Properties

Label 936.2.g.a.469.1
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.a.469.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} -3.00000i q^{5} +3.00000 q^{7} +(-2.00000 - 2.00000i) q^{8} +O(q^{10})\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} -3.00000i q^{5} +3.00000 q^{7} +(-2.00000 - 2.00000i) q^{8} +(-3.00000 - 3.00000i) q^{10} +1.00000i q^{13} +(3.00000 - 3.00000i) q^{14} -4.00000 q^{16} +7.00000 q^{17} -4.00000i q^{19} -6.00000 q^{20} -4.00000 q^{23} -4.00000 q^{25} +(1.00000 + 1.00000i) q^{26} -6.00000i q^{28} +4.00000i q^{29} -8.00000 q^{31} +(-4.00000 + 4.00000i) q^{32} +(7.00000 - 7.00000i) q^{34} -9.00000i q^{35} +7.00000i q^{37} +(-4.00000 - 4.00000i) q^{38} +(-6.00000 + 6.00000i) q^{40} -2.00000 q^{41} -1.00000i q^{43} +(-4.00000 + 4.00000i) q^{46} +7.00000 q^{47} +2.00000 q^{49} +(-4.00000 + 4.00000i) q^{50} +2.00000 q^{52} -4.00000i q^{53} +(-6.00000 - 6.00000i) q^{56} +(4.00000 + 4.00000i) q^{58} +14.0000i q^{59} -10.0000i q^{61} +(-8.00000 + 8.00000i) q^{62} +8.00000i q^{64} +3.00000 q^{65} +2.00000i q^{67} -14.0000i q^{68} +(-9.00000 - 9.00000i) q^{70} +3.00000 q^{71} +14.0000 q^{73} +(7.00000 + 7.00000i) q^{74} -8.00000 q^{76} -10.0000 q^{79} +12.0000i q^{80} +(-2.00000 + 2.00000i) q^{82} -14.0000i q^{83} -21.0000i q^{85} +(-1.00000 - 1.00000i) q^{86} +3.00000i q^{91} +8.00000i q^{92} +(7.00000 - 7.00000i) q^{94} -12.0000 q^{95} +8.00000 q^{97} +(2.00000 - 2.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 6 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 6 q^{7} - 4 q^{8} - 6 q^{10} + 6 q^{14} - 8 q^{16} + 14 q^{17} - 12 q^{20} - 8 q^{23} - 8 q^{25} + 2 q^{26} - 16 q^{31} - 8 q^{32} + 14 q^{34} - 8 q^{38} - 12 q^{40} - 4 q^{41} - 8 q^{46} + 14 q^{47} + 4 q^{49} - 8 q^{50} + 4 q^{52} - 12 q^{56} + 8 q^{58} - 16 q^{62} + 6 q^{65} - 18 q^{70} + 6 q^{71} + 28 q^{73} + 14 q^{74} - 16 q^{76} - 20 q^{79} - 4 q^{82} - 2 q^{86} + 14 q^{94} - 24 q^{95} + 16 q^{97} + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 3.00000i 1.34164i −0.741620 0.670820i \(-0.765942\pi\)
0.741620 0.670820i \(-0.234058\pi\)
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) −3.00000 3.00000i −0.948683 0.948683i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 3.00000 3.00000i 0.801784 0.801784i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) −6.00000 −1.34164
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 1.00000 + 1.00000i 0.196116 + 0.196116i
\(27\) 0 0
\(28\) 6.00000i 1.13389i
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) 7.00000 7.00000i 1.20049 1.20049i
\(35\) 9.00000i 1.52128i
\(36\) 0 0
\(37\) 7.00000i 1.15079i 0.817875 + 0.575396i \(0.195152\pi\)
−0.817875 + 0.575396i \(0.804848\pi\)
\(38\) −4.00000 4.00000i −0.648886 0.648886i
\(39\) 0 0
\(40\) −6.00000 + 6.00000i −0.948683 + 0.948683i
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i −0.997089 0.0762493i \(-0.975706\pi\)
0.997089 0.0762493i \(-0.0242945\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.00000 + 4.00000i −0.589768 + 0.589768i
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) −4.00000 + 4.00000i −0.565685 + 0.565685i
