Properties

Label 936.2.dg.d.829.7
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.8607891481591137382656.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 5 x^{14} - 6 x^{13} + 6 x^{12} - 20 x^{10} + 48 x^{9} - 76 x^{8} + 96 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.7
Root \(-0.741068 - 1.20450i\) of defining polynomial
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.d.901.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.741068 - 1.20450i) q^{2} +(-0.901635 - 1.78523i) q^{4} -0.893415 q^{5} +(3.65473 + 2.11006i) q^{7} +(-2.81848 - 0.236960i) q^{8} +(-0.662082 + 1.07612i) q^{10} +(3.01779 + 5.22697i) q^{11} +(-0.579883 + 3.55861i) q^{13} +(5.24997 - 2.83842i) q^{14} +(-2.37411 + 3.21926i) q^{16} +(-1.00567 + 1.74186i) q^{17} +(1.59258 - 2.75843i) q^{19} +(0.805535 + 1.59495i) q^{20} +(8.53227 + 0.238614i) q^{22} +(2.65473 + 4.59813i) q^{23} -4.20181 q^{25} +(3.85661 + 3.33565i) q^{26} +(0.471712 - 8.42704i) q^{28} +(4.50378 - 2.60026i) q^{29} -2.51626i q^{31} +(2.11822 + 5.24530i) q^{32} +(1.35281 + 2.50216i) q^{34} +(-3.26519 - 1.88516i) q^{35} +(-1.00002 - 1.73208i) q^{37} +(-2.14232 - 3.96245i) q^{38} +(2.51808 + 0.211704i) q^{40} +(0.0169974 - 0.00981345i) q^{41} +(-3.45944 - 1.99731i) q^{43} +(6.61041 - 10.1003i) q^{44} +(7.50577 + 0.209907i) q^{46} -3.22446i q^{47} +(5.40470 + 9.36121i) q^{49} +(-3.11383 + 5.06107i) q^{50} +(6.87580 - 2.17335i) q^{52} -3.34691i q^{53} +(-2.69614 - 4.66986i) q^{55} +(-9.80079 - 6.81319i) q^{56} +(0.205600 - 7.35176i) q^{58} +(3.15097 - 5.45764i) q^{59} +(6.79553 + 3.92340i) q^{61} +(-3.03083 - 1.86472i) q^{62} +(7.88770 + 1.33574i) q^{64} +(0.518077 - 3.17932i) q^{65} +(1.53943 + 2.66638i) q^{67} +(4.01638 + 0.224820i) q^{68} +(-4.69040 + 2.53589i) q^{70} +(-2.22056 - 1.28204i) q^{71} -12.1386i q^{73} +(-2.82737 - 0.0790704i) q^{74} +(-6.36037 - 0.356028i) q^{76} +25.4709i q^{77} +3.01133 q^{79} +(2.12106 - 2.87613i) q^{80} +(0.000775941 - 0.0277458i) q^{82} -8.90367 q^{83} +(0.898477 - 1.55621i) q^{85} +(-4.96944 + 2.68675i) q^{86} +(-7.26702 - 15.4472i) q^{88} +(-7.52934 + 4.34707i) q^{89} +(-9.62820 + 11.7822i) q^{91} +(5.81512 - 8.88514i) q^{92} +(-3.88385 - 2.38954i) q^{94} +(-1.42284 + 2.46443i) q^{95} +(9.79132 + 5.65302i) q^{97} +(15.2808 + 0.427345i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} - q^{4} + 18 q^{7} - 9 q^{10} + 24 q^{14} - q^{16} - 8 q^{17} + 15 q^{20} + 22 q^{22} + 2 q^{23} - 12 q^{25} - 23 q^{26} + 27 q^{32} + 26 q^{40} - 24 q^{41} + 42 q^{46} - 14 q^{49} - 6 q^{50}+ \cdots + 93 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.741068 1.20450i 0.524014 0.851709i
\(3\) 0 0
\(4\) −0.901635 1.78523i −0.450818 0.892616i
\(5\) −0.893415 −0.399548 −0.199774 0.979842i \(-0.564021\pi\)
−0.199774 + 0.979842i \(0.564021\pi\)
\(6\) 0 0
\(7\) 3.65473 + 2.11006i 1.38136 + 0.797527i 0.992320 0.123695i \(-0.0394743\pi\)
0.389037 + 0.921222i \(0.372808\pi\)
\(8\) −2.81848 0.236960i −0.996484 0.0837781i
\(9\) 0 0
\(10\) −0.662082 + 1.07612i −0.209369 + 0.340298i
\(11\) 3.01779 + 5.22697i 0.909899 + 1.57599i 0.814203 + 0.580581i \(0.197174\pi\)
0.0956963 + 0.995411i \(0.469492\pi\)
\(12\) 0 0
\(13\) −0.579883 + 3.55861i −0.160831 + 0.986982i
\(14\) 5.24997 2.83842i 1.40311 0.758600i
\(15\) 0 0
\(16\) −2.37411 + 3.21926i −0.593527 + 0.804814i
\(17\) −1.00567 + 1.74186i −0.243910 + 0.422464i −0.961825 0.273667i \(-0.911763\pi\)
0.717915 + 0.696131i \(0.245097\pi\)
\(18\) 0 0
\(19\) 1.59258 2.75843i 0.365364 0.632828i −0.623471 0.781847i \(-0.714278\pi\)
0.988834 + 0.149018i \(0.0476113\pi\)
\(20\) 0.805535 + 1.59495i 0.180123 + 0.356643i
\(21\) 0 0
\(22\) 8.53227 + 0.238614i 1.81909 + 0.0508727i
\(23\) 2.65473 + 4.59813i 0.553549 + 0.958776i 0.998015 + 0.0629796i \(0.0200603\pi\)
−0.444466 + 0.895796i \(0.646606\pi\)
\(24\) 0 0
\(25\) −4.20181 −0.840362
\(26\) 3.85661 + 3.33565i 0.756344 + 0.654174i
\(27\) 0 0
\(28\) 0.471712 8.42704i 0.0891452 1.59256i
\(29\) 4.50378 2.60026i 0.836330 0.482855i −0.0196850 0.999806i \(-0.506266\pi\)
0.856015 + 0.516951i \(0.172933\pi\)
\(30\) 0 0
\(31\) 2.51626i 0.451934i −0.974135 0.225967i \(-0.927446\pi\)
0.974135 0.225967i \(-0.0725541\pi\)
\(32\) 2.11822 + 5.24530i 0.374451 + 0.927247i
\(33\) 0 0
\(34\) 1.35281 + 2.50216i 0.232004 + 0.429118i
