544705i
\(393\) 0 0
\(394\) −4.19615 1.12436i −0.211399 0.0566442i
\(395\) 18.9282i 0.952381i
\(396\) 0 0
\(397\) 4.53590i 0.227650i 0.993501 + 0.113825i \(0.0363104\pi\)
−0.993501 + 0.113825i \(0.963690\pi\)
\(398\) 6.14359 22.9282i 0.307951 1.14929i
\(399\) 0 0
\(400\) −14.0000 24.2487i −0.700000 1.21244i
\(401\) −4.53590 −0.226512 −0.113256 0.993566i \(-0.536128\pi\)
−0.113256 + 0.993566i \(0.536128\pi\)
\(402\) 0 0
\(403\) 6.73205i 0.335347i
\(404\) −12.0000 + 20.7846i −0.597022 + 1.03407i
\(405\) 0 0
\(406\) −3.46410 0.928203i −0.171920 0.0460660i
\(407\) 42.2487 2.09419
\(408\) 0 0
\(409\) 12.9282 0.639259 0.319629 0.947543i \(-0.396442\pi\)
0.319629 + 0.947543i \(0.396442\pi\)
\(410\) −42.2487 11.3205i −2.08652 0.559080i
\(411\) 0 0
\(412\) −12.0000 6.92820i −0.591198 0.341328i
\(413\) 12.9282i 0.636155i
\(414\) 0 0
\(415\) −11.3205 −0.555702
\(416\) −1.46410 5.46410i −0.0717835 0.267900i
\(417\) 0 0
\(418\) −1.26795 + 4.73205i −0.0620174 + 0.231452i
\(419\) 30.7846i 1.50393i −0.659205 0.751963i \(-0.729107\pi\)
0.659205 0.751963i \(-0.270893\pi\)
\(420\) 0 0
\(421\) 24.2487i 1.18181i −0.806741 0.590905i \(-0.798771\pi\)
0.806741 0.590905i \(-0.201229\pi\)
\(422\) 10.7321 + 2.87564i 0.522428 + 0.139984i
\(423\) 0 0
\(424\) 5.85641 + 5.85641i 0.284412 + 0.284412i
\(425\) 38.2487 1.85534
\(426\) 0 0
\(427\) 3.71281i 0.179676i
\(428\) 4.92820 8.53590i 0.238214 0.412598i
\(429\) 0 0
\(430\) −0.679492 + 2.53590i −0.0327680 + 0.122292i
\(431\) −39.1244 −1.88455 −0.942277 0.334835i \(-0.891320\pi\)
−0.942277 + 0.334835i \(0.891320\pi\)
\(432\) 0 0
\(433\) −6.78461 −0.326048 −0.163024 0.986622i \(-0.552125\pi\)
−0.163024 + 0.986622i \(0.552125\pi\)
\(434\) 3.12436 11.6603i 0.149974 0.559710i
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) 2.92820i 0.140075i
\(438\) 0 0
\(439\) 2.92820 0.139756 0.0698778 0.997556i \(-0.477739\pi\)
0.0698778 + 0.997556i \(0.477739\pi\)
\(440\) −32.7846 + 32.7846i −1.56294 + 1.56294i
\(441\) 0 0
\(442\) 7.46410 + 2.00000i 0.355031 + 0.0951303i
\(443\) 30.0000i 1.42534i −0.701498 0.712672i \(-0.747485\pi\)
0.701498 0.712672i \(-0.252515\pi\)
\(444\) 0 0
\(445\) 60.0000i 2.84427i
\(446\) −0.0717968 + 0.267949i −0.00339968 + 0.0126878i
\(447\) 0 0
\(448\) 10.1436i 0.479240i
\(449\) −17.6077 −0.830959 −0.415479 0.909603i \(-0.636386\pi\)
−0.415479 + 0.909603i \(0.636386\pi\)
\(450\) 0 0
\(451\) 42.2487i 1.98941i
\(452\) 4.39230 + 2.53590i 0.206597 + 0.119279i
\(453\) 0 0
\(454\) 3.92820 + 1.05256i 0.184360 + 0.0493990i
\(455\) −4.39230 −0.205914
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 7.26795 + 1.94744i 0.339609 + 0.0909979i
