Properties

Label 936.2.dg.f.829.1
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.1
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40692 - 0.143442i) q^{2} +(1.95885 + 0.403622i) q^{4} +3.41501 q^{5} +(-1.18985 - 0.686961i) q^{7} +(-2.69805 - 0.848845i) q^{8} +(-4.80464 - 0.489855i) q^{10} +(3.02491 + 5.23930i) q^{11} +(-3.56588 - 0.533406i) q^{13} +(1.57549 + 1.13717i) q^{14} +(3.67418 + 1.58127i) q^{16} +(-3.22892 + 5.59265i) q^{17} +(-1.47915 + 2.56196i) q^{19} +(6.68948 + 1.37837i) q^{20} +(-3.50427 - 7.80517i) q^{22} +(3.18261 + 5.51244i) q^{23} +6.66227 q^{25} +(4.94039 + 1.26196i) q^{26} +(-2.05347 - 1.82590i) q^{28} +(-1.54870 + 0.894140i) q^{29} +4.78951i q^{31} +(-4.94246 - 2.75175i) q^{32} +(5.34505 - 7.40526i) q^{34} +(-4.06335 - 2.34598i) q^{35} +(-2.52420 - 4.37205i) q^{37} +(2.44853 - 3.39230i) q^{38} +(-9.21385 - 2.89881i) q^{40} +(2.96921 - 1.71428i) q^{41} +(3.92452 + 2.26583i) q^{43} +(3.81064 + 11.4839i) q^{44} +(-3.68696 - 8.21208i) q^{46} -0.675737i q^{47} +(-2.55617 - 4.42742i) q^{49} +(-9.37328 - 0.955647i) q^{50} +(-6.76972 - 2.48413i) q^{52} -12.4101i q^{53} +(10.3301 + 17.8922i) q^{55} +(2.62715 + 2.86345i) q^{56} +(2.30715 - 1.03584i) q^{58} +(-2.78619 + 4.82582i) q^{59} +(0.167415 + 0.0966574i) q^{61} +(0.687016 - 6.73846i) q^{62} +(6.55892 + 4.58045i) q^{64} +(-12.1775 - 1.82158i) q^{65} +(-4.90885 - 8.50237i) q^{67} +(-8.58229 + 9.65190i) q^{68} +(5.38030 + 3.88345i) q^{70} +(11.7740 + 6.79775i) q^{71} +1.97079i q^{73} +(2.92422 + 6.51319i) q^{74} +(-3.93149 + 4.42147i) q^{76} -8.31198i q^{77} -1.01051 q^{79} +(12.5473 + 5.40005i) q^{80} +(-4.42334 + 1.98594i) q^{82} +4.43962 q^{83} +(-11.0268 + 19.0989i) q^{85} +(-5.19648 - 3.75078i) q^{86} +(-3.71400 - 16.7036i) q^{88} +(11.3849 - 6.57306i) q^{89} +(3.87643 + 3.08429i) q^{91} +(4.00931 + 12.0826i) q^{92} +(-0.0969289 + 0.950708i) q^{94} +(-5.05130 + 8.74910i) q^{95} +(15.0845 + 8.70903i) q^{97} +(2.96125 + 6.59568i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40692 0.143442i −0.994843 0.101429i
\(3\) 0 0
\(4\) 1.95885 + 0.403622i 0.979424 + 0.201811i
\(5\) 3.41501 1.52724 0.763619 0.645668i \(-0.223421\pi\)
0.763619 + 0.645668i \(0.223421\pi\)
\(6\) 0 0
\(7\) −1.18985 0.686961i −0.449721 0.259647i 0.257991 0.966147i \(-0.416939\pi\)
−0.707713 + 0.706500i \(0.750273\pi\)
\(8\) −2.69805 0.848845i −0.953904 0.300112i
\(9\) 0 0
\(10\) −4.80464 0.489855i −1.51936 0.154906i
\(11\) 3.02491 + 5.23930i 0.912044 + 1.57971i 0.811172 + 0.584808i \(0.198830\pi\)
0.100873 + 0.994899i \(0.467837\pi\)
\(12\) 0 0
\(13\) −3.56588 0.533406i −0.988996 0.147940i
\(14\) 1.57549 + 1.13717i 0.421067 + 0.303922i
\(15\) 0 0
\(16\) 3.67418 + 1.58127i 0.918545 + 0.395318i
\(17\) −3.22892 + 5.59265i −0.783128 + 1.35642i 0.146983 + 0.989139i \(0.453044\pi\)
−0.930111 + 0.367279i \(0.880290\pi\)
\(18\) 0 0
\(19\) −1.47915 + 2.56196i −0.339340 + 0.587753i −0.984309 0.176455i \(-0.943537\pi\)
0.644969 + 0.764209i \(0.276870\pi\)
\(20\) 6.68948 + 1.37837i 1.49581 + 0.308213i
\(21\) 0 0
\(22\) −3.50427 7.80517i −0.747113 1.66407i
\(23\) 3.18261 + 5.51244i 0.663620 + 1.14942i 0.979658 + 0.200677i \(0.0643141\pi\)
−0.316038 + 0.948747i \(0.602353\pi\)
\(24\) 0 0
\(25\) 6.66227 1.33245
\(26\) 4.94039 + 1.26196i 0.968890 + 0.247490i
\(27\) 0 0
\(28\) −2.05347 1.82590i −0.388069 0.345063i
\(29\) −1.54870 + 0.894140i −0.287586 + 0.166038i −0.636853 0.770986i \(-0.719764\pi\)
0.349267 + 0.937023i \(0.386431\pi\)
\(30\) 0 0
\(31\) 4.78951i 0.860222i 0.902776 + 0.430111i \(0.141526\pi\)
−0.902776 + 0.430111i \(0.858474\pi\)
\(32\) −4.94246 2.75175i −0.873711 0.486446i
\(33\) 0 0
\(34\) 5.34505 7.40526i 0.916669 1.26999i
\(35\) −4.06335 2.34598i −0.686831 0.396542i
\(36\) 0 0
\(37\) −2.52420 4.37205i −0.414976 0.718760i 0.580450 0.814296i \(-0.302877\pi\)
−0.995426 + 0.0955362i \(0.969543\pi\)
\(38\) 2.44853 3.39230i 0.397205 0.550304i
\(39\) 0 0
\(40\) −9.21385 2.89881i −1.45684 0.458342i
\(41\) 2.96921 1.71428i 0.463713 0.267725i −0.249891 0.968274i \(-0.580395\pi\)
0.713604 + 0.700549i \(0.247062\pi\)
\(42\) 0 0
\(43\) 3.92452 + 2.26583i 0.598484 + 0.345535i 0.768445 0.639916i \(-0.221031\pi\)
−0.169961 + 0.985451i \(0.554364\pi\)
\(44\) 3.81064 + 11.4839i 0.574476 + 1.73126i
\(45\) 0 0
\(46\) −3.68696 8.21208i −0.543613 1.21081i
\(47\) 0.675737i 0.0985664i −0.998785 0.0492832i \(-0.984306\pi\)
0.998785 0.0492832i \(-0.0156937\pi\)
\(48\) 0 0
\(49\) −2.55617 4.42742i −0.365167 0.632488i
\(50\) −9.37328 0.955647i −1.32558 0.135149i
\(51\) 0 0
\(52\) −6.76972 2.48413i −0.938791 0.344487i
\(53\) 12.4101i 1.70466i −0.523002 0.852331i \(-0.675188\pi\)
0.523002 0.852331i \(-0.324812\pi\)
\(54\) 0 0
\(55\) 10.3301 + 17.8922i 1.39291 + 2.41259i
\(56\) 2.62715 + 2.86345i 0.351068 + 0.382645i
\(57\) 0 0
\(58\) 2.30715 1.03584i 0.302944 0.136012i
\(59\) −2.78619 + 4.82582i −0.362731 + 0.628268i −0.988409 0.151813i \(-0.951489\pi\)
0.625678 + 0.780081i \(0.284822\pi\)
\(60\) 0 0
\(61\) 0.167415 + 0.0966574i 0.0214354 + 0.0123757i 0.510679 0.859771i \(-0.329394\pi\)
−0.489244 + 0.872147i \(0.662727\pi\)
\(62\) 0.687016 6.73846i 0.0872512 0.855786i
\(63\) 0 0
\(64\) 6.55892 + 4.58045i 0.819865 + 0.572556i
\(65\) −12.1775 1.82158i −1.51043 0.225940i
\(66\) 0 0
\(67\) −4.90885 8.50237i −0.599711 1.03873i −0.992863 0.119256i \(-0.961949\pi\)
0.393153 0.919473i \(-0.371384\pi\)
\(68\) −8.58229 + 9.65190i −1.04076 + 1.17046i
\(69\) 0 0
\(70\) 5.38030 + 3.88345i 0.643068 + 0.464162i
\(71\) 11.7740 + 6.79775i 1.39732 + 0.806744i 0.994111 0.108363i \(-0.0345608\pi\)
0.403211 + 0.915107i \(0.367894\pi\)
\(72\) 0 0
\(73\) 1.97079i 0.230663i 0.993327 + 0.115332i \(0.0367930\pi\)
−0.993327 + 0.115332i \(0.963207\pi\)
\(74\) 2.92422 + 6.51319i 0.339933 + 0.757144i
\(75\) 0 0
\(76\) −3.93149 + 4.42147i −0.450973 + 0.507178i
\(77\) 8.31198i 0.947238i
\(78\) 0 0
\(79\) −1.01051 −0.113691 −0.0568455 0.998383i \(-0.518104\pi\)
−0.0568455 + 0.998383i \(0.518104\pi\)
\(80\) 12.5473 + 5.40005i 1.40284 + 0.603744i
\(81\) 0 0
\(82\) −4.42334 + 1.98594i −0.488477 + 0.219310i