\(35\) −3.26519 1.88516i −0.551918 0.318650i
\(36\) 0 0
\(37\) −1.00002 1.73208i −0.164402 0.284752i 0.772041 0.635573i \(-0.219236\pi\)
−0.936443 + 0.350821i \(0.885903\pi\)
\(38\) −2.14232 3.96245i −0.347530 0.642795i
\(39\) 0 0
\(40\) 2.51808 + 0.211704i 0.398143 + 0.0334733i
\(41\) 0.0169974 0.00981345i 0.00265455 0.00153260i −0.498672 0.866791i \(-0.666179\pi\)
0.501327 + 0.865258i \(0.332845\pi\)
\(42\) 0 0
\(43\) −3.45944 1.99731i −0.527560 0.304587i 0.212463 0.977169i \(-0.431852\pi\)
−0.740022 + 0.672583i \(0.765185\pi\)
\(44\) 6.61041 10.1003i 0.996557 1.52268i
\(45\) 0 0
\(46\) 7.50577 + 0.209907i 1.10667 + 0.0309491i
\(47\) 3.22446i 0.470335i −0.971955 0.235168i \(-0.924436\pi\)
0.971955 0.235168i \(-0.0755639\pi\)
\(48\) 0 0
\(49\) 5.40470 + 9.36121i 0.772100 + 1.33732i
\(50\) −3.11383 + 5.06107i −0.440362 + 0.715744i
\(51\) 0 0
\(52\) 6.87580 2.17335i 0.953501 0.301389i
\(53\) 3.34691i 0.459733i −0.973222 0.229867i \(-0.926171\pi\)
0.973222 0.229867i \(-0.0738290\pi\)
\(54\) 0 0
\(55\) −2.69614 4.66986i −0.363548 0.629683i
\(56\) −9.80079 6.81319i −1.30969 0.910451i
\(57\) 0 0
\(58\) 0.205600 7.35176i 0.0269966 0.965333i
\(59\) 3.15097 5.45764i 0.410221 0.710524i −0.584692 0.811255i \(-0.698785\pi\)
0.994914 + 0.100731i \(0.0321181\pi\)
\(60\) 0 0
\(61\) 6.79553 + 3.92340i 0.870078 + 0.502340i 0.867374 0.497657i \(-0.165806\pi\)
0.00270378 + 0.999996i \(0.499139\pi\)
\(62\) −3.03083 1.86472i −0.384916 0.236820i
\(63\) 0 0
\(64\) 7.88770 + 1.33574i 0.985962 + 0.166967i
\(65\) 0.518077 3.17932i 0.0642595 0.394346i
\(66\) 0 0
\(67\) 1.53943 + 2.66638i 0.188072 + 0.325750i 0.944607 0.328203i \(-0.106443\pi\)
−0.756536 + 0.653952i \(0.773110\pi\)
\(68\) 4.01638 + 0.224820i 0.487057 + 0.0272635i
\(69\) 0 0
\(70\) −4.69040 + 2.53589i −0.560610 + 0.303097i
\(71\) −2.22056 1.28204i −0.263532 0.152150i 0.362413 0.932018i \(-0.381953\pi\)
−0.625945 + 0.779867i \(0.715286\pi\)
\(72\) 0 0
\(73\) 12.1386i 1.42072i −0.703840 0.710359i \(-0.748533\pi\)
0.703840 0.710359i \(-0.251467\pi\)
\(74\) −2.82737 0.0790704i −0.328675 0.00919175i
\(75\) 0 0
\(76\) −6.36037 0.356028i −0.729585 0.0408392i
\(77\) 25.4709i 2.90268i
\(78\) 0 0
\(79\) 3.01133 0.338801 0.169401 0.985547i \(-0.445817\pi\)
0.169401 + 0.985547i \(0.445817\pi\)
\(80\) 2.12106 2.87613i 0.237142 0.321562i
\(81\) 0 0
\(82\) 0.000775941 0.0277458i 8.56884e−5 0.00306401i
\(83\) −8.90367 −0.977304 −0.488652 0.872479i \(-0.662511\pi\)
−0.488652 + 0.872479i \(0.662511\pi\)
\(84\) 0 0
\(85\) 0.898477 1.55621i 0.0974535 0.168794i
\(86\) −4.96944 + 2.68675i −0.535868 + 0.289720i
\(87\) 0 0
\(88\) −7.26702 15.4472i −0.774667 1.64668i
\(89\) −7.52934 + 4.34707i −0.798109 + 0.460788i −0.842809 0.538212i \(-0.819100\pi\)
0.0447006 + 0.999000i \(0.485767\pi\)
\(90\) 0 0
\(91\) −9.62820 + 11.7822i −1.00931 + 1.23511i
\(92\) 5.81512 8.88514i 0.606269 0.926340i
\(93\) 0 0
\(94\) −3.88385 2.38954i −0.400589 0.246462i
\(95\) −1.42284 + 2.46443i −0.145980 + 0.252845i
\(96\) 0 0
\(97\) 9.79132 + 5.65302i 0.994158 + 0.573977i 0.906514 0.422175i \(-0.138733\pi\)
0.0876432 + 0.996152i \(0.472066\pi\)
\(98\) 15.2808 + 0.427345i 1.54360 + 0.0431683i
\(99\) 0 0
\(100\) 3.78850 + 7.50120i 0.378850 + 0.750120i
\(101\) 11.0712 6.39194i 1.10162 0.636021i 0.164975 0.986298i \(-0.447246\pi\)
0.936646 + 0.350276i \(0.113912\pi\)
\(102\) 0 0
\(103\) −6.35829 −0.626501 −0.313251 0.949671i \(-0.601418\pi\)
−0.313251 + 0.949671i \(0.601418\pi\)
\(104\) 2.47764 9.89249i 0.242953 0.970038i
\(105\) 0 0
\(106\) −4.03135 2.48029i −0.391559 0.240907i
\(107\) −3.64486 + 2.10436i −0.352362 + 0.203436i −0.665725 0.746197i \(-0.731878\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(108\) 0 0
\(109\) 15.3480 1.47007 0.735036 0.678028i \(-0.237165\pi\)
0.735036 + 0.678028i \(0.237165\pi\)
\(110\) −7.62286 0.213182i −0.726812 0.0203261i
\(111\) 0 0
\(112\) −15.4695 + 6.75601i −1.46173 + 0.638383i
\(113\) −5.31512 + 9.20607i −0.500005 + 0.866034i 0.499995 + 0.866028i \(0.333335\pi\)
−1.00000 5.57645e-6i \(0.999998\pi\)
\(114\) 0 0
\(115\) −2.37178 4.10804i −0.221169 0.383076i
\(116\) −8.70282 5.69580i −0.808037 0.528842i
\(117\) 0 0
\(118\) −4.23864 7.83982i −0.390198 0.721714i
\(119\) −7.35087 + 4.24403i −0.673853 + 0.389049i
\(120\) 0 0
\(121\) −12.7142 + 22.0216i −1.15583 + 2.00196i
