Properties

Label 936.2.dg.f.829.16
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.16
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.132250 + 1.40802i) q^{2} +(-1.96502 + 0.372419i) q^{4} -2.34484 q^{5} +(3.69507 + 2.13335i) q^{7} +(-0.784245 - 2.71753i) q^{8} +(-0.310104 - 3.30158i) q^{10} +(1.33516 + 2.31256i) q^{11} +(2.96097 + 2.05735i) q^{13} +(-2.51512 + 5.48486i) q^{14} +(3.72261 - 1.46362i) q^{16} +(2.86144 - 4.95615i) q^{17} +(-3.67163 + 6.35946i) q^{19} +(4.60766 - 0.873264i) q^{20} +(-3.07955 + 2.18576i) q^{22} +(-1.42407 - 2.46656i) q^{23} +0.498285 q^{25} +(-2.50519 + 4.44117i) q^{26} +(-8.05539 - 2.81596i) q^{28} +(-4.01604 + 2.31866i) q^{29} +6.91551i q^{31} +(2.55312 + 5.04793i) q^{32} +(7.35677 + 3.37350i) q^{34} +(-8.66436 - 5.00237i) q^{35} +(-0.806558 - 1.39700i) q^{37} +(-9.43979 - 4.32869i) q^{38} +(1.83893 + 6.37217i) q^{40} +(-5.52067 + 3.18736i) q^{41} +(-3.98283 - 2.29949i) q^{43} +(-3.48486 - 4.04699i) q^{44} +(3.28462 - 2.33131i) q^{46} +4.83325i q^{47} +(5.60238 + 9.70360i) q^{49} +(0.0658980 + 0.701593i) q^{50} +(-6.58455 - 2.94001i) q^{52} +2.67224i q^{53} +(-3.13074 - 5.42260i) q^{55} +(2.89960 - 11.7145i) q^{56} +(-3.79583 - 5.34801i) q^{58} +(-3.87932 + 6.71918i) q^{59} +(1.83248 + 1.05798i) q^{61} +(-9.73715 + 0.914574i) q^{62} +(-6.76992 + 4.26242i) q^{64} +(-6.94300 - 4.82416i) q^{65} +(-4.32233 - 7.48649i) q^{67} +(-3.77701 + 10.8046i) q^{68} +(5.89756 - 12.8611i) q^{70} +(11.6191 + 6.70831i) q^{71} -10.5359i q^{73} +(1.86033 - 1.32040i) q^{74} +(4.84645 - 13.8638i) q^{76} +11.3935i q^{77} +1.92081 q^{79} +(-8.72893 + 3.43196i) q^{80} +(-5.21796 - 7.35166i) q^{82} +2.73834 q^{83} +(-6.70962 + 11.6214i) q^{85} +(2.71099 - 5.91199i) q^{86} +(5.23736 - 5.44195i) q^{88} +(-15.0637 + 8.69704i) q^{89} +(6.55193 + 13.9188i) q^{91} +(3.71692 + 4.31649i) q^{92} +(-6.80530 + 0.639196i) q^{94} +(8.60940 - 14.9119i) q^{95} +(4.06104 + 2.34464i) q^{97} +(-12.9219 + 9.17153i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.132250 + 1.40802i 0.0935146 + 0.995618i
\(3\) 0 0
\(4\) −1.96502 + 0.372419i −0.982510 + 0.186210i
\(5\) −2.34484 −1.04865 −0.524323 0.851520i \(-0.675681\pi\)
−0.524323 + 0.851520i \(0.675681\pi\)
\(6\) 0 0
\(7\) 3.69507 + 2.13335i 1.39661 + 0.806331i 0.994035 0.109058i \(-0.0347834\pi\)
0.402571 + 0.915389i \(0.368117\pi\)
\(8\) −0.784245 2.71753i −0.277273 0.960791i
\(9\) 0 0
\(10\) −0.310104 3.30158i −0.0980636 1.04405i
\(11\) 1.33516 + 2.31256i 0.402566 + 0.697264i 0.994035 0.109063i \(-0.0347852\pi\)
−0.591469 + 0.806328i \(0.701452\pi\)
\(12\) 0 0
\(13\) 2.96097 + 2.05735i 0.821224 + 0.570606i
\(14\) −2.51512 + 5.48486i −0.672195 + 1.46589i
\(15\) 0 0
\(16\) 3.72261 1.46362i 0.930652 0.365906i
\(17\) 2.86144 4.95615i 0.694000 1.20204i −0.276516 0.961009i \(-0.589180\pi\)
0.970517 0.241035i \(-0.0774868\pi\)
\(18\) 0 0
\(19\) −3.67163 + 6.35946i −0.842331 + 1.45896i 0.0455885 + 0.998960i \(0.485484\pi\)
−0.887919 + 0.459999i \(0.847850\pi\)
\(20\) 4.60766 0.873264i 1.03030 0.195268i
\(21\) 0 0
\(22\) −3.07955 + 2.18576i −0.656563 + 0.466006i
\(23\) −1.42407 2.46656i −0.296939 0.514313i 0.678495 0.734605i \(-0.262632\pi\)
−0.975434 + 0.220292i \(0.929299\pi\)
\(24\) 0 0
\(25\) 0.498285 0.0996569
\(26\) −2.50519 + 4.44117i −0.491309 + 0.870985i
\(27\) 0 0
\(28\) −8.05539 2.81596i −1.52233 0.532167i
\(29\) −4.01604 + 2.31866i −0.745760 + 0.430565i −0.824160 0.566357i \(-0.808352\pi\)
0.0783999 + 0.996922i \(0.475019\pi\)
\(30\) 0 0
\(31\) 6.91551i 1.24206i 0.783786 + 0.621031i \(0.213286\pi\)
−0.783786 + 0.621031i \(0.786714\pi\)
\(32\) 2.55312 + 5.04793i 0.451332 + 0.892356i
\(33\) 0 0
\(34\) 7.35677 + 3.37350i 1.26168 + 0.578551i
\(35\) −8.66436 5.00237i −1.46454 0.845555i
\(36\) 0 0
\(37\) −0.806558 1.39700i −0.132597 0.229665i 0.792080 0.610418i \(-0.208998\pi\)
−0.924677 + 0.380752i \(0.875665\pi\)
\(38\) −9.43979 4.32869i −1.53134 0.702206i
\(39\) 0 0
\(40\) 1.83893 + 6.37217i 0.290761 + 1.00753i
\(41\) −5.52067 + 3.18736i −0.862184 + 0.497782i −0.864743 0.502215i \(-0.832519\pi\)
0.00255936 + 0.999997i \(0.499185\pi\)
\(42\) 0 0
\(43\) −3.98283 2.29949i −0.607375 0.350668i 0.164562 0.986367i \(-0.447379\pi\)
−0.771938 + 0.635698i \(0.780712\pi\)
\(44\) −3.48486 4.04699i −0.525362 0.610107i
\(45\) 0 0
\(46\) 3.28462 2.33131i 0.484291 0.343734i
\(47\) 4.83325i 0.705003i 0.935811 + 0.352501i \(0.114669\pi\)
−0.935811 + 0.352501i \(0.885331\pi\)
\(48\) 0 0
\(49\) 5.60238 + 9.70360i 0.800339 + 1.38623i
\(50\) 0.0658980 + 0.701593i 0.00931938 + 0.0992202i
\(51\) 0 0
\(52\) −6.58455 2.94001i −0.913113 0.407706i
\(53\) 2.67224i 0.367060i 0.983014 + 0.183530i \(0.0587524\pi\)
−0.983014 + 0.183530i \(0.941248\pi\)
\(54\) 0 0
\(55\) −3.13074 5.42260i −0.422149 0.731183i
\(56\) 2.89960 11.7145i 0.387475 1.56542i
\(57\) 0 0
\(58\) −3.79583 5.34801i −0.498417 0.702228i
\(59\) −3.87932 + 6.71918i −0.505045 + 0.874763i 0.494938 + 0.868928i \(0.335191\pi\)
−0.999983 + 0.00583488i \(0.998143\pi\)
\(60\) 0 0
\(61\) 1.83248 + 1.05798i 0.234625 + 0.135461i 0.612704 0.790312i \(-0.290082\pi\)
−0.378079 + 0.925773i \(0.623415\pi\)
\(62\) −9.73715 + 0.914574i −1.23662 + 0.116151i
\(63\) 0 0
\(64\) −6.76992 + 4.26242i −0.846240 + 0.532802i
\(65\) −6.94300 4.82416i −0.861173 0.598363i
\(66\) 0 0
\(67\) −4.32233 7.48649i −0.528057 0.914621i −0.999465 0.0327058i \(-0.989588\pi\)
0.471408 0.881915i \(-0.343746\pi\)
\(68\) −3.77701 + 10.8046i −0.458030 + 1.31025i
\(69\) 0 0
\(70\) 5.89756 12.8611i 0.704894 1.53720i
\(71\) 11.6191 + 6.70831i 1.37894 + 0.796130i 0.992032 0.125988i \(-0.0402102\pi\)
0.386907 + 0.922119i \(0.373544\pi\)
\(72\) 0 0
\(73\) 10.5359i 1.23314i −0.787301 0.616569i \(-0.788522\pi\)
0.787301 0.616569i \(-0.211478\pi\)
\(74\) 1.86033 1.32040i 0.216259 0.153493i
\(75\) 0 0
\(76\) 4.84645 13.8638i 0.555926 1.59029i
\(77\) 11.3935i 1.29840i
\(78\) 0 0
\(79\) 1.92081 0.216109 0.108054 0.994145i \(-0.465538\pi\)
0.108054 + 0.994145i \(0.465538\pi\)
\(80\) −8.72893 + 3.43196i −0.975924 + 0.383705i
\(81\) 0 0
\(82\) −5.21796 7.35166i −0.576227 0.811855i