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 4.00000i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.00000 6.00000i −0.801784 0.801784i
\(57\) 0 0
\(58\) 4.00000 + 4.00000i 0.525226 + 0.525226i
\(59\) 14.0000i 1.82264i 0.411693 + 0.911322i \(0.364937\pi\)
−0.411693 + 0.911322i \(0.635063\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) −8.00000 + 8.00000i −1.01600 + 1.01600i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 14.0000i 1.69775i
\(69\) 0 0
\(70\) −9.00000 9.00000i −1.07571 1.07571i
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 7.00000 + 7.00000i 0.813733 + 0.813733i
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 12.0000i 1.34164i
\(81\) 0 0
\(82\) −2.00000 + 2.00000i −0.220863 + 0.220863i
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 0 0
\(85\) 21.0000i 2.27777i
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 3.00000i 0.314485i
\(92\) 8.00000i 0.834058i
\(93\) 0 0
\(94\) 7.00000 7.00000i 0.721995 0.721995i
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 2.00000 2.00000i 0.202031 0.202031i
\(99\) 0 0
\(100\) 8.00000i 0.800000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 2.00000 2.00000i 0.196116 0.196116i
\(105\) 0 0
\(106\) −4.00000 4.00000i −0.388514 0.388514i
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 1.00000i 0.0957826i 0.998853 + 0.0478913i \(0.0152501\pi\)
−0.998853 + 0.0478913i \(0.984750\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −12.0000 −1.13389
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 12.0000i 1.11901i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 14.0000 + 14.0000i 1.28880 + 1.28880i
\(119\) 21.0000 1.92507
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −10.0000 10.0000i −0.905357 0.905357i
\(123\) 0 0
\(124\) 16.0000i 1.43684i
\(125\) 3.00000i 0.268328i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 3.00000 3.00000i 0.263117 0.263117i
\(131\) 15.0000i 1.31056i 0.755388 + 0.655278i \(0.227449\pi\)
−0.755388 + 0.655278i \(0.772551\pi\)
\(132\) 0 0
\(133\) 12.0000i 1.04053i
\(134\) 2.00000 + 2.00000i 0.172774 + 0.172774i
\(135\) 0 0
\(136\) −14.0000 14.0000i −1.20049 1.20049i
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 11.0000i 0.933008i 0.884519 + 0.466504i \(0.154487\pi\)
−0.884519 + 0.466504i \(0.845513\pi\)
\(140\) −18.0000 −1.52128
\(141\) 0 0
\(142\) 3.00000 3.00000i 0.251754 0.251754i
\(143\) 0 0
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 14.0000 14.0000i 1.15865 1.15865i
\(147\) 0 0
\(148\) 14.0000 1.15079
\(149\) 6.00000i 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) −8.00000 + 8.00000i −0.648886 + 0.648886i
\(153\) 0 0
\(154\) 0 0
\(155\) 24.0000i 1.92773i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) −10.0000 + 10.0000i −0.795557 + 0.795557i
\(159\) 0 0
\(160\) 12.0000 + 12.0000i 0.948683 + 0.948683i
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) 24.0000i 1.87983i 0.341415 + 0.939913i \(0.389094\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 4.00000i 0.312348i
\(165\) 0 0
\(166\) −14.0000 14.0000i −1.08661 1.08661i
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −21.0000 21.0000i −1.61063 1.61063i