\(83\) 4.43962 0.487312 0.243656 0.969862i \(-0.421653\pi\)
0.243656 + 0.969862i \(0.421653\pi\)
\(84\) 0 0
\(85\) −11.0268 + 19.0989i −1.19602 + 2.07157i
\(86\) −5.19648 3.75078i −0.560351 0.404457i
\(87\) 0 0
\(88\) −3.71400 16.7036i −0.395914 1.78060i
\(89\) 11.3849 6.57306i 1.20679 0.696743i 0.244737 0.969589i \(-0.421298\pi\)
0.962058 + 0.272846i \(0.0879650\pi\)
\(90\) 0 0
\(91\) 3.87643 + 3.08429i 0.406361 + 0.323322i
\(92\) 4.00931 + 12.0826i 0.417999 + 1.25970i
\(93\) 0 0
\(94\) −0.0969289 + 0.950708i −0.00999746 + 0.0980581i
\(95\) −5.05130 + 8.74910i −0.518252 + 0.897639i
\(96\) 0 0
\(97\) 15.0845 + 8.70903i 1.53160 + 0.884268i 0.999288 + 0.0377182i \(0.0120089\pi\)
0.532309 + 0.846550i \(0.321324\pi\)
\(98\) 2.96125 + 6.59568i 0.299131 + 0.666264i
\(99\) 0 0
\(100\) 13.0504 + 2.68904i 1.30504 + 0.268904i
\(101\) 4.57759 2.64287i 0.455487 0.262976i −0.254657 0.967031i \(-0.581963\pi\)
0.710145 + 0.704056i \(0.248629\pi\)
\(102\) 0 0
\(103\) 6.98106 0.687864 0.343932 0.938994i \(-0.388241\pi\)
0.343932 + 0.938994i \(0.388241\pi\)
\(104\) 9.16813 + 4.46603i 0.899009 + 0.437930i
\(105\) 0 0
\(106\) −1.78013 + 17.4601i −0.172902 + 1.69587i
\(107\) −9.02755 + 5.21206i −0.872726 + 0.503868i −0.868253 0.496122i \(-0.834757\pi\)
−0.00447271 + 0.999990i \(0.501424\pi\)
\(108\) 0 0
\(109\) 16.6956 1.59915 0.799575 0.600566i \(-0.205058\pi\)
0.799575 + 0.600566i \(0.205058\pi\)
\(110\) −11.9671 26.6547i −1.14102 2.54143i
\(111\) 0 0
\(112\) −3.28545 4.40549i −0.310446 0.416280i
\(113\) −5.81227 + 10.0672i −0.546773 + 0.947038i 0.451720 + 0.892160i \(0.350810\pi\)
−0.998493 + 0.0548783i \(0.982523\pi\)
\(114\) 0 0
\(115\) 10.8686 + 18.8250i 1.01350 + 1.75544i
\(116\) −3.39456 + 1.12640i −0.315177 + 0.104583i
\(117\) 0 0
\(118\) 4.61217 6.38989i 0.424585 0.588237i
\(119\) 7.68387 4.43628i 0.704379 0.406673i
\(120\) 0 0
\(121\) −12.8002 + 22.1705i −1.16365 + 2.01550i
\(122\) −0.221676 0.160004i −0.0200696 0.0144860i
\(123\) 0 0
\(124\) −1.93315 + 9.38193i −0.173602 + 0.842522i
\(125\) 5.67665 0.507735
\(126\) 0 0
\(127\) 0.754501 + 1.30683i 0.0669511 + 0.115963i 0.897558 0.440897i \(-0.145340\pi\)
−0.830607 + 0.556859i \(0.812006\pi\)
\(128\) −8.57085 7.38515i −0.757564 0.652761i
\(129\) 0 0
\(130\) 16.8715 + 4.30959i 1.47973 + 0.377976i
\(131\) 0.608733i 0.0531852i 0.999646 + 0.0265926i \(0.00846569\pi\)
−0.999646 + 0.0265926i \(0.991534\pi\)
\(132\) 0 0
\(133\) 3.51993 2.03223i 0.305217 0.176217i
\(134\) 5.68676 + 12.6663i 0.491261 + 1.09420i
\(135\) 0 0
\(136\) 13.4591 12.3484i 1.15411 1.05887i
\(137\) −9.96572 5.75371i −0.851429 0.491573i 0.00970370 0.999953i \(-0.496911\pi\)
−0.861133 + 0.508380i \(0.830245\pi\)
\(138\) 0 0
\(139\) −13.4078 7.74102i −1.13724 0.656585i −0.191493 0.981494i \(-0.561333\pi\)
−0.945745 + 0.324909i \(0.894666\pi\)
\(140\) −7.01260 6.23547i −0.592673 0.526993i
\(141\) 0 0
\(142\) −15.5901 11.2528i −1.30829 0.944312i
\(143\) −7.99178 20.2962i −0.668306 1.69725i
\(144\) 0 0
\(145\) −5.28881 + 3.05349i −0.439211 + 0.253579i
\(146\) 0.282693 2.77274i 0.0233958 0.229473i
\(147\) 0 0
\(148\) −3.17987 9.58300i −0.261384 0.787718i
\(149\) −0.454670 + 0.787511i −0.0372480 + 0.0645154i −0.884048 0.467395i \(-0.845192\pi\)
0.846800 + 0.531911i \(0.178526\pi\)
\(150\) 0 0
\(151\) 21.8390i 1.77723i −0.458650 0.888617i \(-0.651667\pi\)
0.458650 0.888617i \(-0.348333\pi\)
\(152\) 6.16551 5.65672i 0.500089 0.458820i
\(153\) 0 0
\(154\) −1.19228 + 11.6943i −0.0960770 + 0.942353i
\(155\) 16.3562i 1.31376i
\(156\) 0 0
\(157\) 3.03910i 0.242547i −0.992619 0.121273i \(-0.961302\pi\)
0.992619 0.121273i \(-0.0386978\pi\)
\(158\) 1.42170 + 0.144949i 0.113105 + 0.0115315i
\(159\) 0 0
\(160\) −16.8785 9.39725i −1.33436 0.742918i
\(161\) 8.74531i 0.689227i
\(162\) 0 0
\(163\) 8.36620 14.4907i 0.655291 1.13500i −0.326530 0.945187i \(-0.605879\pi\)
0.981821 0.189811i \(-0.0607874\pi\)
\(164\) 6.50816 2.15957i 0.508202 0.168634i
\(165\) 0 0
\(166\) −6.24619 0.636827i −0.484799 0.0494274i
\(167\) 15.2052 8.77871i 1.17661 0.679317i 0.221383 0.975187i \(-0.428943\pi\)
0.955228 + 0.295870i \(0.0956095\pi\)
\(168\) 0 0
\(169\) 12.4310 + 3.80412i 0.956227 + 0.292625i
\(170\) 18.2534 25.2890i 1.39997 1.93958i
\(171\) 0 0
\(172\) 6.77301 + 6.02243i 0.516437 + 0.459206i
\(173\) −2.27946 1.31605i −0.173304 0.100057i 0.410839 0.911708i \(-0.365236\pi\)
−0.584143 + 0.811651i \(0.698569\pi\)
\(174\) 0 0
\(175\) −7.92710 4.57672i −0.599233 0.345967i
\(176\) 2.82931 + 24.0333i 0.213267 + 1.81158i
\(177\) 0 0
\(178\) −16.9605 + 7.61471i −1.27124 + 0.570746i
\(179\) −17.9329 + 10.3536i −1.34037 + 0.773863i −0.986862 0.161568i \(-0.948345\pi\)
−0.353509 + 0.935431i \(0.615012\pi\)
\(180\) 0 0
\(181\) 16.5473i 1.22995i −0.788547 0.614974i \(-0.789166\pi\)
0.788547 0.614974i \(-0.210834\pi\)
\(182\) −5.01142 4.89539i −0.371471 0.362871i
\(183\) 0 0
\(184\) −3.90762 17.5744i −0.288074 1.29560i
\(185\) −8.62016 14.9306i −0.633767 1.09772i
\(186\) 0 0
\(187\) −39.0688 −2.85699
\(188\) 0.272743 1.32367i 0.0198918 0.0965383i
\(189\) 0 0
\(190\) 8.36176 11.5847i 0.606626 0.840444i
\(191\) −7.40658 + 12.8286i −0.535921 + 0.928242i 0.463197 + 0.886255i \(0.346702\pi\)
−0.999118 + 0.0419872i \(0.986631\pi\)
\(192\) 0 0
\(193\) −12.1754 + 7.02946i −0.876403 + 0.505992i −0.869471 0.493984i \(-0.835540\pi\)
−0.00693238 + 0.999976i \(0.502207\pi\)
\(194\) −19.9734 14.4167i −1.43401 1.03506i
\(195\) 0 0
\(196\) −3.22015 9.70437i −0.230010 0.693169i
\(197\) 4.77917 + 8.27776i 0.340501 + 0.589766i 0.984526 0.175239i \(-0.0560698\pi\)
−0.644024 + 0.765005i \(0.722736\pi\)
\(198\) 0 0
\(199\) 1.90281 3.29576i 0.134887 0.233630i −0.790668 0.612246i \(-0.790266\pi\)
0.925554 + 0.378615i \(0.123600\pi\)
\(200\) −17.9751 5.65523i −1.27103 0.399885i
\(201\) 0 0
\(202\) −6.81941 + 3.06169i −0.479812 + 0.215420i
\(203\) 2.45696 0.172445
\(204\) 0 0
\(205\) 10.1399 5.85426i 0.708200 0.408879i
\(206\) −9.82180 1.00138i −0.684317 0.0697692i
\(207\) 0 0
\(208\) −12.2582 7.59844i −0.849954 0.526857i
\(209\) −17.8971 −1.23797
\(210\) 0 0