\(83\) 2.73834 0.300572 0.150286 0.988643i \(-0.451981\pi\)
0.150286 + 0.988643i \(0.451981\pi\)
\(84\) 0 0
\(85\) −6.70962 + 11.6214i −0.727760 + 1.26052i
\(86\) 2.71099 5.91199i 0.292333 0.637506i
\(87\) 0 0
\(88\) 5.23736 5.44195i 0.558305 0.580114i
\(89\) −15.0637 + 8.69704i −1.59675 + 0.921884i −0.604643 + 0.796497i \(0.706684\pi\)
−0.992108 + 0.125388i \(0.959983\pi\)
\(90\) 0 0
\(91\) 6.55193 + 13.9188i 0.686829 + 1.45909i
\(92\) 3.71692 + 4.31649i 0.387516 + 0.450025i
\(93\) 0 0
\(94\) −6.80530 + 0.639196i −0.701913 + 0.0659280i
\(95\) 8.60940 14.9119i 0.883306 1.52993i
\(96\) 0 0
\(97\) 4.06104 + 2.34464i 0.412336 + 0.238062i 0.691793 0.722096i \(-0.256821\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(98\) −12.9219 + 9.17153i −1.30531 + 0.926465i
\(99\) 0 0
\(100\) −0.979139 + 0.185571i −0.0979139 + 0.0185571i
\(101\) 9.77593 5.64414i 0.972741 0.561612i 0.0726704 0.997356i \(-0.476848\pi\)
0.900071 + 0.435744i \(0.143515\pi\)
\(102\) 0 0
\(103\) 19.3944 1.91099 0.955495 0.295007i \(-0.0953219\pi\)
0.955495 + 0.295007i \(0.0953219\pi\)
\(104\) 3.26878 9.65997i 0.320530 0.947238i
\(105\) 0 0
\(106\) −3.76255 + 0.353402i −0.365451 + 0.0343255i
\(107\) 11.9910 6.92299i 1.15921 0.669271i 0.208096 0.978108i \(-0.433273\pi\)
0.951115 + 0.308838i \(0.0999400\pi\)
\(108\) 0 0
\(109\) 6.87021 0.658047 0.329023 0.944322i \(-0.393280\pi\)
0.329023 + 0.944322i \(0.393280\pi\)
\(110\) 7.22107 5.12527i 0.688502 0.488675i
\(111\) 0 0
\(112\) 16.8777 + 2.53344i 1.59480 + 0.239387i
\(113\) −9.79113 + 16.9587i −0.921072 + 1.59534i −0.123313 + 0.992368i \(0.539352\pi\)
−0.797759 + 0.602977i \(0.793981\pi\)
\(114\) 0 0
\(115\) 3.33922 + 5.78369i 0.311384 + 0.539332i
\(116\) 7.02809 6.05187i 0.652541 0.561902i
\(117\) 0 0
\(118\) −9.97376 4.57354i −0.918159 0.421028i
\(119\) 21.1464 12.2089i 1.93849 1.11919i
\(120\) 0 0
\(121\) 1.93470 3.35100i 0.175882 0.304636i
\(122\) −1.24731 + 2.72008i −0.112927 + 0.246265i
\(123\) 0 0
\(124\) −2.57547 13.5891i −0.231284 1.22034i
\(125\) 10.5558 0.944141
\(126\) 0 0
\(127\) −1.64966 2.85730i −0.146384 0.253544i 0.783505 0.621386i \(-0.213430\pi\)
−0.929888 + 0.367842i \(0.880097\pi\)
\(128\) −6.89687 8.96845i −0.609603 0.792707i
\(129\) 0 0
\(130\) 5.87429 10.4138i 0.515209 0.913355i
\(131\) 11.9694i 1.04577i −0.852403 0.522885i \(-0.824856\pi\)
0.852403 0.522885i \(-0.175144\pi\)
\(132\) 0 0
\(133\) −27.1339 + 15.6658i −2.35281 + 1.35839i
\(134\) 9.96948 7.07600i 0.861232 0.611273i
\(135\) 0 0
\(136\) −15.7126 3.88919i −1.34734 0.333496i
\(137\) −7.47619 4.31638i −0.638734 0.368773i 0.145393 0.989374i \(-0.453555\pi\)
−0.784127 + 0.620601i \(0.786889\pi\)
\(138\) 0 0
\(139\) 0.164241 + 0.0948244i 0.0139307 + 0.00804290i 0.506949 0.861976i \(-0.330773\pi\)
−0.493018 + 0.870019i \(0.664107\pi\)
\(140\) 18.8886 + 6.60299i 1.59638 + 0.558054i
\(141\) 0 0
\(142\) −7.90879 + 17.2471i −0.663691 + 1.44735i
\(143\) −0.804390 + 9.59431i −0.0672665 + 0.802316i
\(144\) 0 0
\(145\) 9.41698 5.43690i 0.782038 0.451510i
\(146\) 14.8348 1.39337i 1.22773 0.115316i
\(147\) 0 0
\(148\) 2.10517 + 2.44475i 0.173044 + 0.200958i
\(149\) −8.56775 + 14.8398i −0.701897 + 1.21572i 0.265902 + 0.964000i \(0.414330\pi\)
−0.967800 + 0.251722i \(0.919003\pi\)
\(150\) 0 0
\(151\) 3.17400i 0.258297i −0.991625 0.129148i \(-0.958776\pi\)
0.991625 0.129148i \(-0.0412243\pi\)
\(152\) 20.1615 + 4.99039i 1.63531 + 0.404774i
\(153\) 0 0
\(154\) −16.0422 + 1.50678i −1.29271 + 0.121420i
\(155\) 16.2158i 1.30248i
\(156\) 0 0
\(157\) 17.7702i 1.41822i −0.705099 0.709109i \(-0.749097\pi\)
0.705099 0.709109i \(-0.250903\pi\)
\(158\) 0.254027 + 2.70454i 0.0202093 + 0.215161i
\(159\) 0 0
\(160\) −5.98666 11.8366i −0.473287 0.935765i
\(161\) 12.1522i 0.957724i
\(162\) 0 0
\(163\) 0.0275364 0.0476944i 0.00215681 0.00373571i −0.864945 0.501867i \(-0.832647\pi\)
0.867102 + 0.498131i \(0.165980\pi\)
\(164\) 9.66119 8.31923i 0.754412 0.649623i
\(165\) 0 0
\(166\) 0.362145 + 3.85563i 0.0281079 + 0.299255i
\(167\) 11.6579 6.73072i 0.902119 0.520839i 0.0242321 0.999706i \(-0.492286\pi\)
0.877887 + 0.478868i \(0.158953\pi\)
\(168\) 0 0
\(169\) 4.53463 + 12.1835i 0.348818 + 0.937191i
\(170\) −17.2505 7.91033i −1.32305 0.606694i
\(171\) 0 0
\(172\) 8.68271 + 3.03526i 0.662050 + 0.231436i
\(173\) −13.8424 7.99194i −1.05242 0.607616i −0.129095 0.991632i \(-0.541207\pi\)
−0.923326 + 0.384016i \(0.874541\pi\)
\(174\) 0 0
\(175\) 1.84120 + 1.06302i 0.139181 + 0.0803565i
\(176\) 8.35499 + 6.65460i 0.629781 + 0.501609i
\(177\) 0 0
\(178\) −14.2377 20.0598i −1.06716 1.50354i
\(179\) 0.703881 0.406386i 0.0526106 0.0303747i −0.473464 0.880813i \(-0.656997\pi\)
0.526075 + 0.850438i \(0.323663\pi\)
\(180\) 0 0
\(181\) 4.40522i 0.327437i 0.986507 + 0.163719i \(0.0523489\pi\)
−0.986507 + 0.163719i \(0.947651\pi\)
\(182\) −18.7315 + 11.0660i −1.38847 + 0.820266i
\(183\) 0 0
\(184\) −5.58613 + 5.80434i −0.411815 + 0.427901i
\(185\) 1.89125 + 3.27574i 0.139048 + 0.240837i
\(186\) 0 0
\(187\) 15.2819 1.11752
\(188\) −1.80000 9.49744i −0.131278 0.692672i
\(189\) 0 0
\(190\) 22.1348 + 10.1501i 1.60583 + 0.736365i
\(191\) −4.99011 + 8.64312i −0.361072 + 0.625395i −0.988138 0.153572i \(-0.950922\pi\)
0.627066 + 0.778966i \(0.284256\pi\)
\(192\) 0 0
\(193\) −6.08787 + 3.51483i −0.438215 + 0.253003i −0.702840 0.711348i \(-0.748085\pi\)
0.264625 + 0.964351i \(0.414752\pi\)
\(194\) −2.76422 + 6.02809i −0.198460 + 0.432791i
\(195\) 0 0
\(196\) −14.6226 16.9813i −1.04447 1.21295i
\(197\) 11.4687 + 19.8644i 0.817111 + 1.41528i 0.907802 + 0.419399i \(0.137759\pi\)
−0.0906911 + 0.995879i \(0.528908\pi\)
\(198\) 0 0
\(199\) −0.0585459 + 0.101404i −0.00415021 + 0.00718837i −0.868093 0.496402i \(-0.834654\pi\)
0.863943 + 0.503590i \(0.167988\pi\)
\(200\) −0.390777 1.35410i −0.0276321 0.0957495i
\(201\) 0 0
\(202\) 9.23990 + 13.0182i 0.650117 + 0.915960i
\(203\) −19.7861 −1.38871
\(204\) 0 0
\(205\) 12.9451 7.47385i 0.904125 0.521997i
\(206\) 2.56491 + 27.3077i 0.178705 + 1.90262i
\(207\) 0 0
\(208\) 14.0337 + 3.32497i 0.973062 + 0.230545i