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.0000i 1.56961i −0.619740 0.784807i \(-0.712762\pi\)
0.619740 0.784807i \(-0.287238\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i 0.928374 + 0.371647i \(0.121207\pi\)
−0.928374 + 0.371647i \(0.878793\pi\)
\(182\) 3.00000 + 3.00000i 0.222375 + 0.222375i
\(183\) 0 0
\(184\) 8.00000 + 8.00000i 0.589768 + 0.589768i
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) 0 0
\(188\) 14.0000i 1.02105i
\(189\) 0 0
\(190\) −12.0000 + 12.0000i −0.870572 + 0.870572i
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 8.00000 8.00000i 0.574367 0.574367i
\(195\) 0 0
\(196\) 4.00000i 0.285714i
\(197\) 17.0000i 1.21120i −0.795769 0.605600i \(-0.792933\pi\)
0.795769 0.605600i \(-0.207067\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 8.00000 + 8.00000i 0.565685 + 0.565685i
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) −6.00000 + 6.00000i −0.418040 + 0.418040i
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) 15.0000i 1.03264i −0.856395 0.516321i \(-0.827301\pi\)
0.856395 0.516321i \(-0.172699\pi\)
\(212\) −8.00000 −0.549442
\(213\) 0 0
\(214\) 8.00000 + 8.00000i 0.546869 + 0.546869i
\(215\) −3.00000 −0.204598
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 1.00000 + 1.00000i 0.0677285 + 0.0677285i
\(219\) 0 0
\(220\) 0 0
\(221\) 7.00000i 0.470871i
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) −12.0000 + 12.0000i −0.801784 + 0.801784i
\(225\) 0 0
\(226\) 6.00000 6.00000i 0.399114 0.399114i
\(227\) 18.0000i 1.19470i 0.801980 + 0.597351i \(0.203780\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(228\) 0 0
\(229\) 21.0000i 1.38772i 0.720110 + 0.693860i \(0.244091\pi\)
−0.720110 + 0.693860i \(0.755909\pi\)
\(230\) 12.0000 + 12.0000i 0.791257 + 0.791257i
\(231\) 0 0
\(232\) 8.00000 8.00000i 0.525226 0.525226i
\(233\) −19.0000 −1.24473 −0.622366 0.782727i \(-0.713828\pi\)
−0.622366 + 0.782727i \(0.713828\pi\)
\(234\) 0 0
\(235\) 21.0000i 1.36989i
\(236\) 28.0000 1.82264
\(237\) 0 0
\(238\) 21.0000 21.0000i 1.36123 1.36123i
\(239\) −5.00000 −0.323423 −0.161712 0.986838i \(-0.551701\pi\)
−0.161712 + 0.986838i \(0.551701\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 0 0
\(244\) −20.0000 −1.28037
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 16.0000 + 16.0000i 1.01600 + 1.01600i
\(249\) 0 0
\(250\) −3.00000 3.00000i −0.189737 0.189737i
\(251\) 20.0000i 1.26239i −0.775625 0.631194i \(-0.782565\pi\)
0.775625 0.631194i \(-0.217435\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 8.00000i 0.501965 0.501965i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 7.00000 0.436648 0.218324 0.975876i \(-0.429941\pi\)
0.218324 + 0.975876i \(0.429941\pi\)
\(258\) 0 0
\(259\) 21.0000i 1.30488i
\(260\) 6.00000i 0.372104i
\(261\) 0 0
\(262\) 15.0000 + 15.0000i 0.926703 + 0.926703i
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) −12.0000 12.0000i −0.735767 0.735767i
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 6.00000i 0.365826i −0.983129 0.182913i \(-0.941447\pi\)
0.983129 0.182913i \(-0.0585527\pi\)
\(270\) 0 0
\(271\) −3.00000 −0.182237 −0.0911185 0.995840i \(-0.529044\pi\)