\(211\) −8.77615 + 5.06691i −0.604175 + 0.348821i −0.770682 0.637220i \(-0.780084\pi\)
0.166507 + 0.986040i \(0.446751\pi\)
\(212\) 5.00901 24.3096i 0.344020 1.66959i
\(213\) 0 0
\(214\) 13.4487 6.03802i 0.919332 0.412751i
\(215\) 13.4023 + 7.73781i 0.914028 + 0.527714i
\(216\) 0 0
\(217\) 3.29021 5.69881i 0.223354 0.386860i
\(218\) −23.4894 2.39485i −1.59090 0.162200i
\(219\) 0 0
\(220\) 13.0134 + 39.2176i 0.877361 + 2.64405i
\(221\) 14.4971 18.2204i 0.975180 1.22564i
\(222\) 0 0
\(223\) −1.88434 + 1.08792i −0.126185 + 0.0728527i −0.561764 0.827298i \(-0.689877\pi\)
0.435579 + 0.900150i \(0.356544\pi\)
\(224\) 3.99044 + 6.66945i 0.266622 + 0.445621i
\(225\) 0 0
\(226\) 9.62145 13.3300i 0.640010 0.886695i
\(227\) −2.53742 + 4.39495i −0.168415 + 0.291703i −0.937863 0.347007i \(-0.887198\pi\)
0.769448 + 0.638710i \(0.220531\pi\)
\(228\) 0 0
\(229\) 12.7135 0.840132 0.420066 0.907493i \(-0.362007\pi\)
0.420066 + 0.907493i \(0.362007\pi\)
\(230\) −12.5910 28.0443i −0.830226 1.84919i
\(231\) 0 0
\(232\) 4.93744 1.09783i 0.324159 0.0720760i
\(233\) 0.408995 0.0267941 0.0133971 0.999910i \(-0.495735\pi\)
0.0133971 + 0.999910i \(0.495735\pi\)
\(234\) 0 0
\(235\) 2.30765i 0.150534i
\(236\) −7.40553 + 8.32848i −0.482059 + 0.542138i
\(237\) 0 0
\(238\) −11.4469 + 5.13931i −0.741995 + 0.333132i
\(239\) 13.2448i 0.856734i −0.903605 0.428367i \(-0.859089\pi\)
0.903605 0.428367i \(-0.140911\pi\)
\(240\) 0 0
\(241\) 15.9642 + 9.21693i 1.02834 + 0.593715i 0.916510 0.400012i \(-0.130994\pi\)
0.111834 + 0.993727i \(0.464328\pi\)
\(242\) 21.1890 29.3561i 1.36208 1.88708i
\(243\) 0 0
\(244\) 0.288929 + 0.256910i 0.0184968 + 0.0164470i
\(245\) −8.72933 15.1197i −0.557697 0.965959i
\(246\) 0 0
\(247\) 6.64102 8.34664i 0.422558 0.531084i
\(248\) 4.06555 12.9223i 0.258163 0.820569i
\(249\) 0 0
\(250\) −7.98659 0.814268i −0.505116 0.0514988i
\(251\) 10.4275 + 6.02030i 0.658176 + 0.379998i 0.791582 0.611063i \(-0.209258\pi\)
−0.133406 + 0.991062i \(0.542591\pi\)
\(252\) 0 0
\(253\) −19.2542 + 33.3493i −1.21050 + 2.09665i
\(254\) −0.874068 1.94684i −0.0548439 0.122155i
\(255\) 0 0
\(256\) 10.9992 + 11.6197i 0.687448 + 0.726234i
\(257\) −1.85401 3.21124i −0.115650 0.200312i 0.802389 0.596801i \(-0.203562\pi\)
−0.918039 + 0.396489i \(0.870228\pi\)
\(258\) 0 0
\(259\) 6.93611i 0.430989i
\(260\) −23.1186 8.48332i −1.43376 0.526113i
\(261\) 0 0
\(262\) 0.0873177 0.856438i 0.00539450 0.0529109i
\(263\) 6.78854 + 11.7581i 0.418599 + 0.725035i 0.995799 0.0915678i \(-0.0291878\pi\)
−0.577199 + 0.816603i \(0.695855\pi\)
\(264\) 0 0
\(265\) 42.3807i 2.60342i
\(266\) −5.24377 + 2.35428i −0.321516 + 0.144350i
\(267\) 0 0
\(268\) −6.18394 18.6362i −0.377744 1.13839i
\(269\) −14.2966 8.25414i −0.871679 0.503264i −0.00377292 0.999993i \(-0.501201\pi\)
−0.867906 + 0.496729i \(0.834534\pi\)
\(270\) 0 0
\(271\) 9.81144 5.66464i 0.596003 0.344102i −0.171465 0.985190i \(-0.554850\pi\)
0.767467 + 0.641088i \(0.221517\pi\)
\(272\) −20.7071 + 15.4426i −1.25555 + 0.936346i
\(273\) 0 0
\(274\) 13.1957 + 9.52451i 0.797179 + 0.575397i
\(275\) 20.1527 + 34.9056i 1.21526 + 2.10489i
\(276\) 0 0
\(277\) 0.350695 + 0.202474i 0.0210712 + 0.0121655i 0.510499 0.859879i \(-0.329461\pi\)
−0.489427 + 0.872044i \(0.662794\pi\)
\(278\) 17.7534 + 12.8142i 1.06478 + 0.768547i
\(279\) 0 0
\(280\) 8.97174 + 9.77871i 0.536164 + 0.584390i
\(281\) 5.21840i 0.311304i −0.987812 0.155652i \(-0.950252\pi\)
0.987812 0.155652i \(-0.0497478\pi\)
\(282\) 0 0
\(283\) 19.4544 11.2320i 1.15644 0.667673i 0.205995 0.978553i \(-0.433957\pi\)
0.950449 + 0.310880i \(0.100624\pi\)
\(284\) 20.3199 + 18.0680i 1.20576 + 1.07214i
\(285\) 0 0
\(286\) 8.33248 + 29.7015i 0.492710 + 1.75629i
\(287\) −4.71056 −0.278056
\(288\) 0 0
\(289\) −12.3518 21.3940i −0.726579 1.25847i
\(290\) 7.87893 3.53739i 0.462667 0.207722i
\(291\) 0 0
\(292\) −0.795453 + 3.86047i −0.0465504 + 0.225917i
\(293\) 7.79411 13.4998i 0.455337 0.788667i −0.543370 0.839493i \(-0.682852\pi\)
0.998708 + 0.0508261i \(0.0161854\pi\)
\(294\) 0 0
\(295\) −9.51485 + 16.4802i −0.553976 + 0.959515i
\(296\) 3.09923 + 13.9386i 0.180139 + 0.810167i
\(297\) 0 0
\(298\) 0.752646 1.04275i 0.0435996 0.0604047i
\(299\) −8.40842 21.3543i −0.486272 1.23495i
\(300\) 0 0
\(301\) −3.11307 5.39199i −0.179434 0.310789i
\(302\) −3.13263 + 30.7258i −0.180262 + 1.76807i
\(303\) 0 0
\(304\) −9.48580 + 7.07416i −0.544048 + 0.405731i
\(305\) 0.571725 + 0.330085i 0.0327369 + 0.0189006i
\(306\) 0 0
\(307\) 28.8805 1.64830 0.824149 0.566373i \(-0.191654\pi\)
0.824149 + 0.566373i \(0.191654\pi\)
\(308\) 3.35490 16.2819i 0.191163 0.927748i
\(309\) 0 0
\(310\) 2.34616 23.0119i 0.133253 1.30699i
\(311\) 7.65884 0.434293 0.217147 0.976139i \(-0.430325\pi\)
0.217147 + 0.976139i \(0.430325\pi\)
\(312\) 0 0
\(313\) −14.6712 −0.829266 −0.414633 0.909989i \(-0.636090\pi\)
−0.414633 + 0.909989i \(0.636090\pi\)
\(314\) −0.435934 + 4.27577i −0.0246012 + 0.241296i
\(315\) 0 0
\(316\) −1.97943 0.407864i −0.111352 0.0229441i
\(317\) 12.7648 0.716943 0.358471 0.933541i \(-0.383298\pi\)
0.358471 + 0.933541i \(0.383298\pi\)
\(318\) 0 0
\(319\) −9.36933 5.40939i −0.524582 0.302867i
\(320\) 22.3988 + 15.6423i 1.25213 + 0.874429i
\(321\) 0 0
\(322\) −1.25444 + 12.3040i −0.0699074 + 0.685673i
\(323\) −9.55209 16.5447i −0.531493 0.920572i
\(324\) 0 0
\(325\) −23.7568 3.55369i −1.31779 0.197123i
\(326\) −13.8491 + 19.1872i −0.767033 + 1.06268i
\(327\) 0 0
\(328\) −9.46623 + 2.10480i −0.522685 + 0.116218i
\(329\) −0.464205 + 0.804027i −0.0255924 + 0.0443274i
\(330\) 0 0
\(331\) −0.0572169 + 0.0991026i −0.00314492 + 0.00544717i −0.867594 0.497274i \(-0.834334\pi\)
0.864449 + 0.502721i \(0.167668\pi\)
\(332\) 8.69655 + 1.79193i 0.477285 + 0.0983449i
\(333\) 0 0
\(334\) −22.6517 + 10.1699i −1.23945 + 0.556471i
\(335\) −16.7637 29.0356i −0.915901 1.58639i
\(336\) 0 0
\(337\) −14.2820 −0.777992 −0.388996 0.921240i \(-0.627178\pi\)
−0.388996 + 0.921240i \(0.627178\pi\)
\(338\) −16.9437 7.13521i −0.921615 0.388104i
\(339\) 0 0
\(340\) −29.3086 + 32.9613i −1.58948 + 1.78758i