\(209\) −19.6089 −1.35637
\(210\) 0 0
\(211\) −12.7439 + 7.35770i −0.877327 + 0.506525i −0.869776 0.493446i \(-0.835737\pi\)
−0.00755106 + 0.999971i \(0.502404\pi\)
\(212\) −0.995192 5.25100i −0.0683501 0.360640i
\(213\) 0 0
\(214\) 11.3335 + 15.9679i 0.774741 + 1.09154i
\(215\) 9.33910 + 5.39193i 0.636921 + 0.367727i
\(216\) 0 0
\(217\) −14.7532 + 25.5533i −1.00151 + 1.73467i
\(218\) 0.908583 + 9.67337i 0.0615370 + 0.655163i
\(219\) 0 0
\(220\) 8.17144 + 9.48956i 0.550918 + 0.639786i
\(221\) 18.6692 8.78803i 1.25582 0.591147i
\(222\) 0 0
\(223\) −10.9380 + 6.31505i −0.732462 + 0.422887i −0.819322 0.573333i \(-0.805650\pi\)
0.0868600 + 0.996221i \(0.472317\pi\)
\(224\) −1.33505 + 24.0992i −0.0892018 + 1.61019i
\(225\) 0 0
\(226\) −25.1731 11.5433i −1.67449 0.767848i
\(227\) 9.00775 15.6019i 0.597865 1.03553i −0.395270 0.918565i \(-0.629349\pi\)
0.993136 0.116968i \(-0.0373176\pi\)
\(228\) 0 0
\(229\) 5.09964 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(230\) −7.70193 + 5.46656i −0.507850 + 0.360455i
\(231\) 0 0
\(232\) 9.45059 + 9.09530i 0.620462 + 0.597136i
\(233\) 15.3036 1.00257 0.501286 0.865282i \(-0.332861\pi\)
0.501286 + 0.865282i \(0.332861\pi\)
\(234\) 0 0
\(235\) 11.3332i 0.739298i
\(236\) 5.12059 14.6481i 0.333322 0.953508i
\(237\) 0 0
\(238\) 19.9869 + 28.1599i 1.29556 + 1.82534i
\(239\) 10.7527i 0.695533i −0.937581 0.347766i \(-0.886940\pi\)
0.937581 0.347766i \(-0.113060\pi\)
\(240\) 0 0
\(241\) −4.82911 2.78809i −0.311070 0.179596i 0.336335 0.941742i \(-0.390813\pi\)
−0.647405 + 0.762146i \(0.724146\pi\)
\(242\) 4.97412 + 2.28092i 0.319749 + 0.146623i
\(243\) 0 0
\(244\) −3.99488 1.39651i −0.255746 0.0894023i
\(245\) −13.1367 22.7534i −0.839272 1.45366i
\(246\) 0 0
\(247\) −23.9552 + 11.2763i −1.52423 + 0.717494i
\(248\) 18.7931 5.42346i 1.19336 0.344390i
\(249\) 0 0
\(250\) 1.39600 + 14.8628i 0.0882909 + 0.940003i
\(251\) 17.4469 + 10.0730i 1.10124 + 0.635801i 0.936546 0.350544i \(-0.114003\pi\)
0.164693 + 0.986345i \(0.447337\pi\)
\(252\) 0 0
\(253\) 3.80272 6.58650i 0.239075 0.414090i
\(254\) 3.80496 2.70063i 0.238744 0.169452i
\(255\) 0 0
\(256\) 11.7156 10.8970i 0.732226 0.681062i
\(257\) 2.14179 + 3.70969i 0.133601 + 0.231404i 0.925062 0.379815i \(-0.124012\pi\)
−0.791461 + 0.611220i \(0.790679\pi\)
\(258\) 0 0
\(259\) 6.88268i 0.427669i
\(260\) 15.4397 + 6.89386i 0.957532 + 0.427539i
\(261\) 0 0
\(262\) 16.8531 1.58295i 1.04119 0.0977948i
\(263\) 10.7244 + 18.5751i 0.661293 + 1.14539i 0.980276 + 0.197632i \(0.0633251\pi\)
−0.318984 + 0.947760i \(0.603342\pi\)
\(264\) 0 0
\(265\) 6.26597i 0.384916i
\(266\) −25.6461 36.1332i −1.57246 2.21547i
\(267\) 0 0
\(268\) 11.2816 + 13.1014i 0.689132 + 0.800295i
\(269\) −5.23857 3.02449i −0.319401 0.184406i 0.331724 0.943376i \(-0.392370\pi\)
−0.651126 + 0.758970i \(0.725703\pi\)
\(270\) 0 0
\(271\) 9.09680 5.25204i 0.552591 0.319039i −0.197575 0.980288i \(-0.563307\pi\)
0.750166 + 0.661249i \(0.229973\pi\)
\(272\) 3.39807 22.6379i 0.206038 1.37262i
\(273\) 0 0
\(274\) 5.08881 11.0974i 0.307426 0.670421i
\(275\) 0.665289 + 1.15231i 0.0401185 + 0.0694872i
\(276\) 0 0
\(277\) −4.73869 2.73588i −0.284720 0.164383i 0.350838 0.936436i \(-0.385897\pi\)
−0.635558 + 0.772053i \(0.719230\pi\)
\(278\) −0.111794 + 0.243794i −0.00670493 + 0.0146218i
\(279\) 0 0
\(280\) −6.79910 + 27.4687i −0.406324 + 1.64157i
\(281\) 13.2774i 0.792063i −0.918237 0.396032i \(-0.870387\pi\)
0.918237 0.396032i \(-0.129613\pi\)
\(282\) 0 0
\(283\) 14.8438 8.57010i 0.882375 0.509439i 0.0109341 0.999940i \(-0.496520\pi\)
0.871441 + 0.490501i \(0.163186\pi\)
\(284\) −25.3302 8.85478i −1.50307 0.525435i
\(285\) 0 0
\(286\) −13.6153 + 0.136249i −0.805091 + 0.00805659i
\(287\) −27.1990 −1.60551
\(288\) 0 0
\(289\) −7.87564 13.6410i −0.463273 0.802413i
\(290\) 8.90063 + 12.5402i 0.522663 + 0.736388i
\(291\) 0 0
\(292\) 3.92378 + 20.7033i 0.229622 + 1.21157i
\(293\) 12.4999 21.6505i 0.730254 1.26484i −0.226521 0.974006i \(-0.572735\pi\)
0.956775 0.290831i \(-0.0939316\pi\)
\(294\) 0 0
\(295\) 9.09640 15.7554i 0.529613 0.917316i
\(296\) −3.16385 + 3.28743i −0.183895 + 0.191078i
\(297\) 0 0
\(298\) −22.0277 10.1010i −1.27603 0.585134i
\(299\) 0.857955 10.2332i 0.0496168 0.591802i
\(300\) 0 0
\(301\) −9.81122 16.9935i −0.565510 0.979491i
\(302\) 4.46905 0.419761i 0.257165 0.0241545i
\(303\) 0 0
\(304\) −4.36021 + 29.0477i −0.250075 + 1.66600i
\(305\) −4.29688 2.48081i −0.246039 0.142051i
\(306\) 0 0
\(307\) −4.78769 −0.273248 −0.136624 0.990623i \(-0.543625\pi\)
−0.136624 + 0.990623i \(0.543625\pi\)
\(308\) −4.24314 22.3884i −0.241775 1.27570i
\(309\) 0 0
\(310\) 22.8321 2.14453i 1.29678 0.121801i
\(311\) 15.0703 0.854556 0.427278 0.904120i \(-0.359473\pi\)
0.427278 + 0.904120i \(0.359473\pi\)
\(312\) 0 0
\(313\) 28.3272 1.60115 0.800573 0.599236i \(-0.204529\pi\)
0.800573 + 0.599236i \(0.204529\pi\)
\(314\) 25.0208 2.35011i 1.41200 0.132624i
\(315\) 0 0
\(316\) −3.77444 + 0.715348i −0.212329 + 0.0402415i
\(317\) 14.9982 0.842384 0.421192 0.906972i \(-0.361612\pi\)
0.421192 + 0.906972i \(0.361612\pi\)
\(318\) 0 0
\(319\) −10.7241 6.19157i −0.600435 0.346661i
\(320\) 15.8744 9.99470i 0.887405 0.558721i
\(321\) 0 0
\(322\) 17.1104 1.60712i 0.953527 0.0895612i
\(323\) 21.0123 + 36.3944i 1.16916 + 2.02504i
\(324\) 0 0
\(325\) 1.47540 + 1.02515i 0.0818407 + 0.0568648i
\(326\) 0.0707961 + 0.0324641i 0.00392103 + 0.00179802i
\(327\) 0 0
\(328\) 12.9913 + 12.5029i 0.717324 + 0.690357i
\(329\) −10.3110 + 17.8592i −0.568465 + 0.984611i
\(330\) 0 0
\(331\) 12.4044 21.4851i 0.681808 1.18093i −0.292620 0.956229i \(-0.594527\pi\)
0.974429 0.224698i \(-0.0721395\pi\)
\(332\) −5.38090 + 1.01981i −0.295315 + 0.0559694i
\(333\) 0 0
\(334\) 11.0187 + 15.5244i 0.602918 + 0.849460i
\(335\) 10.1352 + 17.5546i 0.553744 + 0.959113i
\(336\) 0 0
\(337\) −31.0333 −1.69049 −0.845246 0.534378i \(-0.820546\pi\)
−0.845246 + 0.534378i \(0.820546\pi\)
\(338\) −16.5548 + 7.99609i −0.900464 + 0.434930i
\(339\) 0 0
\(340\) 8.85650 25.3351i 0.480311 1.37399i
\(341\) −15.9926 + 9.23331i −0.866046 + 0.500012i