\(122\) 9.76168 5.27770i 0.883781 0.477820i
\(123\) 0 0
\(124\) −4.49211 + 2.26875i −0.403403 + 0.203740i
\(125\) 8.22104 0.735312
\(126\) 0 0
\(127\) −1.26804 2.19632i −0.112521 0.194892i 0.804265 0.594271i \(-0.202559\pi\)
−0.916786 + 0.399379i \(0.869226\pi\)
\(128\) 7.45422 8.51085i 0.658866 0.752260i
\(129\) 0 0
\(130\) −3.44556 2.98012i −0.302195 0.261374i
\(131\) 2.01357i 0.175927i −0.996124 0.0879633i \(-0.971964\pi\)
0.996124 0.0879633i \(-0.0280358\pi\)
\(132\) 0 0
\(133\) 11.6409 6.72089i 1.00940 0.582775i
\(134\) 4.35247 + 0.121722i 0.375996 + 0.0105151i
\(135\) 0 0
\(136\) 3.24721 4.67111i 0.278446 0.400545i
\(137\) −11.8095 6.81819i −1.00895 0.582518i −0.0980660 0.995180i \(-0.531266\pi\)
−0.910884 + 0.412662i \(0.864599\pi\)
\(138\) 0 0
\(139\) −15.6208 9.01865i −1.32494 0.764952i −0.340424 0.940272i \(-0.610571\pi\)
−0.984512 + 0.175320i \(0.943904\pi\)
\(140\) −0.421435 + 7.52885i −0.0356177 + 0.636304i
\(141\) 0 0
\(142\) −3.18980 + 1.72458i −0.267682 + 0.144724i
\(143\) −20.3507 + 7.70813i −1.70181 + 0.644586i
\(144\) 0 0
\(145\) −4.02374 + 2.32311i −0.334154 + 0.192924i
\(146\) −14.6209 8.99554i −1.21004 0.744476i
\(147\) 0 0
\(148\) −2.19051 + 3.34696i −0.180059 + 0.275119i
\(149\) 0.706789 1.22419i 0.0579024 0.100290i −0.835621 0.549306i \(-0.814892\pi\)
0.893524 + 0.449016i \(0.148225\pi\)
\(150\) 0 0
\(151\) 5.82833i 0.474303i 0.971473 + 0.237152i \(0.0762138\pi\)
−0.971473 + 0.237152i \(0.923786\pi\)
\(152\) −5.14231 + 7.39722i −0.417096 + 0.599994i
\(153\) 0 0
\(154\) 30.6797 + 18.8757i 2.47224 + 1.52104i
\(155\) 2.24807i 0.180569i
\(156\) 0 0
\(157\) 3.13281i 0.250025i 0.992155 + 0.125013i \(0.0398971\pi\)
−0.992155 + 0.125013i \(0.960103\pi\)
\(158\) 2.23160 3.62715i 0.177537 0.288560i
\(159\) 0 0
\(160\) −1.89245 4.68623i −0.149611 0.370479i
\(161\) 22.4065i 1.76588i
\(162\) 0 0
\(163\) 1.93896 3.35838i 0.151871 0.263048i −0.780044 0.625724i \(-0.784803\pi\)
0.931915 + 0.362676i \(0.118137\pi\)
\(164\) −0.0328448 0.0214962i −0.00256474 0.00167857i
\(165\) 0 0
\(166\) −6.59823 + 10.7245i −0.512122 + 0.832379i
\(167\) 13.6659 7.89003i 1.05750 0.610549i 0.132761 0.991148i \(-0.457616\pi\)
0.924740 + 0.380599i \(0.124282\pi\)
\(168\) 0 0
\(169\) −12.3275 4.12716i −0.948267 0.317474i
\(170\) −1.20862 2.23547i −0.0926968 0.171453i
\(171\) 0 0
\(172\) −0.446506 + 7.97675i −0.0340458 + 0.608221i
\(173\) 0.538065 + 0.310652i 0.0409083 + 0.0236184i 0.520315 0.853975i \(-0.325815\pi\)
−0.479406 + 0.877593i \(0.659148\pi\)
\(174\) 0 0
\(175\) −15.3565 8.86606i −1.16084 0.670211i
\(176\) −23.9915 2.69434i −1.80843 0.203093i
\(177\) 0 0
\(178\) −0.343719 + 12.2906i −0.0257628 + 0.921217i
\(179\) −9.39825 + 5.42608i −0.702458 + 0.405564i −0.808262 0.588823i \(-0.799592\pi\)
0.105804 + 0.994387i \(0.466258\pi\)
\(180\) 0 0
\(181\) 16.0515i 1.19310i 0.802577 + 0.596548i \(0.203461\pi\)
−0.802577 + 0.596548i \(0.796539\pi\)
\(182\) 7.05647 + 20.3286i 0.523060 + 1.50685i
\(183\) 0 0
\(184\) −6.39274 13.5888i −0.471279 1.00178i
\(185\) 0.893430 + 1.54747i 0.0656863 + 0.113772i
\(186\) 0 0
\(187\) −12.1396 −0.887733
\(188\) −5.75640 + 2.90728i −0.419829 + 0.212035i
\(189\) 0 0
\(190\) 1.91398 + 3.54012i 0.138855 + 0.256827i
\(191\) 10.9755 19.0102i 0.794161 1.37553i −0.129210 0.991617i \(-0.541244\pi\)
0.923371 0.383909i \(-0.125423\pi\)
\(192\) 0 0
\(193\) −7.45812 + 4.30595i −0.536847 + 0.309949i −0.743800 0.668402i \(-0.766979\pi\)
0.206953 + 0.978351i \(0.433645\pi\)
\(194\) 14.0651 7.60436i 1.00981 0.545961i
\(195\) 0 0
\(196\) 11.8389 18.0890i 0.845633 1.29207i
\(197\) −4.57874 7.93061i −0.326222 0.565033i 0.655537 0.755163i \(-0.272442\pi\)
−0.981759 + 0.190130i \(0.939109\pi\)
\(198\) 0 0
\(199\) 7.83948 13.5784i 0.555726 0.962545i −0.442121 0.896955i \(-0.645774\pi\)
0.997847 0.0655898i \(-0.0208929\pi\)
\(200\) 11.8427 + 0.995662i 0.837407 + 0.0704039i
\(201\) 0 0
\(202\) 0.505405 18.0721i 0.0355602 1.27155i
\(203\) 21.9468 1.54036
\(204\) 0 0
\(205\) −0.0151857 + 0.00876749i −0.00106062 + 0.000612348i
\(206\) −4.71193 + 7.65856i −0.328296 + 0.533597i
\(207\) 0 0
\(208\) −10.0794 10.3153i −0.698880 0.715239i
\(209\) 19.2243 1.32978
\(210\) 0 0
\(211\) 14.2765 8.24253i 0.982834 0.567439i 0.0797093 0.996818i \(-0.474601\pi\)
0.903124 + 0.429379i \(0.141267\pi\)