−0.0911185 + 0.995840i \(0.529044\pi\)
\(272\) −28.0000 −1.69775
\(273\) 0 0
\(274\) 12.0000 12.0000i 0.724947 0.724947i
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000i 1.08152i −0.841178 0.540758i \(-0.818138\pi\)
0.841178 0.540758i \(-0.181862\pi\)
\(278\) 11.0000 + 11.0000i 0.659736 + 0.659736i
\(279\) 0 0
\(280\) −18.0000 + 18.0000i −1.07571 + 1.07571i
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 6.00000i 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 12.0000 12.0000i 0.704664 0.704664i
\(291\) 0 0
\(292\) 28.0000i 1.63858i
\(293\) 1.00000i 0.0584206i 0.999573 + 0.0292103i \(0.00929925\pi\)
−0.999573 + 0.0292103i \(0.990701\pi\)
\(294\) 0 0
\(295\) 42.0000 2.44533
\(296\) 14.0000 14.0000i 0.813733 0.813733i
\(297\) 0 0
\(298\) −6.00000 6.00000i −0.347571 0.347571i
\(299\) 4.00000i 0.231326i
\(300\) 0 0
\(301\) 3.00000i 0.172917i
\(302\) 17.0000 17.0000i 0.978240 0.978240i
\(303\) 0 0
\(304\) 16.0000i 0.917663i
\(305\) −30.0000 −1.71780
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 24.0000 + 24.0000i 1.36311 + 1.36311i
\(311\) −32.0000 −1.81455 −0.907277 0.420534i \(-0.861843\pi\)
−0.907277 + 0.420534i \(0.861843\pi\)
\(312\) 0 0
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) 2.00000 + 2.00000i 0.112867 + 0.112867i
\(315\) 0 0
\(316\) 20.0000i 1.12509i
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 24.0000 1.34164
\(321\) 0 0
\(322\) −12.0000 + 12.0000i −0.668734 + 0.668734i
\(323\) 28.0000i 1.55796i
\(324\) 0 0
\(325\) 4.00000i 0.221880i
\(326\) 24.0000 + 24.0000i 1.32924 + 1.32924i
\(327\) 0 0
\(328\) 4.00000 + 4.00000i 0.220863 + 0.220863i
\(329\) 21.0000 1.15777
\(330\) 0 0
\(331\) 10.0000i 0.549650i 0.961494 + 0.274825i \(0.0886199\pi\)
−0.961494 + 0.274825i \(0.911380\pi\)
\(332\) −28.0000 −1.53670
\(333\) 0 0
\(334\) 12.0000 12.0000i 0.656611 0.656611i
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) −17.0000 −0.926049 −0.463025 0.886345i \(-0.653236\pi\)
−0.463025 + 0.886345i \(0.653236\pi\)
\(338\) −1.00000 + 1.00000i −0.0543928 + 0.0543928i
\(339\) 0 0
\(340\) −42.0000 −2.27777
\(341\) 0 0
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) −2.00000 + 2.00000i −0.107833 + 0.107833i
\(345\) 0 0
\(346\) 6.00000 + 6.00000i 0.322562 + 0.322562i
\(347\) 7.00000i 0.375780i −0.982190 0.187890i \(-0.939835\pi\)
0.982190 0.187890i \(-0.0601648\pi\)
\(348\) 0 0
\(349\) 19.0000i 1.01705i −0.861048 0.508523i \(-0.830192\pi\)
0.861048 0.508523i \(-0.169808\pi\)
\(350\) −12.0000 + 12.0000i −0.641427 + 0.641427i
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 9.00000i 0.477670i
\(356\) 0 0
\(357\) 0 0
\(358\) −21.0000 21.0000i −1.10988 1.10988i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 10.0000 + 10.0000i 0.525588 + 0.525588i
\(363\) 0 0
\(364\) 6.00000 0.314485
\(365\) 42.0000i 2.19838i
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) 16.0000 0.834058
\(369\) 0 0
\(370\) 21.0000 21.0000i 1.09174 1.09174i
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) 36.0000i 1.86401i −0.362446 0.932005i \(-0.618058\pi\)
0.362446 0.932005i \(-0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −14.0000 14.0000i −0.721995 0.721995i