\(342\) 0 0
\(343\) 17.9404i 0.968692i
\(344\) −3.12540 + 12.6268i −0.168511 + 0.680792i
\(345\) 0 0
\(346\) 9.42212 20.5473i 0.506536 1.10463i
\(347\) −9.66192 5.57831i −0.518679 0.299459i 0.217715 0.976012i \(-0.430140\pi\)
−0.736394 + 0.676553i \(0.763473\pi\)
\(348\) 0 0
\(349\) 17.4633 + 30.2474i 0.934791 + 1.61910i 0.775007 + 0.631953i \(0.217746\pi\)
0.159784 + 0.987152i \(0.448920\pi\)
\(350\) −1.25325 + 2.73302i −0.0669888 + 0.146086i
\(351\) 0 0
\(352\) −8.26484 + 12.6440i −0.440517 + 0.673929i
\(353\) 26.0211 15.0233i 1.38496 0.799610i 0.392222 0.919870i \(-0.371706\pi\)
0.992742 + 0.120261i \(0.0383730\pi\)
\(354\) 0 0
\(355\) −27.2451 15.7299i −1.44602 0.834858i
\(356\) 26.3616 22.6999i 1.39716 1.20309i
\(357\) 0 0
\(358\) 0.665286 + 0.937332i 0.0351615 + 0.0495395i
\(359\) 2.34283i 0.123650i 0.998087 + 0.0618249i \(0.0196920\pi\)
−0.998087 + 0.0618249i \(0.980308\pi\)
\(360\) 0 0
\(361\) −17.4618 30.2447i −0.919042 1.59183i
\(362\) −6.20262 + 0.582588i −0.326002 + 0.0306202i
\(363\) 0 0
\(364\) −18.0583 24.9107i −0.946513 1.30568i
\(365\) 24.7051i 1.29312i
\(366\) 0 0
\(367\) 4.58886 + 7.94814i 0.239537 + 0.414890i 0.960581 0.277999i \(-0.0896711\pi\)
−0.721045 + 0.692889i \(0.756338\pi\)
\(368\) −8.91136 7.09774i −0.464537 0.369995i
\(369\) 0 0
\(370\) −4.36218 + 3.09613i −0.226779 + 0.160960i
\(371\) −5.70082 + 9.87411i −0.295972 + 0.512638i
\(372\) 0 0
\(373\) 1.54067 + 0.889508i 0.0797731 + 0.0460570i 0.539356 0.842078i \(-0.318668\pi\)
−0.459583 + 0.888135i \(0.652001\pi\)
\(374\) 2.02102 + 21.5172i 0.104505 + 1.11263i
\(375\) 0 0
\(376\) 13.1345 3.79046i 0.677360 0.195478i
\(377\) −16.6617 1.39692i −0.858119 0.0719450i
\(378\) 0 0
\(379\) 5.63066 + 9.75258i 0.289227 + 0.500956i 0.973626 0.228152i \(-0.0732683\pi\)
−0.684398 + 0.729108i \(0.739935\pi\)
\(380\) −11.3642 + 32.5085i −0.582969 + 1.66765i
\(381\) 0 0
\(382\) −12.8296 5.88311i −0.656420 0.301006i
\(383\) −29.2793 16.9044i −1.49610 0.863776i −0.496114 0.868258i \(-0.665240\pi\)
−0.999990 + 0.00448179i \(0.998573\pi\)
\(384\) 0 0
\(385\) 26.7159i 1.36157i
\(386\) −5.75406 8.10699i −0.292874 0.412635i
\(387\) 0 0
\(388\) −8.85321 3.09486i −0.449454 0.157118i
\(389\) 29.7349i 1.50762i 0.657092 + 0.753811i \(0.271786\pi\)
−0.657092 + 0.753811i \(0.728214\pi\)
\(390\) 0 0
\(391\) −16.2995 −0.824303
\(392\) 21.9762 22.8346i 1.10996 1.15332i
\(393\) 0 0
\(394\) −26.4526 + 18.7752i −1.33266 + 0.945879i
\(395\) −4.50401 −0.226621
\(396\) 0 0
\(397\) 9.49768 16.4505i 0.476675 0.825625i −0.522968 0.852352i \(-0.675175\pi\)
0.999643 + 0.0267274i \(0.00850862\pi\)
\(398\) −0.150522 0.0690228i −0.00754497 0.00345980i
\(399\) 0 0
\(400\) 1.85492 0.729301i 0.0927459 0.0364650i
\(401\) −10.5876 + 6.11273i −0.528718 + 0.305255i −0.740494 0.672063i \(-0.765408\pi\)
0.211776 + 0.977318i \(0.432075\pi\)
\(402\) 0 0
\(403\) −14.2276 + 20.4766i −0.708728 + 1.02001i
\(404\) −17.1079 + 14.7316i −0.851150 + 0.732924i
\(405\) 0 0
\(406\) −2.61670 27.8591i −0.129865 1.38263i
\(407\) 2.15377 3.73043i 0.106758 0.184911i
\(408\) 0 0
\(409\) 12.5862 + 7.26664i 0.622347 + 0.359312i 0.777782 0.628534i \(-0.216345\pi\)
−0.155435 + 0.987846i \(0.549678\pi\)
\(410\) 12.2353 + 17.2385i 0.604258 + 0.851348i
\(411\) 0 0
\(412\) −38.1105 + 7.22286i −1.87757 + 0.355845i
\(413\) −28.6688 + 16.5519i −1.41070 + 0.814466i
\(414\) 0 0
\(415\) −6.42098 −0.315193
\(416\) −2.82566 + 20.1994i −0.138539 + 0.990357i
\(417\) 0 0
\(418\) −2.59326 27.6096i −0.126841 1.35043i
\(419\) −9.78683 + 5.65043i −0.478118 + 0.276042i −0.719632 0.694356i \(-0.755689\pi\)
0.241514 + 0.970397i \(0.422356\pi\)
\(420\) 0 0
\(421\) 9.68826 0.472177 0.236088 0.971732i \(-0.424134\pi\)
0.236088 + 0.971732i \(0.424134\pi\)
\(422\) −12.0451 16.9706i −0.586348 0.826115i
\(423\) 0 0
\(424\) 7.26188 2.09569i 0.352668 0.101776i
\(425\) 1.42581 2.46958i 0.0691620 0.119792i
\(426\) 0 0
\(427\) 4.51411 + 7.81866i 0.218453 + 0.378372i
\(428\) −20.9842 + 18.0695i −1.01431 + 0.873421i
\(429\) 0 0
\(430\) −6.35684 + 13.8627i −0.306554 + 0.668518i
\(431\) 3.01093 1.73836i 0.145031 0.0837339i −0.425728 0.904851i \(-0.639982\pi\)
0.570760 + 0.821117i \(0.306649\pi\)
\(432\) 0 0
\(433\) −6.49678 + 11.2528i −0.312215 + 0.540773i −0.978842 0.204619i \(-0.934404\pi\)
0.666626 + 0.745392i \(0.267738\pi\)
\(434\) −37.9306 17.3934i −1.82073 0.834908i
\(435\) 0 0
\(436\) −13.5001 + 2.55860i −0.646538 + 0.122535i
\(437\) 20.9146 1.00048
\(438\) 0 0
\(439\) −13.8320 23.9578i −0.660167 1.14344i −0.980572 0.196162i \(-0.937152\pi\)
0.320405 0.947281i \(-0.396181\pi\)
\(440\) −12.2808 + 12.7605i −0.585464 + 0.608334i
\(441\) 0 0
\(442\) 14.8427 + 25.1243i 0.705994 + 1.19504i
\(443\) 27.0342i 1.28443i −0.766523 0.642216i \(-0.778015\pi\)
0.766523 0.642216i \(-0.221985\pi\)
\(444\) 0 0
\(445\) 35.3220 20.3932i 1.67443 0.966730i
\(446\) −10.3382 14.5657i −0.489530 0.689706i
\(447\) 0 0
\(448\) −34.1086 + 1.30733i −1.61148 + 0.0617657i
\(449\) −3.32814 1.92150i −0.157064 0.0906812i 0.419408 0.907798i \(-0.362238\pi\)
−0.576472 + 0.817117i \(0.695571\pi\)
\(450\) 0 0
\(451\) −14.7419 8.51126i −0.694171 0.400780i
\(452\) 12.9240 36.9707i 0.607894 1.73895i
\(453\) 0 0
\(454\) 23.1590 + 10.6197i 1.08690 + 0.498408i
\(455\) −15.3633 32.6375i −0.720240 1.53007i
\(456\) 0 0
\(457\) −3.45666 + 1.99570i −0.161696 + 0.0933550i −0.578664 0.815566i \(-0.696426\pi\)
0.416969 + 0.908921i \(0.363092\pi\)
\(458\) 0.674426 + 7.18038i 0.0315138 + 0.335517i
\(459\) 0 0
\(460\) −8.71559 10.1215i −0.406366 0.471917i
\(461\) 2.82779 4.89787i 0.131703 0.228117i −0.792630 0.609703i \(-0.791289\pi\)
0.924333 + 0.381586i \(0.124622\pi\)
\(462\) 0 0
\(463\) 11.5821i 0.538268i −0.963103 0.269134i \(-0.913263\pi\)
0.963103 0.269134i \(-0.0867374\pi\)
\(464\) −11.5565 + 14.5094i −0.536497 + 0.673584i
\(465\) 0 0
\(466\) 2.02389 + 21.5477i 0.0937551 + 0.998178i
\(467\) 18.5963i 0.860536i −0.902701 0.430268i \(-0.858419\pi\)
0.902701 0.430268i \(-0.141581\pi\)
\(468\) 0 0
\(469\) 36.8842i 1.70315i
\(470\) 15.9574 1.49881i 0.736058 0.0691351i