\(459\) 0 0
\(460\) −13.8564 + 24.0000i −0.646058 + 1.11901i
\(461\) 20.9282i 0.974724i 0.873200 + 0.487362i \(0.162041\pi\)
−0.873200 + 0.487362i \(0.837959\pi\)
\(462\) 0 0
\(463\) 1.66025 0.0771585 0.0385793 0.999256i \(-0.487717\pi\)
0.0385793 + 0.999256i \(0.487717\pi\)
\(464\) −6.92820 + 4.00000i −0.321634 + 0.185695i
\(465\) 0 0
\(466\) −6.19615 + 23.1244i −0.287031 + 1.07122i
\(467\) 36.2487i 1.67739i 0.544601 + 0.838695i \(0.316681\pi\)
−0.544601 + 0.838695i \(0.683319\pi\)
\(468\) 0 0
\(469\) 0.928203i 0.0428604i
\(470\) −31.8564 8.53590i −1.46943 0.393732i
\(471\) 0 0
\(472\) 20.3923 + 20.3923i 0.938632 + 0.938632i
\(473\) 2.53590 0.116601
\(474\) 0 0
\(475\) 5.12436i 0.235122i
\(476\) −12.0000 6.92820i −0.550019 0.317554i
\(477\) 0 0
\(478\) −6.85641 + 25.5885i −0.313605 + 1.17039i
\(479\) −21.2679 −0.971757 −0.485879 0.874026i \(-0.661500\pi\)
−0.485879 + 0.874026i \(0.661500\pi\)
\(480\) 0 0
\(481\) 8.92820 0.407091
\(482\) −11.1244 + 41.5167i −0.506701 + 1.89103i
\(483\) 0 0
\(484\) 19.7321 + 11.3923i 0.896911 + 0.517832i
\(485\) 22.1436i 1.00549i
\(486\) 0 0
\(487\) −42.4449 −1.92336 −0.961680 0.274174i \(-0.911596\pi\)
−0.961680 + 0.274174i \(0.911596\pi\)
\(488\) 5.85641 + 5.85641i 0.265107 + 0.265107i
\(489\) 0 0
\(490\) −25.5167 6.83717i −1.15273 0.308872i
\(491\) 24.2487i 1.09433i −0.837025 0.547165i \(-0.815707\pi\)
0.837025 0.547165i \(-0.184293\pi\)
\(492\) 0 0
\(493\) 10.9282i 0.492182i
\(494\) −0.267949 + 1.00000i −0.0120556 + 0.0449921i
\(495\) 0 0
\(496\) −13.4641 23.3205i −0.604556 1.04712i
\(497\) −10.3923 −0.466159
\(498\) 0 0
\(499\) 7.26795i 0.325358i 0.986679 + 0.162679i \(0.0520135\pi\)
−0.986679 + 0.162679i \(0.947986\pi\)
\(500\) −6.92820 + 12.0000i −0.309839 + 0.536656i
\(501\) 0 0
\(502\) 8.73205 + 2.33975i 0.389731 + 0.104428i
\(503\) −30.5359 −1.36153 −0.680764 0.732503i \(-0.738352\pi\)
−0.680764 + 0.732503i \(0.738352\pi\)
\(504\) 0 0
\(505\) 41.5692 1.84981
\(506\) 25.8564 + 6.92820i 1.14946 + 0.307996i
\(507\) 0 0
\(508\) 6.92820 + 4.00000i 0.307389 + 0.177471i
\(509\) 14.3923i 0.637928i 0.947767 + 0.318964i \(0.103335\pi\)
−0.947767 + 0.318964i \(0.896665\pi\)
\(510\) 0 0
\(511\) 9.46410 0.418667
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 8.73205 32.5885i 0.385154 1.43742i
\(515\) 24.0000i 1.05757i
\(516\) 0 0
\(517\) 31.8564i 1.40104i
\(518\) −15.4641 4.14359i −0.679454 0.182059i
\(519\) 0 0
\(520\) −6.92820 + 6.92820i −0.303822 + 0.303822i
\(521\) 25.1769 1.10302 0.551510 0.834168i \(-0.314052\pi\)
0.551510 + 0.834168i \(0.314052\pi\)