\(212\) −5.97501 + 3.01769i −0.410365 + 0.207256i
\(213\) 0 0
\(214\) −0.166390 + 5.94970i −0.0113742 + 0.406713i
\(215\) 3.09072 + 1.78443i 0.210785 + 0.121697i
\(216\) 0 0
\(217\) 5.30946 9.19625i 0.360430 0.624282i
\(218\) 11.3739 18.4866i 0.770339 1.25207i
\(219\) 0 0
\(220\) −5.90584 + 9.02375i −0.398172 + 0.608381i
\(221\) −5.61545 4.58885i −0.377736 0.308680i
\(222\) 0 0
\(223\) 4.14333 2.39215i 0.277458 0.160191i −0.354814 0.934937i \(-0.615456\pi\)
0.632272 + 0.774746i \(0.282122\pi\)
\(224\) −3.32639 + 23.6397i −0.222254 + 1.57949i
\(225\) 0 0
\(226\) 7.14983 + 13.2244i 0.475599 + 0.879673i
\(227\) −2.20440 + 3.81814i −0.146311 + 0.253419i −0.929861 0.367910i \(-0.880073\pi\)
0.783550 + 0.621329i \(0.213407\pi\)
\(228\) 0 0
\(229\) 18.9724 1.25373 0.626866 0.779127i \(-0.284338\pi\)
0.626866 + 0.779127i \(0.284338\pi\)
\(230\) −6.70577 0.187534i −0.442166 0.0123656i
\(231\) 0 0
\(232\) −13.3100 + 6.26156i −0.873843 + 0.411092i
\(233\) 16.2038 1.06155 0.530774 0.847513i \(-0.321901\pi\)
0.530774 + 0.847513i \(0.321901\pi\)
\(234\) 0 0
\(235\) 2.88078i 0.187921i
\(236\) −12.5842 0.704411i −0.819160 0.0458533i
\(237\) 0 0
\(238\) −0.335572 + 11.9992i −0.0217519 + 0.777795i
\(239\) 3.65538i 0.236447i 0.992987 + 0.118224i \(0.0377200\pi\)
−0.992987 + 0.118224i \(0.962280\pi\)
\(240\) 0 0
\(241\) −19.7662 11.4120i −1.27325 0.735114i −0.297655 0.954673i \(-0.596205\pi\)
−0.975599 + 0.219559i \(0.929538\pi\)
\(242\) 17.1029 + 31.6337i 1.09942 + 2.03349i
\(243\) 0 0
\(244\) 0.877091 15.6691i 0.0561500 1.00311i
\(245\) −4.82864 8.36345i −0.308490 0.534321i
\(246\) 0 0
\(247\) 8.89269 + 7.26696i 0.565828 + 0.462385i
\(248\) −0.596254 + 7.09204i −0.0378621 + 0.450345i
\(249\) 0 0
\(250\) 6.09235 9.90223i 0.385314 0.626272i
\(251\) 5.22090 + 3.01429i 0.329540 + 0.190260i 0.655637 0.755076i \(-0.272400\pi\)
−0.326097 + 0.945336i \(0.605733\pi\)
\(252\) 0 0
\(253\) −16.0228 + 27.7524i −1.00735 + 1.74478i
\(254\) −3.58517 0.100263i −0.224954 0.00629107i
\(255\) 0 0
\(256\) −4.72723 15.2857i −0.295452 0.955358i
\(257\) −11.6246 20.1344i −0.725122 1.25595i −0.958924 0.283663i \(-0.908450\pi\)
0.233802 0.972284i \(-0.424883\pi\)
\(258\) 0 0
\(259\) 8.44037i 0.524459i
\(260\) −6.14294 + 1.94170i −0.380969 + 0.120419i
\(261\) 0 0
\(262\) −2.42535 1.49219i −0.149838 0.0921881i
\(263\) −1.34527 2.33008i −0.0829529 0.143679i 0.821564 0.570116i \(-0.193102\pi\)
−0.904517 + 0.426437i \(0.859768\pi\)
\(264\) 0 0
\(265\) 2.99018i 0.183685i
\(266\) 0.531415 19.0021i 0.0325831 1.16509i
\(267\) 0 0
\(268\) 3.37209 5.15234i 0.205983 0.314730i
\(269\) 10.8816 + 6.28249i 0.663462 + 0.383050i 0.793595 0.608447i \(-0.208207\pi\)
−0.130133 + 0.991497i \(0.541540\pi\)
\(270\) 0 0
\(271\) 0.248953 0.143733i 0.0151228 0.00873116i −0.492420 0.870358i \(-0.663887\pi\)
0.507542 + 0.861627i \(0.330554\pi\)
\(272\) −3.21995 7.37287i −0.195238 0.447046i
\(273\) 0 0
\(274\) −16.9641 + 9.17173i −1.02484 + 0.554085i
\(275\) −12.6802 21.9627i −0.764644 1.32440i
\(276\) 0 0
\(277\) −11.9899 6.92240i −0.720406 0.415926i 0.0944963 0.995525i \(-0.469876\pi\)
−0.814902 + 0.579599i \(0.803209\pi\)
\(278\) −22.4390 + 12.1318i −1.34580 + 0.727614i
\(279\) 0 0
\(280\) 8.75618 + 6.08701i 0.523282 + 0.363768i
\(281\) 2.18634i 0.130426i −0.997871 0.0652132i \(-0.979227\pi\)
0.997871 0.0652132i \(-0.0207727\pi\)
\(282\) 0 0
\(283\) 12.2639 7.08057i 0.729014 0.420896i −0.0890474 0.996027i \(-0.528382\pi\)
0.818061 + 0.575131i \(0.195049\pi\)
\(284\) −0.286605 + 5.12015i −0.0170069 + 0.303825i
\(285\) 0 0
\(286\) −5.79686 + 30.2247i −0.342775 + 1.78722i
\(287\) 0.0828279 0.00488917
\(288\) 0 0
\(289\) 6.47727 + 11.2190i 0.381016 + 0.659939i
\(290\) −0.183686 + 6.56818i −0.0107864 + 0.385697i
\(291\) 0 0
\(292\) −21.6702 + 10.9446i −1.26815 + 0.640484i
\(293\) −12.5394 + 21.7189i −0.732559 + 1.26883i 0.223227 + 0.974767i \(0.428341\pi\)
−0.955786 + 0.294063i \(0.904992\pi\)
\(294\) 0 0
\(295\) −2.81512 + 4.87594i −0.163903 + 0.283888i
\(296\) 2.40810 + 5.11880i 0.139968 + 0.297524i
\(297\) 0 0
\(298\) −0.950762 1.75854i −0.0550762 0.101869i
\(299\) −17.9024 + 6.78078i −1.03532 + 0.392143i
\(300\) 0 0
\(301\) −8.42888 14.5992i −0.485832 0.841486i
\(302\) 7.02022 + 4.31919i 0.403968 + 0.248542i
\(303\) 0 0