\(341\) −25.0937 + 14.4878i −1.35890 + 0.784561i
\(342\) 0 0
\(343\) 16.6414i 0.898551i
\(344\) −8.66522 9.44462i −0.467197 0.509220i
\(345\) 0 0
\(346\) 3.01824 + 2.17854i 0.162262 + 0.117119i
\(347\) −17.4058 10.0492i −0.934390 0.539470i −0.0461927 0.998933i \(-0.514709\pi\)
−0.888197 + 0.459462i \(0.848042\pi\)
\(348\) 0 0
\(349\) −10.9808 19.0194i −0.587791 1.01808i −0.994521 0.104535i \(-0.966665\pi\)
0.406731 0.913548i \(-0.366669\pi\)
\(350\) 10.4963 + 7.57615i 0.561051 + 0.404962i
\(351\) 0 0
\(352\) −0.533235 34.2188i −0.0284215 1.82387i
\(353\) 24.8246 14.3325i 1.32128 0.762842i 0.337348 0.941380i \(-0.390470\pi\)
0.983933 + 0.178538i \(0.0571368\pi\)
\(354\) 0 0
\(355\) 40.2084 + 23.2144i 2.13404 + 1.23209i
\(356\) 24.9543 8.28045i 1.32257 0.438863i
\(357\) 0 0
\(358\) 26.7153 11.9943i 1.41195 0.633920i
\(359\) 32.1297i 1.69574i 0.530202 + 0.847872i \(0.322116\pi\)
−0.530202 + 0.847872i \(0.677884\pi\)
\(360\) 0 0
\(361\) 5.12425 + 8.87546i 0.269697 + 0.467129i
\(362\) −2.37357 + 23.2807i −0.124752 + 1.22361i
\(363\) 0 0
\(364\) 6.34846 + 7.60628i 0.332750 + 0.398677i
\(365\) 6.73024i 0.352277i
\(366\) 0 0
\(367\) −3.91198 6.77575i −0.204204 0.353691i 0.745675 0.666310i \(-0.232127\pi\)
−0.949879 + 0.312619i \(0.898794\pi\)
\(368\) 2.97681 + 25.2863i 0.155177 + 1.31814i
\(369\) 0 0
\(370\) 9.98622 + 22.2426i 0.519159 + 1.15634i
\(371\) −8.52527 + 14.7662i −0.442610 + 0.766623i
\(372\) 0 0
\(373\) −11.4709 6.62274i −0.593942 0.342913i 0.172713 0.984972i \(-0.444747\pi\)
−0.766655 + 0.642060i \(0.778080\pi\)
\(374\) 54.9666 + 5.60409i 2.84226 + 0.289781i
\(375\) 0 0
\(376\) −0.573596 + 1.82317i −0.0295810 + 0.0940229i
\(377\) 5.99940 2.36231i 0.308985 0.121665i
\(378\) 0 0
\(379\) −15.1774 26.2881i −0.779611 1.35033i −0.932166 0.362032i \(-0.882083\pi\)
0.152554 0.988295i \(-0.451250\pi\)
\(380\) −13.4261 + 15.0994i −0.688742 + 0.774580i
\(381\) 0 0
\(382\) 12.2606 16.9864i 0.627308 0.869098i
\(383\) 19.2691 + 11.1250i 0.984604 + 0.568462i 0.903657 0.428257i \(-0.140872\pi\)
0.0809474 + 0.996718i \(0.474205\pi\)
\(384\) 0 0
\(385\) 28.3854i 1.44666i
\(386\) 18.1381 8.14343i 0.923205 0.414490i
\(387\) 0 0
\(388\) 26.0331 + 23.1481i 1.32163 + 1.17517i
\(389\) 2.92168i 0.148135i −0.997253 0.0740674i \(-0.976402\pi\)
0.997253 0.0740674i \(-0.0235980\pi\)
\(390\) 0 0
\(391\) −41.1056 −2.07880
\(392\) 3.13848 + 14.1152i 0.158517 + 0.712924i
\(393\) 0 0
\(394\) −5.53653 12.3317i −0.278926 0.621261i
\(395\) −3.45089 −0.173633
\(396\) 0 0
\(397\) −3.13178 + 5.42441i −0.157180 + 0.272243i −0.933851 0.357663i \(-0.883574\pi\)
0.776671 + 0.629907i \(0.216907\pi\)
\(398\) −3.14985 + 4.36393i −0.157888 + 0.218744i
\(399\) 0 0
\(400\) 24.4783 + 10.5348i 1.22392 + 0.526742i
\(401\) −19.9809 + 11.5360i −0.997798 + 0.576079i −0.907596 0.419845i \(-0.862085\pi\)
−0.0902020 + 0.995923i \(0.528751\pi\)
\(402\) 0 0
\(403\) 2.55475 17.0788i 0.127261 0.850756i
\(404\) 10.0335 3.32937i 0.499187 0.165642i
\(405\) 0 0
\(406\) −3.45674 0.352430i −0.171555 0.0174908i
\(407\) 15.2710 26.4501i 0.756953 1.31108i
\(408\) 0 0
\(409\) −31.9635 18.4541i −1.58049 0.912497i −0.994787 0.101972i \(-0.967485\pi\)
−0.585704 0.810525i \(-0.699182\pi\)
\(410\) −15.1057 + 6.78200i −0.746020 + 0.334939i
\(411\) 0 0
\(412\) 13.6748 + 2.81771i 0.673711 + 0.138819i
\(413\) 6.63030 3.82800i 0.326256 0.188364i
\(414\) 0 0
\(415\) 15.1613 0.744240
\(416\) 16.1564 + 12.4487i 0.792132 + 0.610350i
\(417\) 0 0
\(418\) 25.1798 + 2.56720i 1.23159 + 0.125566i
\(419\) 8.26881 4.77400i 0.403958 0.233225i −0.284232 0.958755i \(-0.591739\pi\)
0.688190 + 0.725530i \(0.258405\pi\)
\(420\) 0 0
\(421\) 27.0280 1.31726 0.658632 0.752465i \(-0.271135\pi\)
0.658632 + 0.752465i \(0.271135\pi\)
\(422\) 13.0742 5.86988i 0.636440 0.285741i
\(423\) 0 0
\(424\) −10.5343 + 33.4831i −0.511590 + 1.62608i
\(425\) −21.5119 + 37.2597i −1.04348 + 1.80736i
\(426\) 0 0
\(427\) −0.132800 0.230016i −0.00642663 0.0111312i
\(428\) −19.7873 + 6.56591i −0.956455 + 0.317375i
\(429\) 0 0
\(430\) −17.7460 12.8089i −0.855788 0.617701i
\(431\) −6.80703 + 3.93004i −0.327883 + 0.189304i −0.654901 0.755715i \(-0.727290\pi\)
0.327018 + 0.945018i \(0.393956\pi\)
\(432\) 0 0
\(433\) 7.72021 13.3718i 0.371009 0.642607i −0.618712 0.785618i \(-0.712345\pi\)
0.989721 + 0.143011i \(0.0456784\pi\)
\(434\) −5.44651 + 7.54581i −0.261441 + 0.362211i
\(435\) 0 0
\(436\) 32.7042 + 6.73872i 1.56625 + 0.322726i
\(437\) −18.8302 −0.900770
\(438\) 0 0
\(439\) −10.8658 18.8200i −0.518594 0.898231i −0.999767 0.0216054i \(-0.993122\pi\)
0.481172 0.876626i \(-0.340211\pi\)
\(440\) −12.6833 57.0427i −0.604654 2.71941i
\(441\) 0 0
\(442\) −23.0098 + 23.5551i −1.09446 + 1.12040i
\(443\) 6.62675i 0.314846i −0.987531 0.157423i \(-0.949681\pi\)
0.987531 0.157423i \(-0.0503187\pi\)
\(444\) 0 0
\(445\) 38.8794 22.4470i 1.84306 1.06409i
\(446\) 2.80717 1.26033i 0.132923 0.0596783i
\(447\) 0 0
\(448\) −4.65755 9.95578i −0.220049 0.470366i
\(449\) 21.1222 + 12.1949i 0.996817 + 0.575513i 0.907305 0.420473i \(-0.138136\pi\)
0.0895123 + 0.995986i \(0.471469\pi\)
\(450\) 0 0
\(451\) 17.9632 + 10.3711i 0.845854 + 0.488354i
\(452\) −15.4487 + 17.3741i −0.726645 + 0.817207i
\(453\) 0 0
\(454\) 4.20037 5.81937i 0.197133 0.273116i
\(455\) 13.2380 + 10.5329i 0.620609 + 0.493789i
\(456\) 0 0
\(457\) 11.7699 6.79536i 0.550573 0.317874i −0.198780 0.980044i \(-0.563698\pi\)
0.749353 + 0.662170i \(0.230365\pi\)
\(458\) −17.8869 1.82365i −0.835800 0.0852135i
\(459\) 0 0
\(460\) 13.6918 + 41.2622i 0.638384 + 1.92386i
\(461\) 7.43675 12.8808i 0.346364 0.599920i −0.639237 0.769010i \(-0.720750\pi\)
0.985601 + 0.169090i \(0.0540829\pi\)
\(462\) 0 0
\(463\) 28.8166i 1.33922i 0.742712 + 0.669611i \(0.233539\pi\)
−0.742712 + 0.669611i \(0.766461\pi\)
\(464\) −7.10406 + 0.836323i −0.329798 + 0.0388253i
\(465\) 0 0
\(466\) −0.575423 0.0586669i −0.0266560 0.00271769i
\(467\) 14.1259i 0.653670i −0.945081 0.326835i \(-0.894018\pi\)
0.945081 0.326835i \(-0.105982\pi\)
\(468\) 0 0
\(469\) 13.4887i 0.622852i
\(470\) −0.331013 + 3.24667i −0.0152685 + 0.149758i