\(377\) −4.00000 −0.206010
\(378\) 0 0
\(379\) 4.00000i 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 24.0000i 1.23117i
\(381\) 0 0
\(382\) −12.0000 + 12.0000i −0.613973 + 0.613973i
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.00000 + 6.00000i −0.305392 + 0.305392i
\(387\) 0 0
\(388\) 16.0000i 0.812277i
\(389\) 34.0000i 1.72387i 0.507020 + 0.861934i \(0.330747\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) −4.00000 4.00000i −0.202031 0.202031i
\(393\) 0 0
\(394\) −17.0000 17.0000i −0.856448 0.856448i
\(395\) 30.0000i 1.50946i
\(396\) 0 0
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) −10.0000 + 10.0000i −0.501255 + 0.501255i
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) −32.0000 −1.59800 −0.799002 0.601329i \(-0.794638\pi\)
−0.799002 + 0.601329i \(0.794638\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 + 12.0000i 0.595550 + 0.595550i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 6.00000 + 6.00000i 0.296319 + 0.296319i
\(411\) 0 0
\(412\) 12.0000i 0.591198i
\(413\) 42.0000i 2.06668i
\(414\) 0 0
\(415\) −42.0000 −2.06170
\(416\) −4.00000 4.00000i −0.196116 0.196116i
\(417\) 0 0
\(418\) 0 0
\(419\) 11.0000i 0.537385i −0.963226 0.268693i \(-0.913408\pi\)
0.963226 0.268693i \(-0.0865916\pi\)
\(420\) 0 0
\(421\) 15.0000i 0.731055i 0.930800 + 0.365528i \(0.119111\pi\)
−0.930800 + 0.365528i \(0.880889\pi\)
\(422\) −15.0000 15.0000i −0.730189 0.730189i
\(423\) 0 0
\(424\) −8.00000 + 8.00000i −0.388514 + 0.388514i
\(425\) −28.0000 −1.35820
\(426\) 0 0
\(427\) 30.0000i 1.45180i
\(428\) 16.0000 0.773389
\(429\) 0 0
\(430\) −3.00000 + 3.00000i −0.144673 + 0.144673i
\(431\) 3.00000 0.144505 0.0722525 0.997386i \(-0.476981\pi\)
0.0722525 + 0.997386i \(0.476981\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) −24.0000 + 24.0000i −1.15204 + 1.15204i
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7.00000 + 7.00000i 0.332956 + 0.332956i
\(443\) 9.00000i 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 + 1.00000i −0.0473514 + 0.0473514i
\(447\) 0 0
\(448\) 24.0000i 1.13389i
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 12.0000i 0.564433i
\(453\) 0 0
\(454\) 18.0000 + 18.0000i 0.844782 + 0.844782i
\(455\) 9.00000 0.421927
\(456\) 0 0
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) 21.0000 + 21.0000i 0.981266 + 0.981266i
\(459\) 0 0
\(460\) 24.0000 1.11901
\(461\) 5.00000i 0.232873i −0.993198 0.116437i \(-0.962853\pi\)
0.993198 0.116437i \(-0.0371472\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 16.0000i 0.742781i
\(465\) 0 0
\(466\) −19.0000 + 19.0000i −0.880158 + 0.880158i
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) 6.00000i 0.277054i
\(470\) −21.0000 21.0000i −0.968658 0.968658i
\(471\) 0 0
\(472\) 28.0000 28.0000i 1.28880 1.28880i
\(473\) 0 0
\(474\) 0 0
\(475\) 16.0000i 0.734130i
\(476\) 42.0000i 1.92507i
\(477\) 0 0
\(478\) −5.00000 + 5.00000i −0.228695 + 0.228695i
\(479\) −5.00000 −0.228456 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(480\) 0 0
\(481\) −7.00000 −0.319173