\(522\) 0 0
\(523\) 14.0000i 0.612177i −0.952003 0.306089i \(-0.900980\pi\)
0.952003 0.306089i \(-0.0990204\pi\)
\(524\) 19.8564 34.3923i 0.867431 1.50243i
\(525\) 0 0
\(526\) 10.0000 37.3205i 0.436021 1.62725i
\(527\) 36.7846 1.60236
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 3.71281 13.8564i 0.161274 0.601884i
\(531\) 0 0
\(532\) 0.928203 1.60770i 0.0402427 0.0697024i
\(533\) 8.92820i 0.386723i
\(534\) 0 0
\(535\) −17.0718 −0.738078
\(536\) 1.46410 + 1.46410i 0.0632396 + 0.0632396i
\(537\) 0 0
\(538\) −10.7321 2.87564i −0.462692 0.123978i
\(539\) 25.5167i 1.09908i
\(540\) 0 0
\(541\) 3.07180i 0.132067i 0.997817 + 0.0660334i \(0.0210344\pi\)
−0.997817 + 0.0660334i \(0.978966\pi\)
\(542\) −7.39230 + 27.5885i −0.317527 + 1.18503i
\(543\) 0 0
\(544\) −29.8564 + 8.00000i −1.28008 + 0.342997i
\(545\) −6.92820 −0.296772
\(546\) 0 0
\(547\) 11.8564i 0.506943i 0.967343 + 0.253472i \(0.0815725\pi\)
−0.967343 + 0.253472i \(0.918428\pi\)
\(548\) 22.3923 + 12.9282i 0.956552 + 0.552265i
\(549\) 0 0
\(550\) 45.2487 + 12.1244i 1.92941 + 0.516984i
\(551\) 1.46410 0.0623728
\(552\) 0 0
\(553\) −6.92820 −0.294617
\(554\) −2.53590 0.679492i −0.107740 0.0288688i
\(555\) 0 0
\(556\) 10.0000 17.3205i 0.424094 0.734553i
\(557\) 34.7846i 1.47387i 0.675963 + 0.736936i \(0.263728\pi\)
−0.675963 + 0.736936i \(0.736272\pi\)
\(558\) 0 0
\(559\) 0.535898 0.0226661
\(560\) 15.2154 8.78461i 0.642968 0.371218i
\(561\) 0 0
\(562\) −3.41154 + 12.7321i −0.143907 + 0.537069i
\(563\) 7.46410i 0.314574i −0.987553 0.157287i \(-0.949725\pi\)
0.987553 0.157287i \(-0.0502748\pi\)
\(564\) 0 0
\(565\) 8.78461i 0.369571i
\(566\) −26.5885 7.12436i −1.11760 0.299459i
\(567\) 0 0
\(568\) −16.3923 + 16.3923i −0.687806 + 0.687806i
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) 2.67949i 0.112133i −0.998427 0.0560666i \(-0.982144\pi\)
0.998427 0.0560666i \(-0.0178559\pi\)
\(572\) 8.19615 + 4.73205i 0.342698 + 0.197857i
\(573\) 0 0
\(574\) 4.14359 15.4641i 0.172950 0.645459i
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −7.07180 −0.294403 −0.147201 0.989107i \(-0.547027\pi\)
−0.147201 + 0.989107i \(0.547027\pi\)
\(578\) 4.70577 17.5622i 0.195734 0.730490i
\(579\) 0 0
\(580\) 12.0000 + 6.92820i 0.498273 + 0.287678i
\(581\) 4.14359i 0.171905i
\(582\) 0 0
\(583\) −13.8564 −0.573874
\(584\) 14.9282 14.9282i 0.617733 0.617733i
\(585\) 0 0
\(586\) 44.9808 + 12.0526i 1.85814 + 0.497887i
\(587\) 4.33975i 0.179120i −0.995981 0.0895602i \(-0.971454\pi\)
0.995981 0.0895602i \(-0.0285462\pi\)
\(588\) 0 0
\(589\) 4.92820i 0.203063i
\(590\) 12.9282 48.2487i 0.532246 1.98637i