\(471\) 0 0
\(472\) 11.6136 10.6553i 0.534561 0.490448i
\(473\) 27.4157i 1.26057i
\(474\) 0 0
\(475\) −9.85447 + 17.0684i −0.452154 + 0.783154i
\(476\) 16.8421 5.58863i 0.771957 0.256154i
\(477\) 0 0
\(478\) −1.89985 + 18.6343i −0.0868973 + 0.852315i
\(479\) −35.0552 + 20.2391i −1.60171 + 0.924748i −0.610566 + 0.791965i \(0.709058\pi\)
−0.991145 + 0.132783i \(0.957609\pi\)
\(480\) 0 0
\(481\) 6.66892 + 16.9366i 0.304076 + 0.772242i
\(482\) −21.1382 15.2574i −0.962821 0.694956i
\(483\) 0 0
\(484\) −34.0221 + 38.2623i −1.54646 + 1.73919i
\(485\) 51.5136 + 29.7414i 2.33911 + 1.35049i
\(486\) 0 0
\(487\) −24.5598 14.1796i −1.11291 0.642540i −0.173330 0.984864i \(-0.555453\pi\)
−0.939582 + 0.342324i \(0.888786\pi\)
\(488\) −0.369648 0.402896i −0.0167332 0.0182382i
\(489\) 0 0
\(490\) 10.1127 + 22.5243i 0.456845 + 1.01754i
\(491\) 13.5117 7.80101i 0.609777 0.352055i −0.163101 0.986609i \(-0.552150\pi\)
0.772878 + 0.634555i \(0.218816\pi\)
\(492\) 0 0
\(493\) 11.5484i 0.520115i
\(494\) −10.5406 + 10.7905i −0.474246 + 0.485486i
\(495\) 0 0
\(496\) −7.57351 + 17.5975i −0.340061 + 0.790152i
\(497\) −9.33957 16.1766i −0.418937 0.725620i
\(498\) 0 0
\(499\) −15.0705 −0.674650 −0.337325 0.941388i \(-0.609522\pi\)
−0.337325 + 0.941388i \(0.609522\pi\)
\(500\) 11.1197 + 2.29122i 0.497288 + 0.102467i
\(501\) 0 0
\(502\) −13.8071 9.96582i −0.616239 0.444796i
\(503\) −6.64251 + 11.5052i −0.296175 + 0.512990i −0.975258 0.221072i \(-0.929044\pi\)
0.679083 + 0.734062i \(0.262378\pi\)
\(504\) 0 0
\(505\) 15.6325 9.02543i 0.695637 0.401626i
\(506\) 31.8728 44.1579i 1.41692 1.96306i
\(507\) 0 0
\(508\) 0.950486 + 2.86442i 0.0421710 + 0.127088i
\(509\) 2.67052 + 4.62548i 0.118369 + 0.205021i 0.919121 0.393974i \(-0.128900\pi\)
−0.800753 + 0.598995i \(0.795567\pi\)
\(510\) 0 0
\(511\) 1.35385 2.34494i 0.0598909 0.103734i
\(512\) −13.8082 17.9258i −0.610242 0.792215i
\(513\) 0 0
\(514\) 2.14782 + 4.78390i 0.0947363 + 0.211009i
\(515\) 23.8404 1.05053
\(516\) 0 0
\(517\) 3.54039 2.04404i 0.155706 0.0898969i
\(518\) 0.994928 9.75855i 0.0437146 0.428766i
\(519\) 0 0
\(520\) 31.3092 + 15.2515i 1.37300 + 0.668824i
\(521\) 2.03430 0.0891244 0.0445622 0.999007i \(-0.485811\pi\)
0.0445622 + 0.999007i \(0.485811\pi\)
\(522\) 0 0
\(523\) −24.3054 + 14.0327i −1.06280 + 0.613608i −0.926205 0.377019i \(-0.876949\pi\)
−0.136594 + 0.990627i \(0.543616\pi\)
\(524\) −0.245698 + 1.19242i −0.0107334 + 0.0520909i
\(525\) 0 0
\(526\) −7.86433 17.5165i −0.342901 0.763754i
\(527\) −26.7861 15.4650i −1.16682 0.673664i
\(528\) 0 0
\(529\) −8.75800 + 15.1693i −0.380783 + 0.659535i
\(530\) −6.07916 + 59.6262i −0.264062 + 2.59000i
\(531\) 0 0
\(532\) 7.71526 2.56011i 0.334499 0.110995i
\(533\) −11.5023 + 4.52910i −0.498218 + 0.196177i
\(534\) 0 0
\(535\) −30.8291 + 17.7992i −1.33286 + 0.769527i
\(536\) 6.02710 + 27.1066i 0.260331 + 1.17083i
\(537\) 0 0
\(538\) 18.9302 + 13.6636i 0.816138 + 0.589082i
\(539\) 15.4644 26.7851i 0.666097 1.15371i
\(540\) 0 0
\(541\) 29.6268 1.27375 0.636877 0.770965i \(-0.280226\pi\)
0.636877 + 0.770965i \(0.280226\pi\)
\(542\) −14.6165 + 6.56232i −0.627831 + 0.281876i
\(543\) 0 0
\(544\) 31.3484 18.7563i 1.34405 0.804168i
\(545\) 57.0156 2.44228
\(546\) 0 0
\(547\) 0.345795i 0.0147851i 0.999973 + 0.00739257i \(0.00235315\pi\)
−0.999973 + 0.00739257i \(0.997647\pi\)
\(548\) −17.1990 15.2930i −0.734706 0.653286i
\(549\) 0 0
\(550\) −23.3464 52.0001i −0.995493 2.21729i
\(551\) 5.29026i 0.225373i
\(552\) 0 0
\(553\) 1.20235 + 0.694179i 0.0511293 + 0.0295195i
\(554\) −0.464357 0.335169i −0.0197286 0.0142400i
\(555\) 0 0
\(556\) −23.1395 20.5752i −0.981333 0.872583i
\(557\) 7.15368 + 12.3905i 0.303111 + 0.525004i 0.976839 0.213976i \(-0.0686413\pi\)
−0.673728 + 0.738980i \(0.735308\pi\)
\(558\) 0 0
\(559\) −12.7858 10.1730i −0.540780 0.430273i
\(560\) −11.2198 15.0448i −0.474125 0.635758i
\(561\) 0 0
\(562\) −0.748537 + 7.34187i −0.0315751 + 0.309698i
\(563\) 5.57398 + 3.21814i 0.234915 + 0.135628i 0.612837 0.790209i \(-0.290028\pi\)
−0.377922 + 0.925837i \(0.623361\pi\)
\(564\) 0 0
\(565\) −19.8489 + 34.3794i −0.835051 + 1.44635i
\(566\) −28.9819 + 13.0120i −1.21820 + 0.546933i
\(567\) 0 0
\(568\) −25.9967 28.3350i −1.09080 1.18891i
\(569\) 14.0501 + 24.3355i 0.589012 + 1.02020i 0.994362 + 0.106038i \(0.0338164\pi\)
−0.405350 + 0.914162i \(0.632850\pi\)
\(570\) 0 0
\(571\) 4.83071i 0.202159i 0.994878 + 0.101079i \(0.0322296\pi\)
−0.994878 + 0.101079i \(0.967770\pi\)
\(572\) −7.46270 42.9828i −0.312031 1.79720i
\(573\) 0 0
\(574\) 6.62738 + 0.675691i 0.276622 + 0.0282028i
\(575\) 21.2034 + 36.7253i 0.884242 + 1.53155i
\(576\) 0 0
\(577\) 6.81392i 0.283667i 0.989891 + 0.141834i \(0.0452998\pi\)
−0.989891 + 0.141834i \(0.954700\pi\)
\(578\) 14.3093 + 31.8715i 0.595187 + 1.32568i
\(579\) 0 0
\(580\) −11.5924 + 3.84665i −0.481350 + 0.159724i
\(581\) −5.28249 3.04985i −0.219155 0.126529i
\(582\) 0 0
\(583\) 65.0203 37.5395i 2.69287 1.55473i
\(584\) 1.67289 5.31727i 0.0692248 0.220030i
\(585\) 0 0
\(586\) −12.9021 + 17.8751i −0.532982 + 0.738415i
\(587\) 6.33027 + 10.9643i 0.261278 + 0.452547i 0.966582 0.256358i \(-0.0825227\pi\)
−0.705304 + 0.708905i \(0.749189\pi\)
\(588\) 0 0
\(589\) −12.2705 7.08439i −0.505598 0.291907i
\(590\) 15.7506 21.8215i 0.648441 0.898377i
\(591\) 0 0
\(592\) −2.36098 20.0551i −0.0970357 0.824260i
\(593\) 7.20191i 0.295747i −0.989006 0.147873i \(-0.952757\pi\)
0.989006 0.147873i \(-0.0472428\pi\)
\(594\) 0 0
\(595\) 26.2405 15.1499i 1.07575 0.621087i
\(596\) −1.20849 + 1.35910i −0.0495015 + 0.0556709i
\(597\) 0 0
\(598\) 8.76688 + 31.2499i 0.358504 + 1.27790i
\(599\) −9.36355 −0.382584 −0.191292 0.981533i \(-0.561268\pi\)
−0.191292 + 0.981533i \(0.561268\pi\)
\(600\) 0 0
\(601\) 15.3653 + 26.6135i 0.626765 + 1.08559i 0.988197 + 0.153190i \(0.0489545\pi\)
−0.361432 + 0.932398i \(0.617712\pi\)
\(602\) 3.60640 + 8.03264i 0.146986 + 0.327386i
\(603\) 0 0
\(604\) 8.81472 42.7793i 0.358666 1.74067i
\(605\) −43.7126 + 75.7124i −1.77717 + 3.07815i
\(606\) 0 0
\(607\) 17.9472 31.0855i 0.728455 1.26172i −0.229081 0.973407i \(-0.573572\pi\)
