Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.em (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(656\) |
Relative dimension: | \(164\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.41376 | − | 0.0358025i | −0.700335 | − | 1.58415i | 1.99744 | + | 0.101232i | 0.0180874 | + | 0.0675031i | 0.933390 | + | 2.26468i | −0.695957 | + | 2.59735i | −2.82027 | − | 0.214631i | −2.01906 | + | 2.21887i | −0.0231545 | − | 0.0960807i |
5.2 | −1.41321 | + | 0.0531357i | 1.72013 | + | 0.202834i | 1.99435 | − | 0.150184i | 0.575126 | + | 2.14640i | −2.44170 | − | 0.195248i | 0.751447 | − | 2.80444i | −2.81047 | + | 0.318214i | 2.91772 | + | 0.697804i | −0.926827 | − | 3.00276i |
5.3 | −1.41302 | − | 0.0579876i | 1.40761 | + | 1.00927i | 1.99327 | + | 0.163876i | 0.881637 | + | 3.29032i | −1.93046 | − | 1.50775i | −0.863534 | + | 3.22275i | −2.80704 | − | 0.347146i | 0.962732 | + | 2.84133i | −1.05498 | − | 4.70042i |
5.4 | −1.41208 | − | 0.0775900i | −0.226318 | − | 1.71720i | 1.98796 | + | 0.219127i | 0.825410 | + | 3.08047i | 0.186343 | + | 2.44239i | 1.08514 | − | 4.04979i | −2.79016 | − | 0.463671i | −2.89756 | + | 0.777268i | −0.926534 | − | 4.41393i |
5.5 | −1.41099 | − | 0.0955053i | 1.62333 | − | 0.604000i | 1.98176 | + | 0.269513i | −0.824037 | − | 3.07535i | −2.34817 | + | 0.697198i | −0.387824 | + | 1.44738i | −2.77049 | − | 0.569547i | 2.27037 | − | 1.96098i | 0.868992 | + | 4.41797i |
5.6 | −1.40893 | + | 0.122095i | −1.68850 | − | 0.385951i | 1.97019 | − | 0.344048i | 0.241254 | + | 0.900372i | 2.42611 | + | 0.337621i | −0.282677 | + | 1.05496i | −2.73385 | + | 0.725290i | 2.70208 | + | 1.30336i | −0.449842 | − | 1.23911i |
5.7 | −1.40144 | − | 0.189655i | 0.528267 | − | 1.64953i | 1.92806 | + | 0.531579i | −0.431121 | − | 1.60897i | −1.05317 | + | 2.21152i | 0.704291 | − | 2.62845i | −2.60125 | − | 1.11064i | −2.44187 | − | 1.74278i | 0.299042 | + | 2.33663i |
5.8 | −1.39890 | − | 0.207571i | 0.710910 | + | 1.57943i | 1.91383 | + | 0.580741i | −0.727736 | − | 2.71595i | −0.666646 | − | 2.35703i | −0.267883 | + | 0.999754i | −2.55671 | − | 1.20965i | −1.98921 | + | 2.24567i | 0.454277 | + | 3.95039i |
5.9 | −1.39487 | − | 0.233077i | −0.935379 | + | 1.45776i | 1.89135 | + | 0.650225i | −0.182733 | − | 0.681970i | 1.64451 | − | 1.81538i | 0.331919 | − | 1.23874i | −2.48664 | − | 1.34781i | −1.25013 | − | 2.72712i | 0.0959388 | + | 0.993853i |
5.10 | −1.38966 | + | 0.262383i | −1.41602 | − | 0.997447i | 1.86231 | − | 0.729247i | −0.647958 | − | 2.41821i | 2.22949 | + | 1.01457i | 0.308834 | − | 1.15258i | −2.39664 | + | 1.50204i | 1.01020 | + | 2.82480i | 1.53494 | + | 3.19048i |
5.11 | −1.38863 | − | 0.267791i | 0.785236 | + | 1.54383i | 1.85658 | + | 0.743724i | −0.228862 | − | 0.854125i | −0.676979 | − | 2.35408i | 1.00594 | − | 3.75423i | −2.37893 | − | 1.52993i | −1.76681 | + | 2.42454i | 0.0890775 | + | 1.24735i |
5.12 | −1.38429 | − | 0.289375i | −1.45142 | + | 0.945190i | 1.83252 | + | 0.801158i | 0.0701899 | + | 0.261952i | 2.28270 | − | 0.888415i | −1.31796 | + | 4.91869i | −2.30491 | − | 1.63932i | 1.21323 | − | 2.74373i | −0.0213609 | − | 0.382929i |