\(591\) 0 0
\(592\) −30.9282 + 17.8564i −1.27114 + 0.733894i
\(593\) 7.85641 0.322624 0.161312 0.986903i \(-0.448427\pi\)
0.161312 + 0.986903i \(0.448427\pi\)
\(594\) 0 0
\(595\) 24.0000i 0.983904i
\(596\) −12.9282 + 22.3923i −0.529560 + 0.917225i
\(597\) 0 0
\(598\) 5.46410 + 1.46410i 0.223444 + 0.0598716i
\(599\) 45.1769 1.84588 0.922939 0.384945i \(-0.125780\pi\)
0.922939 + 0.384945i \(0.125780\pi\)
\(600\) 0 0
\(601\) −4.39230 −0.179166 −0.0895829 0.995979i \(-0.528553\pi\)
−0.0895829 + 0.995979i \(0.528553\pi\)
\(602\) −0.928203 0.248711i −0.0378307 0.0101367i
\(603\) 0 0
\(604\) 12.3397 + 7.12436i 0.502097 + 0.289886i
\(605\) 39.4641i 1.60444i
\(606\) 0 0
\(607\) 7.32051 0.297130 0.148565 0.988903i \(-0.452535\pi\)
0.148565 + 0.988903i \(0.452535\pi\)
\(608\) −1.07180 4.00000i −0.0434671 0.162221i
\(609\) 0 0
\(610\) 3.71281 13.8564i 0.150327 0.561029i
\(611\) 6.73205i 0.272350i
\(612\) 0 0
\(613\) 24.6410i 0.995241i −0.867395 0.497621i \(-0.834207\pi\)
0.867395 0.497621i \(-0.165793\pi\)
\(614\) −1.00000 0.267949i −0.0403567 0.0108135i
\(615\) 0 0
\(616\) −12.0000 12.0000i −0.483494 0.483494i
\(617\) −41.3205 −1.66350 −0.831751 0.555150i \(-0.812661\pi\)
−0.831751 + 0.555150i \(0.812661\pi\)
\(618\) 0 0
\(619\) 18.5885i 0.747133i 0.927603 + 0.373567i \(0.121865\pi\)
−0.927603 + 0.373567i \(0.878135\pi\)
\(620\) −23.3205 + 40.3923i −0.936574 + 1.62219i
\(621\) 0 0
\(622\) −0.392305 + 1.46410i −0.0157300 + 0.0587051i
\(623\) −21.9615 −0.879870
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0.143594 0.535898i 0.00573915 0.0214188i
\(627\) 0 0
\(628\) 16.9282 29.3205i 0.675509 1.17002i
\(629\) 48.7846i 1.94517i
\(630\) 0 0
\(631\) −42.0526 −1.67409 −0.837043 0.547137i \(-0.815718\pi\)
−0.837043 + 0.547137i \(0.815718\pi\)
\(632\) −10.9282 + 10.9282i −0.434701 + 0.434701i
\(633\) 0 0
\(634\) 4.73205 + 1.26795i 0.187934 + 0.0503567i
\(635\) 13.8564i 0.549875i
\(636\) 0 0
\(637\) 5.39230i 0.213651i
\(638\) 3.46410 12.9282i 0.137145 0.511832i
\(639\) 0 0
\(640\) 10.1436 37.8564i 0.400961 1.49641i
\(641\) 22.2487 0.878771 0.439386 0.898299i \(-0.355196\pi\)
0.439386 + 0.898299i \(0.355196\pi\)
\(642\) 0 0
\(643\) 12.7321i 0.502103i 0.967974 + 0.251052i \(0.0807764\pi\)
−0.967974 + 0.251052i \(0.919224\pi\)
\(644\) −8.78461 5.07180i −0.346162 0.199857i
\(645\) 0 0
\(646\) 5.46410 + 1.46410i 0.214982 + 0.0576043i
\(647\) −37.8564 −1.48829 −0.744144 0.668019i \(-0.767143\pi\)
−0.744144 + 0.668019i \(0.767143\pi\)
\(648\) 0 0
\(649\) −48.2487 −1.89393
\(650\) 9.56218 + 2.56218i 0.375059 + 0.100497i
\(651\) 0 0