\(482\) −8.00000 + 8.00000i −0.364390 + 0.364390i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 24.0000i 1.08978i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −20.0000 + 20.0000i −0.905357 + 0.905357i
\(489\) 0 0
\(490\) −6.00000 6.00000i −0.271052 0.271052i
\(491\) 15.0000i 0.676941i −0.940977 0.338470i \(-0.890091\pi\)
0.940977 0.338470i \(-0.109909\pi\)
\(492\) 0 0
\(493\) 28.0000i 1.26106i
\(494\) 4.00000 4.00000i 0.179969 0.179969i
\(495\) 0 0
\(496\) 32.0000 1.43684
\(497\) 9.00000 0.403705
\(498\) 0 0
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) −6.00000 −0.268328
\(501\) 0 0
\(502\) −20.0000 20.0000i −0.892644 0.892644i
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 16.0000i 0.709885i
\(509\) 14.0000i 0.620539i 0.950649 + 0.310270i \(0.100419\pi\)
−0.950649 + 0.310270i \(0.899581\pi\)
\(510\) 0 0
\(511\) 42.0000 1.85797
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 7.00000 7.00000i 0.308757 0.308757i
\(515\) 18.0000i 0.793175i
\(516\) 0 0
\(517\) 0 0
\(518\) 21.0000 + 21.0000i 0.922687 + 0.922687i
\(519\) 0 0
\(520\) −6.00000 6.00000i −0.263117 0.263117i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 44.0000i 1.92399i 0.273075 + 0.961993i \(0.411959\pi\)
−0.273075 + 0.961993i \(0.588041\pi\)
\(524\) 30.0000 1.31056
\(525\) 0 0
\(526\) −14.0000 + 14.0000i −0.610429 + 0.610429i
\(527\) −56.0000 −2.43940
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −12.0000 + 12.0000i −0.521247 + 0.521247i
\(531\) 0 0
\(532\) −24.0000 −1.04053
\(533\) 2.00000i 0.0866296i
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) 4.00000 4.00000i 0.172774 0.172774i
\(537\) 0 0
\(538\) −6.00000 6.00000i −0.258678 0.258678i
\(539\) 0 0
\(540\) 0 0
\(541\) 25.0000i 1.07483i −0.843317 0.537417i \(-0.819400\pi\)
0.843317 0.537417i \(-0.180600\pi\)
\(542\) −3.00000 + 3.00000i −0.128861 + 0.128861i
\(543\) 0 0
\(544\) −28.0000 + 28.0000i −1.20049 + 1.20049i
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) 13.0000i 0.555840i −0.960604 0.277920i \(-0.910355\pi\)
0.960604 0.277920i \(-0.0896450\pi\)
\(548\) 24.0000i 1.02523i
\(549\) 0 0
\(550\) 0 0
\(551\) 16.0000 0.681623
\(552\) 0 0
\(553\) −30.0000 −1.27573
\(554\) −18.0000 18.0000i −0.764747 0.764747i
\(555\) 0 0
\(556\) 22.0000 0.933008
\(557\) 13.0000i 0.550828i 0.961326 + 0.275414i \(0.0888149\pi\)
−0.961326 + 0.275414i \(0.911185\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 36.0000i 1.52128i
\(561\) 0 0
\(562\) 8.00000 8.00000i 0.337460 0.337460i
\(563\) 31.0000i 1.30649i 0.757145 + 0.653247i \(0.226594\pi\)
−0.757145 + 0.653247i \(0.773406\pi\)
\(564\) 0 0
\(565\) 18.0000i 0.757266i
\(566\) 4.00000 + 4.00000i 0.168133 + 0.168133i
\(567\) 0 0
\(568\) −6.00000 6.00000i −0.251754 0.251754i
\(569\) −25.0000 −1.04805 −0.524027 0.851701i \(-0.675571\pi\)
−0.524027 + 0.851701i \(0.675571\pi\)
\(570\) 0 0
\(571\) 5.00000i 0.209243i 0.994512 + 0.104622i \(0.0333632\pi\)
−0.994512 + 0.104622i \(0.966637\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −6.00000 + 6.00000i −0.250435 + 0.250435i
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 32.0000 32.0000i 1.33102 1.33102i
\(579\) 0 0
\(580\) 24.0000i 0.996546i
\(581\) 42.0000i 1.74245i