\(471\) 0 0
\(472\) 21.3019 + 5.27268i 0.980500 + 0.242695i
\(473\) 12.2807i 0.564668i
\(474\) 0 0
\(475\) −1.82952 + 3.16882i −0.0839441 + 0.145395i
\(476\) −37.0063 + 31.8661i −1.69618 + 1.46058i
\(477\) 0 0
\(478\) 15.1399 1.42204i 0.692485 0.0650424i
\(479\) 17.3136 9.99603i 0.791080 0.456730i −0.0492627 0.998786i \(-0.515687\pi\)
0.840343 + 0.542056i \(0.182354\pi\)
\(480\) 0 0
\(481\) 0.485925 5.79584i 0.0221563 0.264267i
\(482\) 3.28702 7.16819i 0.149720 0.326502i
\(483\) 0 0
\(484\) −2.55375 + 7.30530i −0.116079 + 0.332059i
\(485\) −9.52249 5.49781i −0.432394 0.249643i
\(486\) 0 0
\(487\) 4.25869 + 2.45876i 0.192980 + 0.111417i 0.593377 0.804925i \(-0.297794\pi\)
−0.400397 + 0.916342i \(0.631128\pi\)
\(488\) 1.43799 5.80954i 0.0650946 0.262986i
\(489\) 0 0
\(490\) 30.2998 21.5058i 1.36881 0.971533i
\(491\) −6.28406 + 3.62810i −0.283596 + 0.163734i −0.635050 0.772471i \(-0.719021\pi\)
0.351455 + 0.936205i \(0.385687\pi\)
\(492\) 0 0
\(493\) 26.5388i 1.19525i
\(494\) −19.0453 32.2380i −0.856888 1.45046i
\(495\) 0 0
\(496\) 10.1217 + 25.7437i 0.454478 + 1.15593i
\(497\) 28.6224 + 49.5754i 1.28389 + 2.22376i
\(498\) 0 0
\(499\) 11.7940 0.527974 0.263987 0.964526i \(-0.414962\pi\)
0.263987 + 0.964526i \(0.414962\pi\)
\(500\) −20.7424 + 3.93119i −0.927628 + 0.175808i
\(501\) 0 0
\(502\) −11.8756 + 25.8977i −0.530033 + 1.15587i
\(503\) −13.3082 + 23.0505i −0.593383 + 1.02777i 0.400390 + 0.916345i \(0.368875\pi\)
−0.993773 + 0.111424i \(0.964459\pi\)
\(504\) 0 0
\(505\) −22.9230 + 13.2346i −1.02006 + 0.588932i
\(506\) 9.77681 + 4.48323i 0.434632 + 0.199304i
\(507\) 0 0
\(508\) 4.30573 + 5.00028i 0.191036 + 0.221852i
\(509\) −8.86015 15.3462i −0.392719 0.680210i 0.600088 0.799934i \(-0.295132\pi\)
−0.992807 + 0.119724i \(0.961799\pi\)
\(510\) 0 0
\(511\) 22.4768 38.9310i 0.994317 1.72221i
\(512\) 16.8925 + 15.0547i 0.746551 + 0.665328i
\(513\) 0 0
\(514\) −4.94006 + 3.50628i −0.217897 + 0.154656i
\(515\) −45.4769 −2.00395
\(516\) 0 0
\(517\) −11.1772 + 6.45316i −0.491573 + 0.283810i
\(518\) 9.69093 0.910232i 0.425795 0.0399933i
\(519\) 0 0
\(520\) −7.66477 + 22.6511i −0.336123 + 0.993317i
\(521\) −4.65649 −0.204004 −0.102002 0.994784i \(-0.532525\pi\)
−0.102002 + 0.994784i \(0.532525\pi\)
\(522\) 0 0
\(523\) 16.4234 9.48204i 0.718144 0.414621i −0.0959250 0.995389i \(-0.530581\pi\)
0.814069 + 0.580768i \(0.197248\pi\)
\(524\) 4.45763 + 23.5201i 0.194733 + 1.02748i
\(525\) 0 0
\(526\) −24.7358 + 17.5566i −1.07853 + 0.765506i
\(527\) 34.2743 + 19.7883i 1.49301 + 0.861992i
\(528\) 0 0
\(529\) 7.44405 12.8935i 0.323655 0.560586i
\(530\) 8.82259 0.828672i 0.383229 0.0359952i
\(531\) 0 0
\(532\) 47.4845 40.8887i 2.05871 1.77275i
\(533\) −22.9040 1.92028i −0.992083 0.0831766i
\(534\) 0 0
\(535\) −28.1169 + 16.2333i −1.21560 + 0.701828i
\(536\) −16.9550 + 17.6173i −0.732344 + 0.760951i
\(537\) 0 0
\(538\) 3.56573 7.77598i 0.153730 0.335246i
\(539\) −14.9601 + 25.9117i −0.644378 + 1.11610i
\(540\) 0 0
\(541\) −31.4401 −1.35172 −0.675859 0.737031i \(-0.736227\pi\)
−0.675859 + 0.737031i \(0.736227\pi\)
\(542\) 8.59800 + 12.1139i 0.369316 + 0.520335i
\(543\) 0 0
\(544\) 32.3239 + 1.79069i 1.38588 + 0.0767750i
\(545\) −16.1096 −0.690058
\(546\) 0 0
\(547\) 32.9113i 1.40719i −0.710603 0.703593i \(-0.751578\pi\)
0.710603 0.703593i \(-0.248422\pi\)
\(548\) 16.2984 + 5.69750i 0.696232 + 0.243385i
\(549\) 0 0
\(550\) −1.53449 + 1.08913i −0.0654310 + 0.0464407i
\(551\) 34.0531i 1.45071i
\(552\) 0 0
\(553\) 7.09755 + 4.09777i 0.301818 + 0.174255i
\(554\) 3.22548 7.03397i 0.137037 0.298845i
\(555\) 0 0
\(556\) −0.358051 0.125165i −0.0151847 0.00530820i
\(557\) −15.3182 26.5319i −0.649054 1.12419i −0.983349 0.181726i \(-0.941832\pi\)
0.334295 0.942468i \(-0.391502\pi\)
\(558\) 0 0
\(559\) −7.06217 15.0028i −0.298698 0.634549i
\(560\) −39.5756 5.94051i −1.67237 0.251033i
\(561\) 0 0
\(562\) 18.6948 1.75593i 0.788593 0.0740695i
\(563\) 11.9974 + 6.92670i 0.505630 + 0.291925i 0.731035 0.682340i \(-0.239037\pi\)
−0.225406 + 0.974265i \(0.572371\pi\)
\(564\) 0 0
\(565\) 22.9587 39.7656i 0.965878 1.67295i
\(566\) 14.0299 + 19.7670i 0.589722 + 0.830868i
\(567\) 0 0
\(568\) 9.11777 36.8363i 0.382573 1.54562i
\(569\) −1.42336 2.46532i −0.0596702 0.103352i 0.834647 0.550785i \(-0.185672\pi\)
−0.894317 + 0.447433i \(0.852338\pi\)
\(570\) 0 0
\(571\) 1.58567i 0.0663582i −0.999449 0.0331791i \(-0.989437\pi\)
0.999449 0.0331791i \(-0.0105632\pi\)
\(572\) −1.99246 19.1526i −0.0833090 0.800810i
\(573\) 0 0
\(574\) −3.59706 38.2967i −0.150138 1.59847i
\(575\) −0.709592 1.22905i −0.0295920 0.0512549i
\(576\) 0 0
\(577\) 12.1207i 0.504591i −0.967650 0.252296i \(-0.918814\pi\)
0.967650 0.252296i \(-0.0811855\pi\)
\(578\) 18.1652 12.8931i 0.755574 0.536280i
\(579\) 0 0
\(580\) −16.4798 + 14.1907i −0.684284 + 0.589236i
\(581\) 10.1184 + 5.84184i 0.419781 + 0.242361i
\(582\) 0 0
\(583\) −6.17972 + 3.56786i −0.255938 + 0.147766i
\(584\) −28.6317 + 8.26276i −1.18479 + 0.341915i
\(585\) 0 0
\(586\) 32.1374 + 14.7368i 1.32758 + 0.608773i
\(587\) 6.10053 + 10.5664i 0.251796 + 0.436123i 0.964020 0.265829i \(-0.0856456\pi\)
−0.712225 + 0.701952i \(0.752312\pi\)
\(588\) 0 0
\(589\) −43.9789 25.3912i −1.81212 1.04623i
\(590\) 23.3869 + 10.7242i 0.962823 + 0.441509i
\(591\) 0 0
\(592\) −5.04718 4.01998i −0.207438 0.165220i
\(593\) 27.8522i 1.14375i −0.820340 0.571876i \(-0.806216\pi\)
0.820340 0.571876i \(-0.193784\pi\)
\(594\) 0 0
\(595\) −49.5851 + 28.6279i −2.03279 + 1.17363i
\(596\) 11.3092 32.3513i 0.463242 1.32516i
\(597\) 0 0
\(598\) 14.5220 0.145322i 0.593848 0.00594267i
\(599\) 2.82455 0.115408 0.0577040 0.998334i \(-0.481622\pi\)
0.0577040 + 0.998334i \(0.481622\pi\)
\(600\) 0 0
\(601\) −12.3364 21.3673i −0.503212 0.871589i −0.999993 0.00371312i \(-0.998818\pi\)
0.496781 0.867876i \(-0.334515\pi\)
\(602\) 22.6296 16.0618i 0.922316 0.654628i
\(603\) 0 0
\(604\) 1.18206 + 6.23698i 0.0480973 + 0.253779i
\(605\) −4.53657 + 7.85756i −0.184438 + 0.319455i
\(606\) 0 0
\(607\) −11.8980 + 20.6079i −0.482925 + 0.836451i −0.999808 0.0196055i \(-0.993759\pi\)