\(652\) −16.7321 + 28.9808i −0.655278 + 1.13497i
\(653\) 3.07180i 0.120209i −0.998192 0.0601043i \(-0.980857\pi\)
0.998192 0.0601043i \(-0.0191433\pi\)
\(654\) 0 0
\(655\) −68.7846 −2.68764
\(656\) −17.8564 30.9282i −0.697176 1.20754i
\(657\) 0 0
\(658\) 3.12436 11.6603i 0.121800 0.454564i
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 0 0
\(661\) 17.3205i 0.673690i −0.941560 0.336845i \(-0.890640\pi\)
0.941560 0.336845i \(-0.109360\pi\)
\(662\) −23.9282 6.41154i −0.929996 0.249192i
\(663\) 0 0
\(664\) −6.53590 6.53590i −0.253642 0.253642i
\(665\) −3.21539 −0.124687
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) −9.80385 5.66025i −0.379322 0.219002i
\(669\) 0 0
\(670\) 0.928203 3.46410i 0.0358596 0.133830i
\(671\) −13.8564 −0.534921
\(672\) 0 0
\(673\) 33.1769 1.27888 0.639438 0.768843i \(-0.279167\pi\)
0.639438 + 0.768843i \(0.279167\pi\)
\(674\) 0.535898 2.00000i 0.0206420 0.0770371i
\(675\) 0 0
\(676\) 1.73205 + 1.00000i 0.0666173 + 0.0384615i
\(677\) 21.0718i 0.809855i 0.914349 + 0.404927i \(0.132703\pi\)
−0.914349 + 0.404927i \(0.867297\pi\)
\(678\) 0 0
\(679\) −8.10512 −0.311046
\(680\) 37.8564 + 37.8564i 1.45173 + 1.45173i
\(681\) 0 0
\(682\) 43.5167 + 11.6603i 1.66634 + 0.446494i
\(683\) 17.8038i 0.681245i −0.940200 0.340623i \(-0.889362\pi\)
0.940200 0.340623i \(-0.110638\pi\)
\(684\) 0 0
\(685\) 44.7846i 1.71113i
\(686\) 5.75129 21.4641i 0.219585 0.819503i
\(687\) 0 0
\(688\) −1.85641 + 1.07180i −0.0707748 + 0.0408619i
\(689\) −2.92820 −0.111556
\(690\) 0 0
\(691\) 32.8372i 1.24918i 0.780951 + 0.624592i \(0.214735\pi\)
−0.780951 + 0.624592i \(0.785265\pi\)
\(692\) 6.92820 12.0000i 0.263371 0.456172i
\(693\) 0 0
\(694\) −9.66025 2.58846i −0.366698 0.0982565i
\(695\) −34.6410 −1.31401
\(696\) 0 0
\(697\) 48.7846 1.84785
\(698\) −13.1244 3.51666i −0.496764 0.133108i
\(699\) 0 0
\(700\) −15.3731 8.87564i −0.581047 0.335468i
\(701\) 40.6410i 1.53499i −0.641055 0.767495i \(-0.721503\pi\)
0.641055 0.767495i \(-0.278497\pi\)
\(702\) 0 0
\(703\) 6.53590 0.246506
\(704\) −37.8564 −1.42677
\(705\) 0 0
\(706\) 4.05256 15.1244i 0.152520 0.569213i
\(707\) 15.2154i 0.572234i
\(708\) 0 0
\(709\) 29.3205i 1.10115i −0.834784 0.550577i \(-0.814408\pi\)
0.834784 0.550577i \(-0.185592\pi\)
\(710\) 38.7846 + 10.3923i 1.45556 + 0.390016i
\(711\) 0 0
\(712\) −34.6410 + 34.6410i −1.29823 + 1.29823i
\(713\) 26.9282 1.00847
\(714\) 0 0
\(715\) 16.3923i 0.613037i
\(716\) −10.3923 + 18.0000i −0.388379 + 0.672692i
\(717\) 0 0
\(718\) −11.5359 + 43.0526i −0.430516 + 1.60671i
\(719\) −30.9282 −1.15343 −0.576714 0.816946i \(-0.695665\pi\)