\(582\) 0 0
\(583\) 0 0
\(584\) −28.0000 28.0000i −1.15865 1.15865i
\(585\) 0 0
\(586\) 1.00000 + 1.00000i 0.0413096 + 0.0413096i
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) 32.0000i 1.31854i
\(590\) 42.0000 42.0000i 1.72911 1.72911i
\(591\) 0 0
\(592\) 28.0000i 1.15079i
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 0 0
\(595\) 63.0000i 2.58275i
\(596\) −12.0000 −0.491539
\(597\) 0 0
\(598\) −4.00000 4.00000i −0.163572 0.163572i
\(599\) −10.0000 −0.408589 −0.204294 0.978909i \(-0.565490\pi\)
−0.204294 + 0.978909i \(0.565490\pi\)
\(600\) 0 0
\(601\) 27.0000 1.10135 0.550676 0.834719i \(-0.314370\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(602\) −3.00000 3.00000i −0.122271 0.122271i
\(603\) 0 0
\(604\) 34.0000i 1.38344i
\(605\) 33.0000i 1.34164i
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 16.0000 + 16.0000i 0.648886 + 0.648886i
\(609\) 0 0
\(610\) −30.0000 + 30.0000i −1.21466 + 1.21466i
\(611\) 7.00000i 0.283190i
\(612\) 0 0
\(613\) 14.0000i 0.565455i 0.959200 + 0.282727i \(0.0912392\pi\)
−0.959200 + 0.282727i \(0.908761\pi\)
\(614\) 2.00000 + 2.00000i 0.0807134 + 0.0807134i
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) 6.00000i 0.241160i 0.992704 + 0.120580i \(0.0384755\pi\)
−0.992704 + 0.120580i \(0.961525\pi\)
\(620\) 48.0000 1.92773
\(621\) 0 0
\(622\) −32.0000 + 32.0000i −1.28308 + 1.28308i
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 29.0000 29.0000i 1.15907 1.15907i
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) 49.0000i 1.95376i
\(630\) 0 0
\(631\) −23.0000 −0.915616 −0.457808 0.889051i \(-0.651365\pi\)
−0.457808 + 0.889051i \(0.651365\pi\)
\(632\) 20.0000 + 20.0000i 0.795557 + 0.795557i
\(633\) 0 0
\(634\) 18.0000 + 18.0000i 0.714871 + 0.714871i
\(635\) 24.0000i 0.952411i
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) 0 0
\(640\) 24.0000 24.0000i 0.948683 0.948683i
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i −0.858586 0.512670i \(-0.828656\pi\)
0.858586 0.512670i \(-0.171344\pi\)
\(644\) 24.0000i 0.945732i
\(645\) 0 0
\(646\) −28.0000 28.0000i −1.10165 1.10165i
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −4.00000 4.00000i −0.156893 0.156893i
\(651\) 0 0
\(652\) 48.0000 1.87983
\(653\) 44.0000i 1.72185i −0.508729 0.860927i \(-0.669885\pi\)
0.508729 0.860927i \(-0.330115\pi\)
\(654\) 0 0
\(655\) 45.0000 1.75830
\(656\) 8.00000 0.312348
\(657\) 0 0
\(658\) 21.0000 21.0000i 0.818665 0.818665i
\(659\) 4.00000i 0.155818i 0.996960 + 0.0779089i \(0.0248243\pi\)
−0.996960 + 0.0779089i \(0.975176\pi\)
\(660\) 0 0
\(661\) 30.0000i 1.16686i 0.812162 + 0.583432i \(0.198291\pi\)
−0.812162 + 0.583432i \(0.801709\pi\)
\(662\) 10.0000 + 10.0000i 0.388661 + 0.388661i
\(663\) 0 0
\(664\) −28.0000 + 28.0000i −1.08661 + 1.08661i
\(665\) −36.0000 −1.39602
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 24.0000i 0.928588i
\(669\) 0 0
\(670\) 6.00000 6.00000i 0.231800 0.231800i
\(671\) 0 0
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) −17.0000 + 17.0000i −0.654816 + 0.654816i
\(675\) 0 0
\(676\) 2.00000i 0.0769231i
\(677\) 22.0000i 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) 0 0