5.13 | −1.38425 | + | 0.289595i | −1.55312 | + | 0.766689i | 1.83227 | − | 0.801742i | −0.412571 | − | 1.53974i | 1.92787 | − | 1.51106i | 1.10981 | − | 4.14187i | −2.30413 | + | 1.64042i | 1.82438 | − | 2.38152i | 1.01700 | + | 2.01189i |
5.14 | −1.36456 | − | 0.371460i | 1.71262 | − | 0.258744i | 1.72403 | + | 1.01376i | 0.276289 | + | 1.03112i | −2.43308 | − | 0.283098i | −0.714095 | + | 2.66504i | −1.97597 | − | 2.02374i | 2.86610 | − | 0.886258i | 0.00600982 | − | 1.50966i |
5.15 | −1.35327 | + | 0.410691i | 1.17824 | − | 1.26955i | 1.66267 | − | 1.11155i | 0.593075 | + | 2.21339i | −1.07307 | + | 2.20193i | −0.832292 | + | 3.10616i | −1.79353 | + | 2.18707i | −0.223521 | − | 2.99166i | −1.71161 | − | 2.75173i |
5.16 | −1.34560 | + | 0.435144i | −0.114709 | + | 1.72825i | 1.62130 | − | 1.17106i | 0.0471805 | + | 0.176080i | −0.597684 | − | 2.37545i | −0.351300 | + | 1.31107i | −1.67204 | + | 2.28129i | −2.97368 | − | 0.396493i | −0.140107 | − | 0.216404i |
5.17 | −1.32146 | + | 0.503724i | −0.935678 | − | 1.45757i | 1.49252 | − | 1.33130i | 1.08622 | + | 4.05383i | 1.97068 | + | 1.45480i | −0.190925 | + | 0.712543i | −1.30170 | + | 2.51109i | −1.24901 | + | 2.72763i | −3.47741 | − | 4.80982i |
5.18 | −1.32034 | − | 0.506666i | −0.754784 | + | 1.55894i | 1.48658 | + | 1.33794i | 1.03054 | + | 3.84603i | 1.78643 | − | 1.67590i | −0.0344252 | + | 0.128476i | −1.28490 | − | 2.51973i | −1.86060 | − | 2.35333i | 0.587992 | − | 5.60019i |
5.19 | −1.31716 | + | 0.514870i | 1.47405 | + | 0.909496i | 1.46982 | − | 1.35633i | −0.633992 | − | 2.36609i | −2.40983 | − | 0.439008i | −0.466230 | + | 1.73999i | −1.23765 | + | 2.54327i | 1.34563 | + | 2.68128i | 2.05330 | + | 2.79009i |
5.20 | −1.31161 | + | 0.528849i | −1.43144 | + | 0.975187i | 1.44064 | − | 1.38729i | 0.781042 | + | 2.91489i | 1.36176 | − | 2.03608i | 0.165226 | − | 0.616633i | −1.15589 | + | 2.58146i | 1.09802 | − | 2.79184i | −2.56596 | − | 3.41014i |
See next 80 embeddings (of 656 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
13.d | odd | 4 | 1 | inner |
72.j | odd | 6 | 1 | inner |
104.j | odd | 4 | 1 | inner |
117.z | even | 12 | 1 | inner |
936.em | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.em.a | ✓ | 656 |
8.b | even | 2 | 1 | inner | 936.2.em.a | ✓ | 656 |
9.d | odd | 6 | 1 | inner | 936.2.em.a | ✓ | 656 |
13.d | odd | 4 | 1 | inner | 936.2.em.a | ✓ | 656 |
72.j | odd | 6 | 1 | inner | 936.2.em.a | ✓ | 656 |
104.j | odd | 4 | 1 | inner | 936.2.em.a | ✓ | 656 |
117.z | even | 12 | 1 | inner | 936.2.em.a | ✓ | 656 |
936.em | even | 12 | 1 | inner | 936.2.em.a | ✓ | 656 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.em.a | ✓ | 656 | 1.a | even | 1 | 1 | trivial |
936.2.em.a | ✓ | 656 | 8.b | even | 2 | 1 | inner |
936.2.em.a | ✓ | 656 | 9.d | odd | 6 | 1 | inner |
936.2.em.a | ✓ | 656 | 13.d | odd | 4 | 1 | inner |
936.2.em.a | ✓ | 656 | 72.j | odd | 6 | 1 | inner |
936.2.em.a | ✓ | 656 | 104.j | odd | 4 | 1 | inner |
936.2.em.a | ✓ | 656 | 117.z | even | 12 | 1 | inner |
936.2.em.a | ✓ | 656 | 936.em | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(936, [\chi])\).