0.516883 + 0.856056i \(0.327092\pi\)
\(608\) −41.4762 2.29771i −1.68208 0.0931843i
\(609\) 0 0
\(610\) 2.92476 6.37817i 0.118420 0.258245i
\(611\) −9.94369 + 14.3111i −0.402279 + 0.578965i
\(612\) 0 0
\(613\) 16.8079 + 29.1122i 0.678866 + 1.17583i 0.975323 + 0.220785i \(0.0708618\pi\)
−0.296456 + 0.955046i \(0.595805\pi\)
\(614\) −0.633170 6.74115i −0.0255527 0.272051i
\(615\) 0 0
\(616\) 30.9620 8.93526i 1.24750 0.360012i
\(617\) 4.78893 + 2.76489i 0.192795 + 0.111310i 0.593290 0.804988i \(-0.297829\pi\)
−0.400495 + 0.916299i \(0.631162\pi\)
\(618\) 0 0
\(619\) 45.0671 1.81140 0.905700 0.423920i \(-0.139346\pi\)
0.905700 + 0.423920i \(0.139346\pi\)
\(620\) 6.03907 + 31.8643i 0.242535 + 1.27970i
\(621\) 0 0
\(622\) 1.99304 + 21.2192i 0.0799134 + 0.850811i
\(623\) −74.2154 −2.97338
\(624\) 0 0
\(625\) −27.2431 −1.08973
\(626\) 3.74625 + 39.8851i 0.149730 + 1.59413i
\(627\) 0 0
\(628\) 6.61798 + 34.9189i 0.264086 + 1.39341i
\(629\) −9.23166 −0.368090
\(630\) 0 0
\(631\) 19.1700 + 11.0678i 0.763146 + 0.440603i 0.830424 0.557132i \(-0.188098\pi\)
−0.0672781 + 0.997734i \(0.521431\pi\)
\(632\) −1.50639 5.21987i −0.0599210 0.207635i
\(633\) 0 0
\(634\) 1.98351 + 21.1177i 0.0787752 + 0.838693i
\(635\) 3.86820 + 6.69991i 0.153505 + 0.265878i
\(636\) 0 0
\(637\) −3.37525 + 40.2581i −0.133732 + 1.59508i
\(638\) 7.29957 15.9185i 0.288993 0.630221i
\(639\) 0 0
\(640\) 16.1721 + 21.0296i 0.639258 + 0.831268i
\(641\) 4.25471 7.36938i 0.168051 0.291073i −0.769684 0.638426i \(-0.779586\pi\)
0.937735 + 0.347353i \(0.112919\pi\)
\(642\) 0 0
\(643\) 16.6171 28.7817i 0.655316 1.13504i −0.326499 0.945198i \(-0.605869\pi\)
0.981815 0.189842i \(-0.0607977\pi\)
\(644\) 4.52570 + 23.8792i 0.178337 + 0.940974i
\(645\) 0 0
\(646\) −48.4650 + 34.3988i −1.90683 + 1.35340i
\(647\) −0.419692 0.726928i −0.0164998 0.0285785i 0.857658 0.514221i \(-0.171919\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(648\) 0 0
\(649\) −20.7180 −0.813254
\(650\) −1.24830 + 2.21297i −0.0489624 + 0.0867997i
\(651\) 0 0
\(652\) −0.0363472 + 0.103975i −0.00142347 + 0.00407199i
\(653\) 17.5839 10.1521i 0.688112 0.397282i −0.114792 0.993390i \(-0.536620\pi\)
0.802904 + 0.596108i \(0.203287\pi\)
\(654\) 0 0
\(655\) 28.0663i 1.09664i
\(656\) −15.8862 + 19.9455i −0.620252 + 0.778740i
\(657\) 0 0
\(658\) −26.5097 12.1562i −1.03346 0.473899i
\(659\) 14.9226 + 8.61559i 0.581304 + 0.335616i 0.761651 0.647987i \(-0.224389\pi\)
−0.180348 + 0.983603i \(0.557722\pi\)
\(660\) 0 0
\(661\) −6.11325 10.5885i −0.237778 0.411844i 0.722298 0.691582i \(-0.243086\pi\)
−0.960076 + 0.279738i \(0.909752\pi\)
\(662\) 31.8918 + 14.6242i 1.23951 + 0.568387i
\(663\) 0 0
\(664\) −2.14753 7.44152i −0.0833404 0.288787i
\(665\) 63.6247 36.7338i 2.46726 1.42447i
\(666\) 0 0
\(667\) 11.4382 + 6.60387i 0.442890 + 0.255703i
\(668\) −20.4015 + 17.5676i −0.789356 + 0.679713i
\(669\) 0 0
\(670\) −23.3769 + 16.5921i −0.903127 + 0.641008i
\(671\) 5.65031i 0.218128i
\(672\) 0 0
\(673\) 23.0768 + 39.9702i 0.889545 + 1.54074i 0.840414 + 0.541945i \(0.182312\pi\)
0.0491314 + 0.998792i \(0.484355\pi\)
\(674\) −4.10414 43.6954i −0.158086 1.68308i
\(675\) 0 0
\(676\) −13.4480 22.2520i −0.517231 0.855846i
\(677\) 37.1452i 1.42761i −0.700346 0.713804i \(-0.746971\pi\)
0.700346 0.713804i \(-0.253029\pi\)
\(678\) 0 0
\(679\) 10.0039 + 17.3272i 0.383914 + 0.664959i
\(680\) 36.8435 + 9.11955i 1.41288 + 0.349719i
\(681\) 0 0
\(682\) −15.1157 21.2967i −0.578809 0.815492i
\(683\) −12.9363 + 22.4064i −0.494994 + 0.857355i −0.999983 0.00577053i \(-0.998163\pi\)
0.504989 + 0.863126i \(0.331497\pi\)
\(684\) 0 0
\(685\) 17.5305 + 10.1212i 0.669805 + 0.386712i
\(686\) −25.2604 + 2.37261i −0.964447 + 0.0905868i
\(687\) 0 0
\(688\) −18.1921 2.73073i −0.693567 0.104108i
\(689\) −5.49772 + 7.91240i −0.209447 + 0.301438i
\(690\) 0 0
\(691\) 21.3019 + 36.8960i 0.810363 + 1.40359i 0.912610 + 0.408831i \(0.134064\pi\)
−0.102247 + 0.994759i \(0.532603\pi\)
\(692\) 30.1770 + 10.5491i 1.14716 + 0.401018i
\(693\) 0 0
\(694\) 6.57657 14.3419i 0.249643 0.544410i
\(695\) −0.385119 0.222348i −0.0146084 0.00843415i
\(696\) 0 0
\(697\) 36.4817i 1.38184i
\(698\) −40.2793 + 28.5889i −1.52459 + 1.08210i
\(699\) 0 0
\(700\) −4.01388 1.40315i −0.151710 0.0530341i
\(701\) 23.0213i 0.869502i 0.900551 + 0.434751i \(0.143164\pi\)
−0.900551 + 0.434751i \(0.856836\pi\)
\(702\) 0 0
\(703\) 11.8455 0.446763
\(704\) −18.8960 9.96486i −0.712171 0.375565i
\(705\) 0 0
\(706\) 24.5943 + 34.6513i 0.925620 + 1.30412i
\(707\) 48.1637 1.81138
\(708\) 0 0
\(709\) 7.09063 12.2813i 0.266294 0.461235i −0.701608 0.712563i \(-0.747534\pi\)
0.967902 + 0.251329i \(0.0808674\pi\)
\(710\) 18.5449 40.4418i 0.695976 1.51775i
\(711\) 0 0
\(712\) 35.4481 + 34.1155i 1.32847 + 1.27853i
\(713\) 17.0575 9.84817i 0.638809 0.368817i
\(714\) 0 0
\(715\) 1.88617 22.4971i 0.0705387 0.841345i
\(716\) −1.23180 + 1.06070i −0.0460343 + 0.0396401i
\(717\) 0 0
\(718\) −3.29874 + 0.309838i −0.123108 + 0.0115631i
\(719\) 7.72475 13.3797i 0.288085 0.498977i −0.685268 0.728291i \(-0.740315\pi\)
0.973353 + 0.229314i \(0.0736483\pi\)
\(720\) 0 0
\(721\) 71.6638 + 41.3751i 2.66890 + 1.54089i
\(722\) 40.2758 28.5864i 1.49891 1.06387i
\(723\) 0 0
\(724\) −1.64059 8.65634i −0.0609720 0.321710i
\(725\) −2.00113 + 1.15535i −0.0743201 + 0.0429088i
\(726\) 0 0
\(727\) −4.72802 −0.175353 −0.0876763 0.996149i \(-0.527944\pi\)
−0.0876763 + 0.996149i \(0.527944\pi\)
\(728\) 32.6865 28.7208i 1.21144 1.06447i
\(729\) 0 0
\(730\) −34.7852 + 3.26724i −1.28746 + 0.120926i
\(731\) −22.7932 + 13.1597i −0.843038 + 0.486728i
\(732\) 0 0
\(733\) −49.7495 −1.83754 −0.918770 0.394793i \(-0.870816\pi\)
−0.918770 + 0.394793i \(0.870816\pi\)
\(734\) −10.5842 + 7.51233i −0.390671 + 0.277285i
\(735\) 0 0
\(736\) 8.81520 13.4860i 0.324933 0.497101i
\(737\) 11.5420 19.9913i 0.425155 0.736390i
\(738\) 0 0
\(739\) −18.1362 31.4129i −0.667152 1.15554i −0.978697 0.205310i \(-0.934180\pi\)
0.311545 0.950231i \(-0.399154\pi\)
\(740\) −4.93630 5.73256i −0.181462 0.210733i
\(741\) 0 0