\(679\) 24.0000 0.921035
\(680\) −42.0000 + 42.0000i −1.61063 + 1.61063i
\(681\) 0 0
\(682\) 0 0
\(683\) 26.0000i 0.994862i 0.867503 + 0.497431i \(0.165723\pi\)
−0.867503 + 0.497431i \(0.834277\pi\)
\(684\) 0 0
\(685\) 36.0000i 1.37549i
\(686\) −15.0000 + 15.0000i −0.572703 + 0.572703i
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 20.0000i 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) −7.00000 7.00000i −0.265716 0.265716i
\(695\) 33.0000 1.25176
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) −19.0000 19.0000i −0.719161 0.719161i
\(699\) 0 0
\(700\) 24.0000i 0.907115i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 28.0000 1.05604
\(704\) 0 0
\(705\) 0 0
\(706\) 6.00000 6.00000i 0.225813 0.225813i
\(707\) 0 0
\(708\) 0 0
\(709\) 6.00000i 0.225335i 0.993633 + 0.112667i \(0.0359394\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(710\) −9.00000 9.00000i −0.337764 0.337764i
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) −42.0000 −1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 3.00000 3.00000i 0.111648 0.111648i
\(723\) 0 0
\(724\) 20.0000 0.743294
\(725\) 16.0000i 0.594225i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 6.00000 6.00000i 0.222375 0.222375i
\(729\) 0 0
\(730\) −42.0000 42.0000i −1.55449 1.55449i
\(731\) 7.00000i 0.258904i
\(732\) 0 0
\(733\) 1.00000i 0.0369358i −0.999829 0.0184679i \(-0.994121\pi\)
0.999829 0.0184679i \(-0.00587886\pi\)
\(734\) −22.0000 + 22.0000i −0.812035 + 0.812035i
\(735\) 0 0
\(736\) 16.0000 16.0000i 0.589768 0.589768i
\(737\) 0 0
\(738\) 0 0
\(739\) 34.0000i 1.25071i −0.780340 0.625355i \(-0.784954\pi\)
0.780340 0.625355i \(-0.215046\pi\)
\(740\) 42.0000i 1.54395i
\(741\) 0 0
\(742\) −12.0000 12.0000i −0.440534 0.440534i
\(743\) 21.0000 0.770415 0.385208 0.922830i \(-0.374130\pi\)
0.385208 + 0.922830i \(0.374130\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) −36.0000 36.0000i −1.31805 1.31805i
\(747\) 0 0
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) −28.0000 −1.02105
\(753\) 0 0
\(754\) −4.00000 + 4.00000i −0.145671 + 0.145671i
\(755\) 51.0000i 1.85608i
\(756\) 0 0
\(757\) 32.0000i 1.16306i 0.813525 + 0.581530i \(0.197546\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(758\) −4.00000 4.00000i −0.145287 0.145287i
\(759\) 0 0
\(760\) 24.0000 + 24.0000i 0.870572 + 0.870572i
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) 3.00000i 0.108607i
\(764\) 24.0000i 0.868290i
\(765\) 0 0
\(766\) 1.00000 1.00000i 0.0361315 0.0361315i
\(767\) −14.0000 −0.505511
\(768\) 0 0
\(769\) −20.0000 −0.721218 −0.360609 0.932717i \(-0.617431\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12.0000i 0.431889i
\(773\) 21.0000i 0.755318i 0.925945 + 0.377659i \(0.123271\pi\)
−0.925945 + 0.377659i \(0.876729\pi\)
\(774\) 0 0
\(775\) 32.0000 1.14947
\(776\) −16.0000 16.0000i −0.574367 0.574367i
\(777\) 0 0
\(778\) 34.0000 + 34.0000i 1.21896 + 1.21896i
\(779\) 8.00000i 0.286630i
\(780\) 0 0
\(781\) 0 0
\(782\) −28.0000 + 28.0000i −1.00128 + 1.00128i
\(783\) 0 0
\(784\) −8.00000 −0.285714
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) −34.0000 −1.21120
\(789\) 0 0
\(79