0.957536 0.288313i \(-0.0930944\pi\)
\(608\) 14.3605 8.59212i 0.582395 0.348456i
\(609\) 0 0
\(610\) −0.757023 0.546413i −0.0306510 0.0221236i
\(611\) −0.360442 + 2.40960i −0.0145819 + 0.0974818i
\(612\) 0 0
\(613\) 2.48114 + 4.29747i 0.100212 + 0.173573i 0.911772 0.410697i \(-0.134714\pi\)
−0.811560 + 0.584270i \(0.801381\pi\)
\(614\) −40.6326 4.14267i −1.63980 0.167185i
\(615\) 0 0
\(616\) −7.05558 + 22.4261i −0.284277 + 0.903574i
\(617\) −18.3016 10.5665i −0.736796 0.425389i 0.0841072 0.996457i \(-0.473196\pi\)
−0.820903 + 0.571067i \(0.806530\pi\)
\(618\) 0 0
\(619\) 8.60082 0.345696 0.172848 0.984948i \(-0.444703\pi\)
0.172848 + 0.984948i \(0.444703\pi\)
\(620\) −6.60173 + 32.0394i −0.265132 + 1.28673i
\(621\) 0 0
\(622\) −10.7754 1.09860i −0.432053 0.0440498i
\(623\) −18.0617 −0.723629
\(624\) 0 0
\(625\) −13.9255 −0.557022
\(626\) 20.6412 + 2.10446i 0.824989 + 0.0841113i
\(627\) 0 0
\(628\) 1.22665 5.95314i 0.0489486 0.237556i
\(629\) 32.6018 1.29992
\(630\) 0 0
\(631\) −1.51792 0.876372i −0.0604275 0.0348878i 0.469482 0.882942i \(-0.344441\pi\)
−0.529909 + 0.848054i \(0.677774\pi\)
\(632\) 2.72640 + 0.857765i 0.108450 + 0.0341200i
\(633\) 0 0
\(634\) −17.9591 1.83101i −0.713245 0.0727185i
\(635\) 2.57662 + 4.46284i 0.102250 + 0.177103i
\(636\) 0 0
\(637\) 6.75338 + 17.1511i 0.267579 + 0.679551i
\(638\) 12.4060 + 8.95453i 0.491157 + 0.354513i
\(639\) 0 0
\(640\) −29.2695 25.2203i −1.15698 0.996921i
\(641\) 13.1070 22.7019i 0.517694 0.896673i −0.482094 0.876119i \(-0.660124\pi\)
0.999789 0.0205536i \(-0.00654287\pi\)
\(642\) 0 0
\(643\) −11.4912 + 19.9033i −0.453167 + 0.784908i −0.998581 0.0532586i \(-0.983039\pi\)
0.545414 + 0.838167i \(0.316373\pi\)
\(644\) 3.52980 17.1307i 0.139094 0.675046i
\(645\) 0 0
\(646\) 11.0658 + 24.6473i 0.435379 + 0.969734i
\(647\) −4.81890 8.34657i −0.189450 0.328138i 0.755617 0.655014i \(-0.227337\pi\)
−0.945067 + 0.326876i \(0.894004\pi\)
\(648\) 0 0
\(649\) −33.7119 −1.32331
\(650\) 32.9142 + 8.40748i 1.29100 + 0.329769i
\(651\) 0 0
\(652\) 22.2369 25.0083i 0.870863 0.979399i
\(653\) −37.2110 + 21.4838i −1.45618 + 0.840725i −0.998820 0.0485577i \(-0.984538\pi\)
−0.457358 + 0.889283i \(0.651204\pi\)
\(654\) 0 0
\(655\) 2.07883i 0.0812264i
\(656\) 13.6201 1.60343i 0.531777 0.0626033i
\(657\) 0 0
\(658\) 0.768430 1.06461i 0.0299565 0.0415030i
\(659\) −3.12326 1.80322i −0.121665 0.0702433i 0.437932 0.899008i \(-0.355711\pi\)
−0.559597 + 0.828765i \(0.689044\pi\)
\(660\) 0 0
\(661\) −5.43287 9.41001i −0.211314 0.366007i 0.740812 0.671712i \(-0.234441\pi\)
−0.952126 + 0.305706i \(0.901108\pi\)
\(662\) 0.0947150 0.131222i 0.00368120 0.00510009i
\(663\) 0 0
\(664\) −11.9783 3.76855i −0.464849 0.146248i
\(665\) 12.0206 6.94008i 0.466138 0.269125i
\(666\) 0 0
\(667\) −9.85779 5.69140i −0.381695 0.220372i
\(668\) 33.3279 11.0590i 1.28950 0.427886i
\(669\) 0 0
\(670\) 19.4203 + 43.2554i 0.750272 + 1.67110i
\(671\) 1.16952i 0.0451488i
\(672\) 0 0
\(673\) 2.90112 + 5.02489i 0.111830 + 0.193695i 0.916508 0.400016i \(-0.130995\pi\)
−0.804678 + 0.593711i \(0.797662\pi\)
\(674\) 20.0937 + 2.04864i 0.773979 + 0.0789107i
\(675\) 0 0
\(676\) 22.8149 + 12.4691i 0.877498 + 0.479581i
\(677\) 27.4225i 1.05393i −0.849887 0.526966i \(-0.823330\pi\)
0.849887 0.526966i \(-0.176670\pi\)
\(678\) 0 0
\(679\) −11.9655 20.7249i −0.459195 0.795349i
\(680\) 45.9628 42.1698i 1.76259 1.61714i
\(681\) 0 0
\(682\) 37.3830 16.7838i 1.43147 0.642683i
\(683\) 13.3166 23.0650i 0.509544 0.882556i −0.490395 0.871500i \(-0.663147\pi\)
0.999939 0.0110559i \(-0.00351928\pi\)
\(684\) 0 0
\(685\) −34.0330 19.6490i −1.30033 0.750748i
\(686\) 2.38707 23.4131i 0.0911389 0.893917i
\(687\) 0 0
\(688\) 10.8365 + 14.5308i 0.413138 + 0.553981i
\(689\) −6.61964 + 44.2530i −0.252188 + 1.68590i
\(690\) 0 0
\(691\) 0.313614 + 0.543196i 0.0119305 + 0.0206642i 0.871929 0.489632i \(-0.162869\pi\)
−0.859999 + 0.510296i \(0.829536\pi\)
\(692\) −3.93393 3.49798i −0.149546 0.132973i
\(693\) 0 0
\(694\) 23.0470 + 16.6352i 0.874853 + 0.631462i
\(695\) −45.7879 26.4356i −1.73683 1.00276i
\(696\) 0 0
\(697\) 22.1410i 0.838652i
\(698\) 12.7210 + 28.3338i 0.481496 + 1.07245i
\(699\) 0 0
\(700\) −13.6807 12.1646i −0.517083 0.459781i
\(701\) 25.5900i 0.966522i −0.875476 0.483261i \(-0.839452\pi\)
0.875476 0.483261i \(-0.160548\pi\)
\(702\) 0 0
\(703\) 14.9347 0.563271
\(704\) −4.15819 + 48.2196i −0.156718 + 1.81734i
\(705\) 0 0
\(706\) −36.9821 + 16.6038i −1.39184 + 0.624892i
\(707\) −7.26220 −0.273123
\(708\) 0 0
\(709\) 13.9996 24.2481i 0.525767 0.910655i −0.473783 0.880642i \(-0.657112\pi\)
0.999550 0.0300132i \(-0.00955495\pi\)
\(710\) −53.2402 38.4283i −1.99807 1.44219i
\(711\) 0 0
\(712\) −36.2965 + 8.07044i −1.36027 + 0.302452i
\(713\) −26.4019 + 15.2431i −0.988759 + 0.570860i
\(714\) 0 0
\(715\) −27.2920 69.3116i −1.02066 2.59211i
\(716\) −39.3069 + 13.0430i −1.46897 + 0.487439i
\(717\) 0 0
\(718\) 4.60875 45.2040i 0.171997 1.68700i
\(719\) 8.07202 13.9812i 0.301036 0.521409i −0.675335 0.737511i \(-0.736001\pi\)
0.976371 + 0.216102i \(0.0693344\pi\)
\(720\) 0 0
\(721\) −8.30642 4.79572i −0.309347 0.178602i
\(722\) −5.93630 13.2221i −0.220926 0.492075i
\(723\) 0 0
\(724\) 6.67885 32.4136i 0.248217 1.20464i
\(725\) −10.3178 + 5.95700i −0.383194 + 0.221237i
\(726\) 0 0
\(727\) 36.6341 1.35868 0.679342 0.733822i \(-0.262265\pi\)
0.679342 + 0.733822i \(0.262265\pi\)
\(728\) −7.84072 11.6121i −0.290596 0.430371i
\(729\) 0 0
\(730\) 0.965398 9.46892i 0.0357310 0.350460i
\(731\) −25.3440 + 14.6323i −0.937380 + 0.541197i
\(732\) 0 0
\(733\) −39.0091 −1.44083 −0.720417 0.693541i \(-0.756050\pi\)
−0.720417 + 0.693541i \(0.756050\pi\)
\(734\) 4.53192 + 10.0941i 0.167276 + 0.372579i
\(735\) 0 0
\(736\) −0.561034 36.0027i −0.0206800 1.32708i
\(737\) 29.6976 51.4378i 1.09393 1.89474i
\(738\) 0 0
\(739\) −9.63783 16.6932i −0.354533 0.614069i 0.632505 0.774556i \(-0.282027\pi\)
−0.987038 + 0.160487i \(0.948694\pi\)
\(740\) −10.8593 32.7260i −0.399195 1.20303i
\(741\) 0 0
\(742\) 14.1125 19.5520i 0.518085 0.717776i