\(304\) 5.09915 + 11.6758i 0.292456 + 0.669650i
\(305\) −6.07123 3.50522i −0.347637 0.200709i
\(306\) 0 0
\(307\) −15.7714 −0.900120 −0.450060 0.892998i \(-0.648597\pi\)
−0.450060 + 0.892998i \(0.648597\pi\)
\(308\) 45.4714 22.9655i 2.59098 1.30858i
\(309\) 0 0
\(310\) 2.70779 + 1.66597i 0.153792 + 0.0946208i
\(311\) −12.8116 −0.726477 −0.363238 0.931696i \(-0.618329\pi\)
−0.363238 + 0.931696i \(0.618329\pi\)
\(312\) 0 0
\(313\) 21.9885 1.24287 0.621433 0.783467i \(-0.286551\pi\)
0.621433 + 0.783467i \(0.286551\pi\)
\(314\) 3.77346 + 2.32162i 0.212949 + 0.131017i
\(315\) 0 0
\(316\) −2.71512 5.37593i −0.152738 0.302419i
\(317\) −17.7840 −0.998846 −0.499423 0.866358i \(-0.666455\pi\)
−0.499423 + 0.866358i \(0.666455\pi\)
\(318\) 0 0
\(319\) 27.1829 + 15.6941i 1.52195 + 0.878699i
\(320\) −7.04699 1.19337i −0.393939 0.0667113i
\(321\) 0 0
\(322\) 26.9887 + 16.6048i 1.50402 + 0.925348i
\(323\) 3.20321 + 5.54813i 0.178231 + 0.308706i
\(324\) 0 0
\(325\) 2.43656 14.9526i 0.135156 0.829422i
\(326\) −2.60826 4.82426i −0.144458 0.267191i
\(327\) 0 0
\(328\) −0.0502323 + 0.0236314i −0.00277361 + 0.00130482i
\(329\) 6.80379 11.7845i 0.375105 0.649701i
\(330\) 0 0
\(331\) −14.2386 + 24.6619i −0.782623 + 1.35554i 0.147786 + 0.989019i \(0.452785\pi\)
−0.930409 + 0.366523i \(0.880548\pi\)
\(332\) 8.02786 + 15.8951i 0.440586 + 0.872358i
\(333\) 0 0
\(334\) 0.623858 22.3077i 0.0341360 1.22062i
\(335\) −1.37535 2.38218i −0.0751436 0.130152i
\(336\) 0 0
\(337\) 8.23580 0.448633 0.224316 0.974516i \(-0.427985\pi\)
0.224316 + 0.974516i \(0.427985\pi\)
\(338\) −14.1067 + 11.7899i −0.767301 + 0.641287i
\(339\) 0 0
\(340\) −3.58829 0.200858i −0.194602 0.0108931i
\(341\) 13.1524 7.59356i 0.712244 0.411214i
\(342\) 0 0
\(343\) 16.0761i 0.868027i
\(344\) 9.27709 + 6.44913i 0.500187 + 0.347714i
\(345\) 0 0
\(346\) 0.772923 0.417885i 0.0415526 0.0224656i
\(347\) −16.9827 9.80497i −0.911679 0.526358i −0.0307081 0.999528i \(-0.509776\pi\)
−0.880971 + 0.473170i \(0.843110\pi\)
\(348\) 0 0
\(349\) 2.31326 + 4.00669i 0.123826 + 0.214473i 0.921273 0.388915i \(-0.127150\pi\)
−0.797447 + 0.603389i \(0.793817\pi\)
\(350\) −22.0594 + 11.9265i −1.17912 + 0.637498i
\(351\) 0 0
\(352\) −21.0247 + 26.9011i −1.12062 + 1.43383i
\(353\) 17.4284 10.0623i 0.927619 0.535561i 0.0415611 0.999136i \(-0.486767\pi\)
0.886058 + 0.463575i \(0.153434\pi\)
\(354\) 0 0
\(355\) 1.98388 + 1.14539i 0.105294 + 0.0607912i
\(356\) 14.5492 + 9.52216i 0.771109 + 0.504673i
\(357\) 0 0
\(358\) −0.429035 + 15.3413i −0.0226752 + 0.810812i
\(359\) 0.0956414i 0.00504776i −0.999997 0.00252388i \(-0.999197\pi\)
0.999997 0.00252388i \(-0.000803377\pi\)
\(360\) 0 0
\(361\) 4.42736 + 7.66841i 0.233019 + 0.403601i
\(362\) 19.3340 + 11.8952i 1.01617 + 0.625199i
\(363\) 0 0
\(364\) 29.7151 + 6.56534i 1.55749 + 0.344117i
\(365\) 10.8448i 0.567644i
\(366\) 0 0
\(367\) −15.7850 27.3405i −0.823972 1.42716i −0.902702 0.430266i \(-0.858420\pi\)
0.0787296 0.996896i \(-0.474914\pi\)
\(368\) −21.1052 2.37019i −1.10018 0.123555i
\(369\) 0 0
\(370\) 2.52601 + 0.0706427i 0.131321 + 0.00367254i
\(371\) 7.06218 12.2321i 0.366650 0.635056i
\(372\) 0 0
\(373\) 9.14193 + 5.27810i 0.473351 + 0.273290i 0.717642 0.696413i \(-0.245222\pi\)
−0.244290 + 0.969702i \(0.578555\pi\)
\(374\) −8.99625 + 14.6221i −0.465185 + 0.756091i
\(375\) 0 0
\(376\) −0.764068 + 9.08808i −0.0394038 + 0.468682i
\(377\) 6.64164 + 17.5350i 0.342062 + 0.903101i
\(378\) 0 0
\(379\) −14.1854 24.5699i −0.728657 1.26207i −0.957451 0.288595i \(-0.906812\pi\)
0.228795 0.973475i \(-0.426522\pi\)
\(380\) 5.68246 + 0.318081i 0.291504 + 0.0163172i
\(381\) 0 0
\(382\) −14.7641 27.3078i −0.755397 1.39719i
\(383\) 21.8939 + 12.6405i 1.11873 + 0.645897i 0.941076 0.338196i \(-0.109817\pi\)
0.177651 + 0.984094i \(0.443150\pi\)
\(384\) 0 0
\(385\) 22.7561i 1.15976i
\(386\) −0.340467 + 12.1743i −0.0173293 + 0.619655i
\(387\) 0 0
\(388\) 1.26375 22.5767i 0.0641574 1.14616i
\(389\) 15.2123i 0.771294i −0.922646 0.385647i \(-0.873978\pi\)
0.922646 0.385647i \(-0.126022\pi\)
\(390\) 0 0
\(391\) −10.6791 −0.540064
\(392\) −13.0148 27.6651i −0.657347 1.39730i
\(393\) 0 0
\(394\) −12.9456 0.362037i −0.652188 0.0182392i
\(395\) −2.69037 −0.135367
\(396\) 0 0
\(397\) 18.8616 32.6693i 0.946638 1.63963i 0.194202 0.980962i \(-0.437788\pi\)