\(742\) −14.6568 6.72100i −0.538069 0.246736i
\(743\) −40.0642 + 23.1311i −1.46981 + 0.848597i −0.999426 0.0338625i \(-0.989219\pi\)
−0.470387 + 0.882460i \(0.655886\pi\)
\(744\) 0 0
\(745\) 20.0900 34.7969i 0.736041 1.27486i
\(746\) −1.04869 + 2.28693i −0.0383952 + 0.0837305i
\(747\) 0 0
\(748\) −30.0292 + 5.69127i −1.09798 + 0.208093i
\(749\) 59.0767 2.15861
\(750\) 0 0
\(751\) −5.01579 8.68760i −0.183029 0.317015i 0.759882 0.650061i \(-0.225257\pi\)
−0.942911 + 0.333046i \(0.891923\pi\)
\(752\) 7.07406 + 17.9923i 0.257964 + 0.656112i
\(753\) 0 0
\(754\) −0.236613 23.6446i −0.00861694 0.861086i
\(755\) 7.44254i 0.270862i
\(756\) 0 0
\(757\) −12.5144 + 7.22517i −0.454842 + 0.262603i −0.709873 0.704330i \(-0.751248\pi\)
0.255031 + 0.966933i \(0.417914\pi\)
\(758\) −12.9871 + 9.21783i −0.471714 + 0.334807i
\(759\) 0 0
\(760\) −47.2755 11.7017i −1.71486 0.424465i
\(761\) 39.8657 + 23.0165i 1.44513 + 0.834347i 0.998186 0.0602132i \(-0.0191781\pi\)
0.446947 + 0.894561i \(0.352511\pi\)
\(762\) 0 0
\(763\) 25.3859 + 14.6566i 0.919032 + 0.530604i
\(764\) 6.58680 18.8423i 0.238302 0.681691i
\(765\) 0 0
\(766\) 19.9295 43.4614i 0.720083 1.57032i
\(767\) −25.3102 + 11.9141i −0.913900 + 0.430195i
\(768\) 0 0
\(769\) −41.3732 + 23.8868i −1.49196 + 0.861381i −0.999958 0.00921592i \(-0.997066\pi\)
−0.491998 + 0.870597i \(0.663733\pi\)
\(770\) 37.6164 3.53316i 1.35560 0.127326i
\(771\) 0 0
\(772\) 10.6538 9.17396i 0.383439 0.330178i
\(773\) 14.9570 25.9063i 0.537966 0.931784i −0.461048 0.887375i \(-0.652526\pi\)
0.999013 0.0444085i \(-0.0141403\pi\)
\(774\) 0 0
\(775\) 3.44589i 0.123780i
\(776\) 3.18678 12.8748i 0.114399 0.462177i
\(777\) 0 0
\(778\) −41.8673 + 3.93243i −1.50101 + 0.140985i
\(779\) 46.8113i 1.67719i
\(780\) 0 0
\(781\) 35.8267i 1.28198i
\(782\) −2.15561 22.9500i −0.0770844 0.820691i
\(783\) 0 0
\(784\) 35.0579 + 27.9229i 1.25207 + 0.997247i
\(785\) 41.6684i 1.48721i
\(786\) 0 0
\(787\) −12.5521 + 21.7409i −0.447435 + 0.774981i −0.998218 0.0596677i \(-0.980996\pi\)
0.550783 + 0.834649i \(0.314329\pi\)
\(788\) −29.9341 34.7627i −1.06636 1.23837i
\(789\) 0 0
\(790\) −0.595653 6.34171i −0.0211924 0.225628i
\(791\) −72.3579 + 41.7759i −2.57275 + 1.48538i
\(792\) 0 0
\(793\) 3.24928 + 6.90271i 0.115385 + 0.245123i
\(794\) 24.4186 + 11.1973i 0.866583 + 0.397378i
\(795\) 0 0
\(796\) 0.0772789 0.221065i 0.00273908 0.00783545i
\(797\) −3.08814 1.78294i −0.109388 0.0631550i 0.444308 0.895874i \(-0.353450\pi\)
−0.553696 + 0.832719i \(0.686783\pi\)
\(798\) 0 0
\(799\) 23.9544 + 13.8301i 0.847444 + 0.489272i
\(800\) 1.27218 + 2.51531i 0.0449783 + 0.0889295i
\(801\) 0 0
\(802\) −10.0070 14.0991i −0.353360 0.497855i
\(803\) 24.3650 14.0671i 0.859822 0.496419i
\(804\) 0 0
\(805\) 28.4949i 1.00431i
\(806\) −30.7130 17.3247i −1.08182 0.610237i
\(807\) 0 0
\(808\) −23.0048 22.1400i −0.809307 0.778882i
\(809\) −1.68066 2.91098i −0.0590887 0.102345i 0.834968 0.550299i \(-0.185486\pi\)
−0.894057 + 0.447954i \(0.852153\pi\)
\(810\) 0 0
\(811\) 43.4005 1.52400 0.762000 0.647577i \(-0.224218\pi\)
0.762000 + 0.647577i \(0.224218\pi\)
\(812\) 38.8800 7.36872i 1.36442 0.258591i
\(813\) 0 0
\(814\) 5.53734 + 2.53919i 0.194084 + 0.0889986i
\(815\) −0.0645684 + 0.111836i −0.00226173 + 0.00391744i
\(816\) 0 0
\(817\) 29.2470 16.8857i 1.02322 0.590757i
\(818\) −8.56703 + 18.6826i −0.299539 + 0.653221i
\(819\) 0 0
\(820\) −22.6540 + 19.5073i −0.791111 + 0.681224i
\(821\) 2.76506 + 4.78922i 0.0965011 + 0.167145i 0.910234 0.414094i \(-0.135902\pi\)
−0.813733 + 0.581239i \(0.802568\pi\)
\(822\) 0 0
\(823\) 24.7831 42.9256i 0.863884 1.49629i −0.00426724 0.999991i \(-0.501358\pi\)
0.868151 0.496300i \(-0.165308\pi\)
\(824\) −15.2100 52.7049i −0.529865 1.83606i
\(825\) 0 0
\(826\) −27.0968 38.1771i −0.942818 1.32835i
\(827\) 49.4336 1.71898 0.859488 0.511156i \(-0.170783\pi\)
0.859488 + 0.511156i \(0.170783\pi\)
\(828\) 0 0
\(829\) −43.7886 + 25.2814i −1.52084 + 0.878059i −0.521144 + 0.853469i \(0.674495\pi\)
−0.999698 + 0.0245900i \(0.992172\pi\)
\(830\) −0.849172 9.04084i −0.0294752 0.313812i
\(831\) 0 0
\(832\) −28.8148 1.30721i −0.998973 0.0453194i
\(833\) 64.1234 2.22174
\(834\) 0 0
\(835\) −27.3361 + 15.7825i −0.946003 + 0.546175i
\(836\) 38.5318 7.30272i 1.33265 0.252570i
\(837\) 0 0
\(838\) −9.25020 13.0328i −0.319543 0.450209i
\(839\) −8.26161 4.76984i −0.285222 0.164673i 0.350563 0.936539i \(-0.385990\pi\)
−0.635785 + 0.771866i \(0.719324\pi\)
\(840\) 0 0
\(841\) −3.74761 + 6.49106i −0.129228 + 0.223830i
\(842\) 1.28127 + 13.6412i 0.0441554 + 0.470108i
\(843\) 0 0
\(844\) 22.3019 19.2041i 0.767663 0.661033i
\(845\) −10.6330 28.5683i −0.365786 0.982780i
\(846\) 0 0
\(847\) 14.2977 8.25479i 0.491275 0.283638i
\(848\) 3.91115 + 9.94769i 0.134309 + 0.341605i
\(849\) 0 0
\(850\) 3.66577 + 1.68096i 0.125735 + 0.0576566i
\(851\) −2.29719 + 3.97885i −0.0787466 + 0.136393i
\(852\) 0 0
\(853\) 19.1280 0.654931 0.327466 0.944863i \(-0.393805\pi\)
0.327466 + 0.944863i \(0.393805\pi\)
\(854\) −10.4118 + 7.38995i −0.356285 + 0.252879i
\(855\) 0 0
\(856\) −28.2173 27.1565i −0.964447 0.928189i
\(857\) 21.6279 0.738796 0.369398 0.929271i \(-0.379564\pi\)
0.369398 + 0.929271i \(0.379564\pi\)
\(858\) 0 0
\(859\) 6.82379i 0.232825i 0.993201 + 0.116412i \(0.0371394\pi\)
−0.993201 + 0.116412i \(0.962861\pi\)
\(860\) −20.3596 7.11719i −0.694256 0.242694i
\(861\) 0 0
\(862\) 2.84584 + 4.00954i 0.0969296 + 0.136566i
\(863\) 33.7913i 1.15027i 0.818059 + 0.575134i \(0.195050\pi\)
−0.818059 + 0.575134i \(0.804950\pi\)
\(864\) 0 0
\(865\) 32.4583 + 18.7398i 1.10362 + 0.637173i
\(866\) −16.7033 7.65940i −0.567600 0.260277i
\(867\) 0 0
\(868\) 19.4738 55.7072i 0.660984 1.89082i
\(869\) 2.56459 + 4.44201i 0.0869979 + 0.150685i
\(870\) 0 0
\(871\) 2.60406 31.0598i 0.0882353 1.05242i
\(872\) −5.38793 18.6700i −0.182458 0.632246i
\(873\) 0 0
\(874\) 2.76595 + 29.4482i 0.0935598 + 0.996099i
\(875\) 39.0045 + 22.5193i 1.31859 + 0.761290i
\(876\) 0 0
\(877\) 10.6606 18.4647i 0.359983 0.623510i −0.627974 0.778234i \(-0.716116\pi\)
0.987958 + 0.154725i \(0.0494490\pi\)