\(743\) −13.3110 + 7.68512i −0.488334 + 0.281940i −0.723883 0.689923i \(-0.757645\pi\)
0.235549 + 0.971862i \(0.424311\pi\)
\(744\) 0 0
\(745\) −1.55270 + 2.68936i −0.0568865 + 0.0985304i
\(746\) 15.1887 + 10.9631i 0.556098 + 0.401387i
\(747\) 0 0
\(748\) −76.5298 15.7690i −2.79821 0.576573i
\(749\) 14.3219 0.523311
\(750\) 0 0
\(751\) 5.84408 + 10.1222i 0.213254 + 0.369366i 0.952731 0.303815i \(-0.0982606\pi\)
−0.739477 + 0.673181i \(0.764927\pi\)
\(752\) 1.06852 2.48278i 0.0389650 0.0905376i
\(753\) 0 0
\(754\) −8.77953 + 2.46302i −0.319732 + 0.0896978i
\(755\) 74.5804i 2.71426i
\(756\) 0 0
\(757\) 13.5679 7.83343i 0.493134 0.284711i −0.232740 0.972539i \(-0.574769\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(758\) 17.5826 + 39.1623i 0.638629 + 1.42244i
\(759\) 0 0
\(760\) 21.0553 19.3177i 0.763755 0.700728i
\(761\) −34.3924 19.8565i −1.24672 0.719797i −0.276270 0.961080i \(-0.589098\pi\)
−0.970455 + 0.241283i \(0.922432\pi\)
\(762\) 0 0
\(763\) −19.8653 11.4692i −0.719172 0.415214i
\(764\) −19.6863 + 22.1398i −0.712224 + 0.800989i
\(765\) 0 0
\(766\) −25.5143 18.4160i −0.921868 0.665397i
\(767\) 12.5093 15.7221i 0.451686 0.567692i
\(768\) 0 0
\(769\) 38.6620 22.3215i 1.39419 0.804935i 0.400412 0.916335i \(-0.368867\pi\)
0.993776 + 0.111400i \(0.0355336\pi\)
\(770\) −4.07166 + 39.9361i −0.146732 + 1.43920i
\(771\) 0 0
\(772\) −26.6870 + 8.85539i −0.960485 + 0.318713i
\(773\) −22.4489 + 38.8827i −0.807432 + 1.39851i 0.107205 + 0.994237i \(0.465810\pi\)
−0.914637 + 0.404276i \(0.867524\pi\)
\(774\) 0 0
\(775\) 31.9090i 1.14621i
\(776\) −33.3060 36.3018i −1.19562 1.30316i
\(777\) 0 0
\(778\) −0.419090 + 4.11056i −0.0150251 + 0.147371i
\(779\) 10.1427i 0.363399i
\(780\) 0 0
\(781\) 82.2503i 2.94315i
\(782\) 57.8322 + 5.89626i 2.06808 + 0.210850i
\(783\) 0 0
\(784\) −2.39088 20.3091i −0.0853886 0.725325i
\(785\) 10.3785i 0.370426i
\(786\) 0 0
\(787\) −13.8178 + 23.9331i −0.492551 + 0.853124i −0.999963 0.00857979i \(-0.997269\pi\)
0.507412 + 0.861704i \(0.330602\pi\)
\(788\) 6.02058 + 18.1439i 0.214474 + 0.646348i
\(789\) 0 0
\(790\) 4.85513 + 0.495002i 0.172738 + 0.0176114i
\(791\) 13.8315 7.98561i 0.491791 0.283935i
\(792\) 0 0
\(793\) −0.545425 0.433969i −0.0193686 0.0154107i
\(794\) 5.18426 7.18248i 0.183982 0.254897i
\(795\) 0 0
\(796\) 5.05756 5.68788i 0.179260 0.201602i
\(797\) −34.0592 19.6641i −1.20644 0.696539i −0.244460 0.969659i \(-0.578611\pi\)
−0.961980 + 0.273121i \(0.911944\pi\)
\(798\) 0 0
\(799\) 3.77916 + 2.18190i 0.133697 + 0.0771901i
\(800\) −32.9279 18.3329i −1.16418 0.648166i
\(801\) 0 0
\(802\) 29.7663 13.3641i 1.05108 0.471903i
\(803\) −10.3255 + 5.96145i −0.364380 + 0.210375i
\(804\) 0 0
\(805\) 29.8653i 1.05261i
\(806\) −6.04415 + 23.6621i −0.212896 + 0.833461i
\(807\) 0 0
\(808\) −14.5940 + 3.24493i −0.513413 + 0.114156i
\(809\) 23.1914 + 40.1687i 0.815366 + 1.41226i 0.909064 + 0.416655i \(0.136798\pi\)
−0.0936981 + 0.995601i \(0.529869\pi\)
\(810\) 0 0
\(811\) −25.2433 −0.886411 −0.443206 0.896420i \(-0.646159\pi\)
−0.443206 + 0.896420i \(0.646159\pi\)
\(812\) 4.81281 + 0.991683i 0.168896 + 0.0348012i
\(813\) 0 0
\(814\) −25.2791 + 35.0227i −0.886031 + 1.22754i
\(815\) 28.5706 49.4857i 1.00078 1.73341i
\(816\) 0 0
\(817\) −11.6099 + 6.70298i −0.406179 + 0.234507i
\(818\) 42.3229 + 30.5484i 1.47979 + 1.06810i
\(819\) 0 0
\(820\) 22.2254 7.37493i 0.776145 0.257544i
\(821\) −1.82456 3.16024i −0.0636777 0.110293i 0.832429 0.554132i \(-0.186950\pi\)
−0.896107 + 0.443839i \(0.853616\pi\)
\(822\) 0 0
\(823\) −16.0083 + 27.7272i −0.558014 + 0.966509i 0.439648 + 0.898170i \(0.355103\pi\)
−0.997662 + 0.0683386i \(0.978230\pi\)
\(824\) −18.8352 5.92584i −0.656157 0.206436i
\(825\) 0 0
\(826\) −9.87740 + 4.43464i −0.343679 + 0.154301i
\(827\) 32.5482 1.13181 0.565906 0.824470i \(-0.308527\pi\)
0.565906 + 0.824470i \(0.308527\pi\)
\(828\) 0 0
\(829\) −1.89091 + 1.09172i −0.0656739 + 0.0379168i −0.532477 0.846444i \(-0.678739\pi\)
0.466804 + 0.884361i \(0.345406\pi\)
\(830\) −21.3308 2.17477i −0.740402 0.0754873i
\(831\) 0 0
\(832\) −20.9451 19.8319i −0.726140 0.687547i
\(833\) 33.0147 1.14389
\(834\) 0 0
\(835\) 51.9257 29.9793i 1.79696 1.03748i
\(836\) −35.0578 7.22369i −1.21250 0.249836i
\(837\) 0 0
\(838\) −12.3183 + 5.53054i −0.425530 + 0.191049i
\(839\) 33.5508 + 19.3706i 1.15830 + 0.668747i 0.950897 0.309508i \(-0.100164\pi\)
0.207406 + 0.978255i \(0.433498\pi\)
\(840\) 0 0
\(841\) −12.9010 + 22.3452i −0.444863 + 0.770525i
\(842\) −38.0262 3.87694i −1.31047 0.133608i
\(843\) 0 0
\(844\) −19.2363 + 6.38307i −0.662140 + 0.219714i
\(845\) 42.4518 + 12.9911i 1.46039 + 0.446907i
\(846\) 0 0
\(847\) 30.4605 17.5864i 1.04664 0.604276i
\(848\) 19.6238 45.5970i 0.673883 1.56581i
\(849\) 0 0
\(850\) 35.6102 49.3358i 1.22142 1.69220i
\(851\) 16.0671 27.8290i 0.550773 0.953967i
\(852\) 0 0
\(853\) 32.6789 1.11891 0.559453 0.828862i \(-0.311011\pi\)
0.559453 + 0.828862i \(0.311011\pi\)
\(854\) 0.153845 + 0.342663i 0.00526446 + 0.0117257i
\(855\) 0 0
\(856\) 28.7810 6.39939i 0.983714 0.218727i
\(857\) 26.0253 0.889008 0.444504 0.895777i \(-0.353380\pi\)
0.444504 + 0.895777i \(0.353380\pi\)
\(858\) 0 0
\(859\) 15.4455i 0.526994i 0.964660 + 0.263497i \(0.0848759\pi\)
−0.964660 + 0.263497i \(0.915124\pi\)
\(860\) 23.1299 + 20.5667i 0.788722 + 0.701317i
\(861\) 0 0
\(862\) 10.1407 4.55284i 0.345393 0.155070i
\(863\) 22.7498i 0.774411i −0.921993 0.387206i \(-0.873440\pi\)
0.921993 0.387206i \(-0.126560\pi\)
\(864\) 0 0
\(865\) −7.78436 4.49430i −0.264676 0.152811i
\(866\) −12.7798 + 17.7056i −0.434275 + 0.601662i
\(867\) 0 0
\(868\) 8.74519 9.83510i 0.296831 0.333825i
\(869\) −3.05669 5.29435i −0.103691 0.179599i
\(870\) 0 0
\(871\) 12.9691 + 32.9368i 0.439442 + 1.11602i
\(872\) −45.0456 14.1720i −1.52544 0.479924i
\(873\) 0 0
\(874\) 26.4926 + 2.70104i 0.896125 + 0.0913639i
\(875\) −6.75436 3.89963i −0.228339 0.131832i
\(876\) 0 0
\(877\) −7.48245 + 12.9600i −0.252664 + 0.437628i −0.964259 0.264963i \(-0.914640\pi\)
0.711594 + 0.702591i \(0.247974\pi\)
\(878\) 12.5877 + 28.0369i 0.424813 + 0.946199i