0.752437 0.658664i \(-0.228878\pi\)
\(398\) −10.5455 19.5051i −0.528600 0.977704i
\(399\) 0 0
\(400\) 9.97555 13.5267i 0.498777 0.676335i
\(401\) −28.2674 + 16.3202i −1.41161 + 0.814991i −0.995540 0.0943435i \(-0.969925\pi\)
−0.416066 + 0.909334i \(0.636591\pi\)
\(402\) 0 0
\(403\) 8.95440 + 1.45914i 0.446051 + 0.0726848i
\(404\) −21.3932 14.0014i −1.06435 0.696595i
\(405\) 0 0
\(406\) 16.2641 26.4349i 0.807172 1.31194i
\(407\) 6.03568 10.4541i 0.299178 0.518191i
\(408\) 0 0
\(409\) 3.01700 + 1.74186i 0.149181 + 0.0861296i 0.572732 0.819742i \(-0.305883\pi\)
−0.423552 + 0.905872i \(0.639217\pi\)
\(410\) −0.000693238 0.0247885i −3.42366e−5 0.00122422i
\(411\) 0 0
\(412\) 5.73286 + 11.3510i 0.282438 + 0.559225i
\(413\) 23.0319 13.2975i 1.13332 0.654325i
\(414\) 0 0
\(415\) 7.95467 0.390480
\(416\) −19.8943 + 4.49625i −0.975399 + 0.220447i
\(417\) 0 0
\(418\) 14.2466 23.1557i 0.696822 1.13258i
\(419\) 27.5293 15.8940i 1.34489 0.776475i 0.357373 0.933962i \(-0.383672\pi\)
0.987521 + 0.157487i \(0.0503391\pi\)
\(420\) 0 0
\(421\) −38.9188 −1.89679 −0.948394 0.317093i \(-0.897293\pi\)
−0.948394 + 0.317093i \(0.897293\pi\)
\(422\) 0.651730 23.3043i 0.0317257 1.13444i
\(423\) 0 0
\(424\) −0.793085 + 9.43321i −0.0385156 + 0.458117i
\(425\) 4.22562 7.31898i 0.204972 0.355023i
\(426\) 0 0
\(427\) 16.5572 + 28.6779i 0.801259 + 1.38782i
\(428\) 7.04310 + 4.60955i 0.340441 + 0.222811i
\(429\) 0 0
\(430\) 4.43977 2.40038i 0.214105 0.115757i
\(431\) 21.0414 12.1483i 1.01353 0.585161i 0.101306 0.994855i \(-0.467698\pi\)
0.912223 + 0.409694i \(0.134364\pi\)
\(432\) 0 0
\(433\) 11.5771 20.0521i 0.556360 0.963643i −0.441437 0.897292i \(-0.645531\pi\)
0.997796 0.0663510i \(-0.0211357\pi\)
\(434\) −7.14220 13.2103i −0.342837 0.634114i
\(435\) 0 0
\(436\) −13.8383 27.3997i −0.662734 1.31221i
\(437\) 16.9115 0.808987
\(438\) 0 0
\(439\) −14.7545 25.5555i −0.704193 1.21970i −0.966982 0.254845i \(-0.917975\pi\)
0.262788 0.964853i \(-0.415358\pi\)
\(440\) 6.49247 + 13.8008i 0.309516 + 0.657927i
\(441\) 0 0
\(442\) −9.68871 + 3.36315i −0.460845 + 0.159969i
\(443\) 8.91190i 0.423417i 0.977333 + 0.211709i \(0.0679028\pi\)
−0.977333 + 0.211709i \(0.932097\pi\)
\(444\) 0 0
\(445\) 6.72683 3.88374i 0.318882 0.184107i
\(446\) 0.189146 6.76339i 0.00895630 0.320256i
\(447\) 0 0
\(448\) 26.0089 + 21.5253i 1.22881 + 1.01697i
\(449\) 8.35715 + 4.82500i 0.394398 + 0.227706i 0.684064 0.729422i \(-0.260211\pi\)
−0.289666 + 0.957128i \(0.593544\pi\)
\(450\) 0 0
\(451\) 0.102589 + 0.0592300i 0.00483074 + 0.00278903i
\(452\) 21.2273 + 1.18822i 0.998447 + 0.0558890i
\(453\) 0 0
\(454\) 2.96533 + 5.48470i 0.139170 + 0.257410i
\(455\) 8.60198 10.5264i 0.403267 0.493485i
\(456\) 0 0
\(457\) −6.30736 + 3.64156i −0.295046 + 0.170345i −0.640215 0.768196i \(-0.721155\pi\)
0.345169 + 0.938540i \(0.387822\pi\)
\(458\) 14.0598 22.8522i 0.656973 1.06781i
\(459\) 0 0
\(460\) −5.19532 + 7.93812i −0.242233 + 0.370117i
\(461\) −14.1677 + 24.5391i −0.659855 + 1.14290i 0.320798 + 0.947148i \(0.396049\pi\)
−0.980653 + 0.195754i \(0.937284\pi\)
\(462\) 0 0
\(463\) 34.4600i 1.60149i 0.599003 + 0.800747i \(0.295564\pi\)
−0.599003 + 0.800747i \(0.704436\pi\)
\(464\) −2.32155 + 20.6721i −0.107775 + 0.959678i
\(465\) 0 0
\(466\) 12.0082 19.5175i 0.556267 0.904131i
\(467\) 33.2473i 1.53850i −0.638946 0.769252i \(-0.720629\pi\)
0.638946 0.769252i \(-0.279371\pi\)
\(468\) 0 0
\(469\) 12.9932i 0.599969i
\(470\) 3.46990 + 2.13485i 0.160054 + 0.0984735i
\(471\) 0 0
\(472\) −10.1742 + 14.6356i −0.468305 + 0.673659i
\(473\) 24.1099i 1.10857i
\(474\) 0 0
\(475\) −6.69173 + 11.5904i −0.307038 + 0.531805i
\(476\) 14.2044 + 9.29645i 0.651057 + 0.426102i
\(477\) 0 0
\(478\) 4.40291 + 2.70889i 0.201384 + 0.123902i
\(479\) 18.3155 10.5745i 0.836858 0.483160i −0.0193371 0.999813i \(-0.506156\pi\)
0.856195 + 0.516653i \(0.172822\pi\)
\(480\) 0 0
\(481\) 6.74369 2.55427i 0.307486 0.116465i
\(482\) −28.3939 + 15.3513i −1.29331 + 0.699233i
\(483\) 0 0
\(484\) 50.7771 + 2.84230i 2.30805 + 0.129195i
\(485\) −8.74771 5.05049i −0.397213 0.229331i
\(486\) 0 0
\(487\) 15.5640 + 8.98589i 0.705273 + 0.407189i 0.809308 0.587384i \(-0.199842\pi\)
−0.104035 + 0.994574i \(0.533176\pi\)
\(488\) −18.2234 12.6683i −0.824934 0.573467i
\(489\) 0 0
\(490\) −13.6521 0.381796i −0.616740 0.0172478i