\(878\) 31.9037 22.6441i 1.07670 0.764202i
\(879\) 0 0
\(880\) −19.5911 15.6040i −0.660417 0.526010i
\(881\) 4.05760 + 7.02796i 0.136704 + 0.236778i 0.926247 0.376917i \(-0.123016\pi\)
−0.789543 + 0.613695i \(0.789682\pi\)
\(882\) 0 0
\(883\) 51.4630i 1.73187i 0.500157 + 0.865935i \(0.333276\pi\)
−0.500157 + 0.865935i \(0.666724\pi\)
\(884\) −33.4124 + 24.2214i −1.12378 + 0.814654i
\(885\) 0 0
\(886\) 38.0646 3.57526i 1.27880 0.120113i
\(887\) 20.3583 + 35.2616i 0.683564 + 1.18397i 0.973886 + 0.227038i \(0.0729043\pi\)
−0.290322 + 0.956929i \(0.593762\pi\)
\(888\) 0 0
\(889\) 14.0772i 0.472135i
\(890\) 33.3853 + 47.0370i 1.11908 + 1.57668i
\(891\) 0 0
\(892\) 19.1415 16.4827i 0.640906 0.551883i
\(893\) −30.7369 17.7459i −1.02857 0.593845i
\(894\) 0 0
\(895\) −1.65049 + 0.952911i −0.0551698 + 0.0318523i
\(896\) −6.35159 47.8525i −0.212192 1.59864i
\(897\) 0 0
\(898\) 2.26536 4.94019i 0.0755960 0.164856i
\(899\) −16.0347 27.7730i −0.534788 0.926281i
\(900\) 0 0
\(901\) 13.2440 + 7.64644i 0.441222 + 0.254740i
\(902\) 10.0344 21.8825i 0.334108 0.728608i
\(903\) 0 0
\(904\) 53.7645 + 13.3079i 1.78818 + 0.442613i
\(905\) 10.3295i 0.343366i
\(906\) 0 0
\(907\) −21.6049 + 12.4736i −0.717380 + 0.414180i −0.813788 0.581162i \(-0.802598\pi\)
0.0964076 + 0.995342i \(0.469265\pi\)
\(908\) −11.8900 + 34.0127i −0.394583 + 1.12875i
\(909\) 0 0
\(910\) 43.9223 25.9480i 1.45601 0.860168i
\(911\) 5.75030 0.190516 0.0952580 0.995453i \(-0.469632\pi\)
0.0952580 + 0.995453i \(0.469632\pi\)
\(912\) 0 0
\(913\) 3.65612 + 6.33259i 0.121000 + 0.209578i
\(914\) −3.26712 4.60310i −0.108067 0.152257i
\(915\) 0 0
\(916\) −10.0209 + 1.89920i −0.331100 + 0.0627515i
\(917\) 25.5349 44.2278i 0.843237 1.46053i
\(918\) 0 0
\(919\) −11.6516 + 20.1812i −0.384351 + 0.665716i −0.991679 0.128735i \(-0.958908\pi\)
0.607328 + 0.794452i \(0.292242\pi\)
\(920\) 13.0986 13.6103i 0.431848 0.448717i
\(921\) 0 0
\(922\) 7.27025 + 3.33383i 0.239433 + 0.109794i
\(923\) 20.6025 + 43.7677i 0.678141 + 1.44063i
\(924\) 0 0
\(925\) −0.401895 0.696103i −0.0132142 0.0228877i
\(926\) 16.3078 1.53173i 0.535909 0.0503359i
\(927\) 0 0
\(928\) −21.9579 14.3529i −0.720802 0.471156i
\(929\) −3.29824 1.90424i −0.108212 0.0624760i 0.444917 0.895572i \(-0.353233\pi\)
−0.553129 + 0.833096i \(0.686566\pi\)
\(930\) 0 0
\(931\) −82.2795 −2.69660
\(932\) −30.0719 + 5.69935i −0.985037 + 0.186688i
\(933\) 0 0
\(934\) 26.1840 2.45936i 0.856765 0.0804727i
\(935\) −35.8336 −1.17189
\(936\) 0 0
\(937\) 55.3478 1.80813 0.904067 0.427391i \(-0.140567\pi\)
0.904067 + 0.427391i \(0.140567\pi\)
\(938\) 51.9335 4.87792i 1.69569 0.159270i
\(939\) 0 0
\(940\) 4.22071 + 22.2700i 0.137664 + 0.726367i
\(941\) −45.3754 −1.47920 −0.739599 0.673048i \(-0.764985\pi\)
−0.739599 + 0.673048i \(0.764985\pi\)
\(942\) 0 0
\(943\) 15.7236 + 9.07804i 0.512032 + 0.295622i
\(944\) −4.60685 + 30.6907i −0.149940 + 0.998899i
\(945\) 0 0
\(946\) 17.2915 1.62412i 0.562194 0.0528047i
\(947\) −16.5629 28.6878i −0.538222 0.932229i −0.999000 0.0447128i \(-0.985763\pi\)
0.460778 0.887516i \(-0.347571\pi\)
\(948\) 0 0
\(949\) 21.6761 31.1965i 0.703635 1.01268i
\(950\) −4.70370 2.15692i −0.152608 0.0699797i
\(951\) 0 0
\(952\) −49.7620 47.8913i −1.61280 1.55216i
\(953\) 27.5249 47.6746i 0.891620 1.54433i 0.0536867 0.998558i \(-0.482903\pi\)
0.837933 0.545773i \(-0.183764\pi\)
\(954\) 0 0
\(955\) 11.7010 20.2668i 0.378636 0.655817i
\(956\) 4.00450 + 21.1292i 0.129515 + 0.683368i
\(957\) 0 0
\(958\) 16.3643 + 23.0559i 0.528706 + 0.744902i
\(959\) −18.4167 31.8987i −0.594706 1.03006i
\(960\) 0 0
\(961\) −16.8243 −0.542720
\(962\) 8.22490 0.0823070i 0.265181 0.00265368i
\(963\) 0 0
\(964\) 10.5276 + 3.68019i 0.339072 + 0.118531i
\(965\) 14.2751 8.24173i 0.459532 0.265311i
\(966\) 0 0
\(967\) 32.3383i 1.03993i 0.854188 + 0.519965i \(0.174055\pi\)
−0.854188 + 0.519965i \(0.825945\pi\)
\(968\) −10.6237 2.62960i −0.341459 0.0845184i
\(969\) 0 0
\(970\) 6.48167 14.1349i 0.208114 0.453845i
\(971\) 31.4063 + 18.1325i 1.00788 + 0.581898i 0.910569 0.413356i \(-0.135644\pi\)
0.0973076 + 0.995254i \(0.468977\pi\)
\(972\) 0 0
\(973\) 0.404588 + 0.700766i 0.0129705 + 0.0224655i
\(974\) −2.89876 + 6.32148i −0.0928822 + 0.202553i
\(975\) 0 0
\(976\) 8.37011 + 1.25640i 0.267921 + 0.0402163i
\(977\) −17.6625 + 10.1975i −0.565074 + 0.326246i −0.755180 0.655518i \(-0.772450\pi\)
0.190105 + 0.981764i \(0.439117\pi\)
\(978\) 0 0
\(979\) −40.2249 23.2239i −1.28559 0.742238i
\(980\) 34.2877 + 39.8185i 1.09528 + 1.27196i
\(981\) 0 0
\(982\) −5.93949 8.36824i −0.189537 0.267041i
\(983\) 28.2445i 0.900860i −0.892812 0.450430i \(-0.851271\pi\)
0.892812 0.450430i \(-0.148729\pi\)
\(984\) 0 0
\(985\) −26.8923 46.5788i −0.856860 1.48412i
\(986\) −37.3671 + 3.50975i −1.19001 + 0.111773i
\(987\) 0 0
\(988\) 42.8729 31.0795i 1.36397 0.988772i
\(989\) 13.0985i 0.416508i
\(990\) 0 0
\(991\) −4.37500 7.57772i −0.138977 0.240714i 0.788133 0.615505i \(-0.211048\pi\)
−0.927109 + 0.374791i \(0.877715\pi\)
\(992\) −34.9090 + 17.6561i −1.10836 + 0.560582i
\(993\) 0 0
\(994\) −66.0177 + 46.8571i −2.09395 + 1.48622i
\(995\) 0.137281 0.237777i 0.00435209 0.00753805i
\(996\) 0 0
\(997\) −9.67774 5.58745i −0.306497 0.176956i 0.338861 0.940837i \(-0.389958\pi\)
−0.645358 + 0.763880i \(0.723292\pi\)
\(998\) 1.55976 + 16.6062i 0.0493733 + 0.525660i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.16 yes 56
3.2 odd 2 inner 936.2.dg.f.829.13 yes 56
8.5 even 2 inner 936.2.dg.f.829.7 56
13.4 even 6 inner 936.2.dg.f.901.7 yes 56
24.5 odd 2 inner 936.2.dg.f.829.22 yes 56
39.17 odd 6 inner 936.2.dg.f.901.22 yes 56
104.69 even 6 inner 936.2.dg.f.901.16 yes 56
312.173 odd 6 inner 936.2.dg.f.901.13 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.7 56 8.5 even 2 inner
936.2.dg.f.829.13 yes 56 3.2 odd 2 inner
936.2.dg.f.829.16 yes 56 1.1 even 1 trivial
936.2.dg.f.829.22 yes 56 24.5 odd 2 inner
936.2.dg.f.901.7 yes 56 13.4 even 6 inner
936.2.dg.f.901.13 yes 56 312.173 odd 6 inner
936.2.dg.f.901.16 yes 56 104.69 even 6 inner
936.2.dg.f.901.22 yes 56 39.17 odd 6 inner