\(879\) 0 0
\(880\) 9.66211 + 82.0739i 0.325710 + 2.76671i
\(881\) 17.2978 + 29.9607i 0.582779 + 1.00940i 0.995148 + 0.0983859i \(0.0313679\pi\)
−0.412370 + 0.911017i \(0.635299\pi\)
\(882\) 0 0
\(883\) 51.1608i 1.72170i 0.508861 + 0.860849i \(0.330067\pi\)
−0.508861 + 0.860849i \(0.669933\pi\)
\(884\) 35.7518 29.8396i 1.20246 1.00362i
\(885\) 0 0
\(886\) −0.950553 + 9.32331i −0.0319345 + 0.313223i
\(887\) −20.7550 35.9488i −0.696886 1.20704i −0.969541 0.244930i \(-0.921235\pi\)
0.272655 0.962112i \(-0.412098\pi\)
\(888\) 0 0
\(889\) 2.07325i 0.0695346i
\(890\) −57.9201 + 26.0043i −1.94149 + 0.871665i
\(891\) 0 0
\(892\) −4.13024 + 1.37052i −0.138291 + 0.0458883i
\(893\) 1.73121 + 0.999515i 0.0579327 + 0.0334475i
\(894\) 0 0
\(895\) −61.2411 + 35.3576i −2.04706 + 1.18187i
\(896\) 5.12473 + 14.6751i 0.171205 + 0.490260i
\(897\) 0 0
\(898\) −27.9680 20.1871i −0.933303 0.673651i
\(899\) −4.28250 7.41750i −0.142829 0.247387i
\(900\) 0 0
\(901\) 69.4056 + 40.0713i 2.31223 + 1.33497i
\(902\) −23.7851 17.1679i −0.791959 0.571629i
\(903\) 0 0
\(904\) 24.2272 22.2279i 0.805786 0.739290i
\(905\) 56.5090i 1.87842i
\(906\) 0 0
\(907\) −35.1223 + 20.2779i −1.16622 + 0.673315i −0.952786 0.303643i \(-0.901797\pi\)
−0.213430 + 0.976958i \(0.568464\pi\)
\(908\) −6.74433 + 7.58488i −0.223818 + 0.251713i
\(909\) 0 0
\(910\) −17.1140 16.7178i −0.567324 0.554190i
\(911\) −8.86652 −0.293761 −0.146880 0.989154i \(-0.546923\pi\)
−0.146880 + 0.989154i \(0.546923\pi\)
\(912\) 0 0
\(913\) 13.4294 + 23.2605i 0.444450 + 0.769810i
\(914\) −17.5341 + 7.87224i −0.579975 + 0.260390i
\(915\) 0 0
\(916\) 24.9038 + 5.13146i 0.822846 + 0.169548i
\(917\) 0.418175 0.724301i 0.0138094 0.0239185i
\(918\) 0 0
\(919\) 25.0399 43.3703i 0.825989 1.43065i −0.0751721 0.997171i \(-0.523951\pi\)
0.901161 0.433484i \(-0.142716\pi\)
\(920\) −13.3446 60.0166i −0.439957 1.97869i
\(921\) 0 0
\(922\) −12.3106 + 17.0556i −0.405427 + 0.561695i
\(923\) −38.3588 30.5203i −1.26260 1.00459i
\(924\) 0 0
\(925\) −16.8169 29.1277i −0.552936 0.957714i
\(926\) 4.13351 40.5427i 0.135835 1.33231i
\(927\) 0 0
\(928\) 10.1148 0.157620i 0.332035 0.00517413i
\(929\) −24.8897 14.3700i −0.816603 0.471466i 0.0326406 0.999467i \(-0.489608\pi\)
−0.849244 + 0.528001i \(0.822942\pi\)
\(930\) 0 0
\(931\) 15.1238 0.495663
\(932\) 0.801159 + 0.165079i 0.0262428 + 0.00540736i
\(933\) 0 0
\(934\) −2.02625 + 19.8740i −0.0663009 + 0.650299i
\(935\) −133.420 −4.36330
\(936\) 0 0
\(937\) 49.4166 1.61437 0.807185 0.590298i \(-0.200990\pi\)
0.807185 + 0.590298i \(0.200990\pi\)
\(938\) 1.93485 18.9776i 0.0631750 0.619640i
\(939\) 0 0
\(940\) 0.931418 4.52033i 0.0303795 0.147437i
\(941\) −28.9013 −0.942157 −0.471078 0.882091i \(-0.656135\pi\)
−0.471078 + 0.882091i \(0.656135\pi\)
\(942\) 0 0
\(943\) 18.8997 + 10.9117i 0.615458 + 0.355335i
\(944\) −17.8679 + 13.3252i −0.581550 + 0.433698i
\(945\) 0 0
\(946\) 3.93255 38.5716i 0.127858 1.25407i
\(947\) −23.6288 40.9262i −0.767831 1.32992i −0.938737 0.344636i \(-0.888002\pi\)
0.170905 0.985288i \(-0.445331\pi\)
\(948\) 0 0
\(949\) 1.05123 7.02758i 0.0341243 0.228125i
\(950\) 16.3128 22.6004i 0.529256 0.733254i
\(951\) 0 0
\(952\) −24.4972 + 5.44689i −0.793958 + 0.176535i
\(953\) 5.28519 9.15421i 0.171204 0.296534i −0.767637 0.640885i \(-0.778568\pi\)
0.938841 + 0.344351i \(0.111901\pi\)
\(954\) 0 0
\(955\) −25.2935 + 43.8096i −0.818478 + 1.41765i
\(956\) 5.34589 25.9445i 0.172898 0.839106i
\(957\) 0 0
\(958\) 52.2229 23.4464i 1.68725 0.757520i
\(959\) 7.90515 + 13.6921i 0.255271 + 0.442142i
\(960\) 0 0
\(961\) 8.06057 0.260018
\(962\) −6.95322 24.7850i −0.224181 0.799102i
\(963\) 0 0
\(964\) 27.5513 + 24.4981i 0.887367 + 0.789030i
\(965\) −41.5790 + 24.0056i −1.33848 + 0.772769i
\(966\) 0 0
\(967\) 7.41489i 0.238447i 0.992867 + 0.119223i \(0.0380405\pi\)
−0.992867 + 0.119223i \(0.961960\pi\)
\(968\) 53.3547 48.9518i 1.71489 1.57337i
\(969\) 0 0
\(970\) −68.2094 49.2330i −2.19007 1.58078i
\(971\) −14.6011 8.42995i −0.468572 0.270530i 0.247070 0.968998i \(-0.420532\pi\)
−0.715642 + 0.698468i \(0.753866\pi\)
\(972\) 0 0
\(973\) 10.6356 + 18.4213i 0.340960 + 0.590561i
\(974\) 32.5198 + 23.4725i 1.04200 + 0.752107i
\(975\) 0 0
\(976\) 0.462273 + 0.619866i 0.0147970 + 0.0198414i
\(977\) −32.1699 + 18.5733i −1.02921 + 0.594213i −0.916758 0.399444i \(-0.869203\pi\)
−0.112450 + 0.993657i \(0.535870\pi\)
\(978\) 0 0
\(979\) 68.8764 + 39.7658i 2.20130 + 1.27092i
\(980\) −10.9968 33.1405i −0.351280 1.05863i
\(981\) 0 0
\(982\) −20.1289 + 9.03725i −0.642340 + 0.288390i
\(983\) 8.77688i 0.279939i −0.990156 0.139969i \(-0.955300\pi\)
0.990156 0.139969i \(-0.0447004\pi\)
\(984\) 0 0
\(985\) 16.3209 + 28.2686i 0.520027 + 0.900712i
\(986\) −1.65653 + 16.2477i −0.0527546 + 0.517433i
\(987\) 0 0
\(988\) 16.3776 13.6693i 0.521042 0.434880i
\(989\) 28.8449i 0.917216i
\(990\) 0 0
\(991\) 14.4649 + 25.0539i 0.459492 + 0.795864i 0.998934 0.0461588i \(-0.0146980\pi\)
−0.539442 + 0.842023i \(0.681365\pi\)
\(992\) 13.1796 23.6720i 0.418451 0.751585i
\(993\) 0 0
\(994\) 10.8196 + 24.0989i 0.343178 + 0.764371i
\(995\) 6.49810 11.2550i 0.206004 0.356809i
\(996\) 0 0
\(997\) −37.6297 21.7255i −1.19174 0.688054i −0.233043 0.972466i \(-0.574868\pi\)
−0.958702 + 0.284412i \(0.908202\pi\)
\(998\) 21.2031 + 2.16175i 0.671171 + 0.0684289i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.1 56
3.2 odd 2 inner 936.2.dg.f.829.28 yes 56
8.5 even 2 inner 936.2.dg.f.829.10 yes 56
13.4 even 6 inner 936.2.dg.f.901.10 yes 56
24.5 odd 2 inner 936.2.dg.f.829.19 yes 56
39.17 odd 6 inner 936.2.dg.f.901.19 yes 56
104.69 even 6 inner 936.2.dg.f.901.1 yes 56
312.173 odd 6 inner 936.2.dg.f.901.28 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.1 56 1.1 even 1 trivial
936.2.dg.f.829.10 yes 56 8.5 even 2 inner
936.2.dg.f.829.19 yes 56 24.5 odd 2 inner
936.2.dg.f.829.28 yes 56 3.2 odd 2 inner
936.2.dg.f.901.1 yes 56 104.69 even 6 inner
936.2.dg.f.901.10 yes 56 13.4 even 6 inner
936.2.dg.f.901.19 yes 56 39.17 odd 6 inner
936.2.dg.f.901.28 yes 56 312.173 odd 6 inner