\(491\) −4.43288 + 2.55932i −0.200053 + 0.115501i −0.596680 0.802479i \(-0.703514\pi\)
0.396627 + 0.917980i \(0.370181\pi\)
\(492\) 0 0
\(493\) 10.4600i 0.471093i
\(494\) 15.3431 5.32592i 0.690320 0.239625i
\(495\) 0 0
\(496\) 8.10049 + 5.97387i 0.363723 + 0.268235i
\(497\) −5.41036 9.37102i −0.242688 0.420348i
\(498\) 0 0
\(499\) −19.2741 −0.862826 −0.431413 0.902155i \(-0.641985\pi\)
−0.431413 + 0.902155i \(0.641985\pi\)
\(500\) −7.41238 14.6765i −0.331492 0.656351i
\(501\) 0 0
\(502\) 7.49976 4.05478i 0.334730 0.180974i
\(503\) −12.0244 + 20.8268i −0.536139 + 0.928621i 0.462968 + 0.886375i \(0.346785\pi\)
−0.999107 + 0.0422456i \(0.986549\pi\)
\(504\) 0 0
\(505\) −9.89114 + 5.71065i −0.440150 + 0.254121i
\(506\) 21.5537 + 39.8659i 0.958179 + 1.77226i
\(507\) 0 0
\(508\) −2.77762 + 4.24403i −0.123237 + 0.188298i
\(509\) −18.5759 32.1744i −0.823362 1.42610i −0.903165 0.429294i \(-0.858762\pi\)
0.0798031 0.996811i \(-0.474571\pi\)
\(510\) 0 0
\(511\) 25.6132 44.3633i 1.13306 1.96252i
\(512\) −21.9148 5.63382i −0.968508 0.248982i
\(513\) 0 0
\(514\) −32.8664 0.919146i −1.44968 0.0405418i
\(515\) 5.68060 0.250317
\(516\) 0 0
\(517\) 16.8541 9.73074i 0.741244 0.427958i
\(518\) −10.1664 6.25489i −0.446687 0.274824i
\(519\) 0 0
\(520\) −2.21356 + 8.83810i −0.0970712 + 0.387576i
\(521\) 9.09538 0.398476 0.199238 0.979951i \(-0.436153\pi\)
0.199238 + 0.979951i \(0.436153\pi\)
\(522\) 0 0
\(523\) 21.3438 12.3228i 0.933298 0.538840i 0.0454452 0.998967i \(-0.485529\pi\)
0.887853 + 0.460127i \(0.152196\pi\)
\(524\) −3.59469 + 1.81551i −0.157035 + 0.0793108i
\(525\) 0 0
\(526\) −3.80351 0.106369i −0.165841 0.00463793i
\(527\) 4.38298 + 2.53052i 0.190926 + 0.110231i
\(528\) 0 0
\(529\) −2.59517 + 4.49497i −0.112834 + 0.195434i
\(530\) 3.60167 + 2.21593i 0.156447 + 0.0962538i
\(531\) 0 0
\(532\) −22.4942 14.7220i −0.975248 0.638277i
\(533\) 0.0250658 + 0.0661779i 0.00108572 + 0.00286648i
\(534\) 0 0
\(535\) 3.25637 1.88007i 0.140785 0.0812824i
\(536\) −3.70704 7.87992i −0.160120 0.340361i
\(537\) 0 0
\(538\) 15.6312 8.45111i 0.673911 0.364353i
\(539\) −32.6205 + 56.5004i −1.40507 + 2.43364i
\(540\) 0 0
\(541\) 5.07378 0.218139 0.109069 0.994034i \(-0.465213\pi\)
0.109069 + 0.994034i \(0.465213\pi\)
\(542\) 0.0113648 0.406379i 0.000488162 0.0174555i
\(543\) 0 0
\(544\) −11.2668 1.58537i −0.483061 0.0679724i
\(545\) −13.7121 −0.587363
\(546\) 0 0
\(547\) 0.158642i 0.00678304i −0.999994 0.00339152i \(-0.998920\pi\)
0.999994 0.00339152i \(-0.00107956\pi\)
\(548\) −1.52423 + 27.2301i −0.0651120 + 1.16321i
\(549\) 0 0
\(550\) −35.8510 1.00261i −1.52869 0.0427515i
\(551\) 16.5645i 0.705671i
\(552\) 0 0
\(553\) 11.0056 + 6.35409i 0.468006 + 0.270203i
\(554\) −17.2234 + 9.31190i −0.731751 + 0.395625i
\(555\) 0 0
\(556\) −2.01615 + 36.0182i −0.0855040 + 1.52751i
\(557\) 2.30308 + 3.98905i 0.0975847 + 0.169022i 0.910684 0.413103i \(-0.135555\pi\)
−0.813100 + 0.582124i \(0.802222\pi\)
\(558\) 0 0
\(559\) 9.11372 11.1526i 0.385469 0.471705i
\(560\) 13.8207 6.03592i 0.584032 0.255064i
\(561\) 0 0
\(562\) −2.63345 1.62023i −0.111085 0.0683453i
\(563\) −1.29014 0.744862i −0.0543729 0.0313922i 0.472567 0.881295i \(-0.343327\pi\)
−0.526940 + 0.849902i \(0.676661\pi\)
\(564\) 0 0
\(565\) 4.74861 8.22484i 0.199776 0.346022i
\(566\) 0.559855 20.0191i 0.0235325 0.841464i
\(567\) 0 0
\(568\) 5.95482 + 4.13960i 0.249859 + 0.173694i
\(569\) 8.32754 + 14.4237i 0.349108 + 0.604674i 0.986091 0.166204i \(-0.0531512\pi\)
−0.636983 + 0.770878i \(0.719818\pi\)
\(570\) 0 0
\(571\) 21.2857i 0.890779i −0.895337 0.445390i \(-0.853065\pi\)
0.895337 0.445390i \(-0.146935\pi\)
\(572\) 32.1098 + 29.3809i 1.34258 + 1.22848i
\(573\) 0 0
\(574\) 0.0613811 0.0997661i 0.00256200 0.00416416i
\(575\) −11.1547 19.3204i −0.465182 0.805718i
\(576\) 0 0
\(577\) 7.02758i 0.292562i 0.989243 + 0.146281i \(0.0467304\pi\)
−0.989243 + 0.146281i \(0.953270\pi\)
\(578\) 18.3133 + 0.512152i 0.761734 + 0.0213027i
\(579\) 0 0
\(580\) 7.77524 + 5.08872i 0.322849 + 0.211297i
\(581\) −32.5405 18.7873i −1.35001 0.779427i
\(582\) 0 0
\(583\) 17.4942 10.1003i 0.724536 0.418311i
\(584\) −2.87637 + 34.2125i −0.119025 + 1.41572i
\(585\) 0 0
\(586\) 16.8678 + 31.1989i 0.696803 + 1.28881i
\(587\) −3.96345 6.86490i −0.163589 0.283345i 0.772564 0.634937i \(-0.218974\pi\)