−0.576714 + 0.816946i \(0.695665\pi\)
\(720\) 0 0
\(721\) −8.78461 −0.327156
\(722\) 6.75833 25.2224i 0.251519 0.938682i
\(723\) 0 0
\(724\) 8.92820 15.4641i 0.331814 0.574719i
\(725\) 14.0000i 0.519947i
\(726\) 0 0
\(727\) −22.9282 −0.850360 −0.425180 0.905109i \(-0.639789\pi\)
−0.425180 + 0.905109i \(0.639789\pi\)
\(728\) −2.53590 2.53590i −0.0939866 0.0939866i
\(729\) 0 0
\(730\) −35.3205 9.46410i −1.30727 0.350282i
\(731\) 2.92820i 0.108304i
\(732\) 0 0
\(733\) 37.3205i 1.37846i −0.724541 0.689232i \(-0.757948\pi\)
0.724541 0.689232i \(-0.242052\pi\)
\(734\) −8.14359 + 30.3923i −0.300586 + 1.12180i
\(735\) 0 0
\(736\) −21.8564 + 5.85641i −0.805638 + 0.215870i
\(737\) −3.46410 −0.127602
\(738\) 0 0
\(739\) 39.7654i 1.46279i −0.681953 0.731396i \(-0.738869\pi\)
0.681953 0.731396i \(-0.261131\pi\)
\(740\) 53.5692 + 30.9282i 1.96924 + 1.13694i
\(741\) 0 0
\(742\) 5.07180 + 1.35898i 0.186192 + 0.0498899i
\(743\) 32.1962 1.18116 0.590581 0.806978i \(-0.298899\pi\)
0.590581 + 0.806978i \(0.298899\pi\)
\(744\) 0 0
\(745\) 44.7846 1.64078
\(746\) 20.1962 + 5.41154i 0.739434 + 0.198131i
\(747\) 0 0
\(748\) 25.8564 44.7846i 0.945404 1.63749i
\(749\) 6.24871i 0.228323i
\(750\) 0 0
\(751\) 1.07180 0.0391104 0.0195552 0.999809i \(-0.493775\pi\)
0.0195552 + 0.999809i \(0.493775\pi\)
\(752\) −13.4641 23.3205i −0.490985 0.850411i
\(753\) 0 0
\(754\) 0.732051 2.73205i 0.0266597 0.0994954i
\(755\) 24.6795i 0.898179i
\(756\) 0 0
\(757\) 40.7846i 1.48234i −0.671316 0.741171i \(-0.734271\pi\)
0.671316 0.741171i \(-0.265729\pi\)
\(758\) −19.9282 5.33975i −0.723825 0.193948i
\(759\) 0 0
\(760\) −5.07180 + 5.07180i −0.183973 + 0.183973i
\(761\) −18.7846 −0.680942 −0.340471 0.940255i \(-0.610586\pi\)
−0.340471 + 0.940255i \(0.610586\pi\)
\(762\) 0 0
\(763\) 2.53590i 0.0918057i
\(764\) −25.1769 14.5359i −0.910869 0.525890i
\(765\) 0 0
\(766\) 3.78461 14.1244i 0.136744 0.510334i
\(767\) −10.1962 −0.368162
\(768\) 0 0
\(769\) 31.4641 1.13462 0.567312 0.823503i \(-0.307983\pi\)
0.567312 + 0.823503i \(0.307983\pi\)
\(770\) −7.60770 + 28.3923i −0.274162 + 1.02319i
\(771\) 0 0
\(772\) 2.78461 + 1.60770i 0.100220 + 0.0578622i
\(773\) 27.4641i 0.987815i 0.869514 + 0.493908i \(0.164432\pi\)
−0.869514 + 0.493908i \(0.835568\pi\)
\(774\) 0 0
\(775\) 47.1244 1.69276
\(776\) −12.7846 + 12.7846i −0.458941 + 0.458941i
\(777\) 0 0
\(778\) 2.73205 + 0.732051i 0.0979488 + 0.0262453i
\(779\) 6.53590i 0.234173i
\(780\) 0 0
\(781\) 38.7846i 1.38782i
\(782\) 8.00000 29.8564i 0.286079 1.06766i
\(783\) 0 0
\(784\) −10.7846 18.6795i −0.385165 0.667125i
\(785\) −58.6410