−0.936153 + 0.351592i \(0.885640\pi\)
\(588\) 0 0
\(589\) −6.94094 4.00735i −0.285996 0.165120i
\(590\) 3.78686 + 7.00422i 0.155903 + 0.288359i
\(591\) 0 0
\(592\) 7.95015 + 0.892832i 0.326749 + 0.0366952i
\(593\) 22.9984i 0.944430i −0.881483 0.472215i \(-0.843455\pi\)
0.881483 0.472215i \(-0.156545\pi\)
\(594\) 0 0
\(595\) 6.56738 3.79168i 0.269236 0.155444i
\(596\) −2.82274 0.158005i −0.115624 0.00647215i
\(597\) 0 0
\(598\) −5.09945 + 26.5884i −0.208532 + 1.08728i
\(599\) 9.32430 0.380980 0.190490 0.981689i \(-0.438992\pi\)
0.190490 + 0.981689i \(0.438992\pi\)
\(600\) 0 0
\(601\) −4.24363 7.35018i −0.173101 0.299820i 0.766401 0.642362i \(-0.222045\pi\)
−0.939503 + 0.342542i \(0.888712\pi\)
\(602\) −23.8311 0.666464i −0.971285 0.0271630i
\(603\) 0 0
\(604\) 10.4049 5.25503i 0.423371 0.213824i
\(605\) 11.3590 19.6744i 0.461810 0.799878i
\(606\) 0 0
\(607\) −10.3169 + 17.8694i −0.418749 + 0.725295i −0.995814 0.0914036i \(-0.970865\pi\)
0.577065 + 0.816698i \(0.304198\pi\)
\(608\) 17.8422 + 2.51061i 0.723599 + 0.101819i
\(609\) 0 0
\(610\) −8.72123 + 4.71518i −0.353112 + 0.190912i
\(611\) 11.4746 + 1.86981i 0.464212 + 0.0756443i
\(612\) 0 0
\(613\) −18.0557 31.2734i −0.729264 1.26312i −0.957195 0.289445i \(-0.906529\pi\)
0.227931 0.973677i \(-0.426804\pi\)
\(614\) −11.6877 + 18.9966i −0.471676 + 0.766641i
\(615\) 0 0
\(616\) 6.03559 71.7893i 0.243181 2.89247i
\(617\) 29.2958 + 16.9139i 1.17940 + 0.680929i 0.955877 0.293769i \(-0.0949096\pi\)
0.223527 + 0.974698i \(0.428243\pi\)
\(618\) 0 0
\(619\) −3.06121 −0.123040 −0.0615201 0.998106i \(-0.519595\pi\)
−0.0615201 + 0.998106i \(0.519595\pi\)
\(620\) 4.01332 2.02694i 0.161179 0.0814037i
\(621\) 0 0
\(622\) −9.49424 + 15.4315i −0.380684 + 0.618747i
\(623\) −36.6903 −1.46997
\(624\) 0 0
\(625\) 13.6642 0.546570
\(626\) 16.2950 26.4852i 0.651280 1.05856i
\(627\) 0 0
\(628\) 5.59279 2.82465i 0.223177 0.112716i
\(629\) 4.02273 0.160397
\(630\) 0 0
\(631\) −23.9926 13.8521i −0.955130 0.551444i −0.0604589 0.998171i \(-0.519256\pi\)
−0.894671 + 0.446726i \(0.852590\pi\)
\(632\) −8.48739 0.713566i −0.337610 0.0283841i
\(633\) 0 0
\(634\) −13.1791 + 21.4208i −0.523410 + 0.850727i
\(635\) 1.13289 + 1.96222i 0.0449574 + 0.0778685i
\(636\) 0 0
\(637\) −36.4470 + 13.8048i −1.44408 + 0.546967i
\(638\) 39.0479 21.1114i 1.54592 0.835810i
\(639\) 0 0
\(640\) −6.65971 + 7.60373i −0.263248 + 0.300564i
\(641\) 11.8526 20.5292i 0.468148 0.810856i −0.531189 0.847253i \(-0.678255\pi\)
0.999337 + 0.0363969i \(0.0115881\pi\)
\(642\) 0 0
\(643\) 10.3454 17.9188i 0.407983 0.706648i −0.586680 0.809819i \(-0.699565\pi\)
0.994664 + 0.103171i \(0.0328988\pi\)
\(644\) 40.0009 20.2025i 1.57626 0.796091i
\(645\) 0 0
\(646\) 9.05651 + 0.253275i 0.356324 + 0.00996498i
\(647\) −0.671662 1.16335i −0.0264058 0.0457361i 0.852521 0.522694i \(-0.175073\pi\)
−0.878926 + 0.476958i \(0.841740\pi\)
\(648\) 0 0
\(649\) 38.0359 1.49304
\(650\) −16.2048 14.0157i −0.635603 0.549743i
\(651\) 0 0
\(652\) −7.74372 0.433462i −0.303267 0.0169757i
\(653\) −5.18453 + 2.99329i −0.202887 + 0.117137i −0.598001 0.801495i \(-0.704038\pi\)
0.395115 + 0.918632i \(0.370705\pi\)
\(654\) 0 0
\(655\) 1.79896i 0.0702910i
\(656\) −0.00876163 + 0.0780172i −0.000342084 + 0.00304606i
\(657\) 0 0
\(658\) −9.15236 16.9283i −0.356796 0.659934i
\(659\) 4.31253 + 2.48984i 0.167992 + 0.0969905i 0.581639 0.813447i \(-0.302412\pi\)
−0.413646 + 0.910438i \(0.635745\pi\)
\(660\) 0 0
\(661\) 14.1524 + 24.5127i 0.550466 + 0.953435i 0.998241 + 0.0592889i \(0.0188833\pi\)
−0.447775 + 0.894146i \(0.647783\pi\)
\(662\) 19.1535 + 35.4265i 0.744423 + 1.37689i
\(663\) 0 0
\(664\) 25.0948 + 2.10981i 0.973869 + 0.0818767i
\(665\) −10.4002 + 6.00454i −0.403301 + 0.232846i
\(666\) 0 0
\(667\) 23.9126 + 13.8060i 0.925900 + 0.534569i
\(668\) −26.4072 17.2829i −1.02173 0.668697i
\(669\) 0 0
\(670\) −3.88857 0.108748i −0.150228 0.00420130i
\(671\) 47.3600i 1.82831i
\(672\) 0 0
\(673\) −11.3696 19.6927i −0.438264 0.759096i 0.559291 0.828971i \(-0.311073\pi\)
−0.997556 + 0.0698751i \(0.977740\pi\)
\(674\) 6.10329 9.92002i 0.235090 0.382105i
\(675\) 0 0
\(676\) 3.74694 + 25.7286i 0.144113 + 0.989561i
\(677\) 35.0768i 1.34811i 0.738681 + 0.674056i \(0.235449\pi\)
−0.738681 + 0.674056i \(0.764551\pi\)
\(678\) 0 0
\(679\) 23.8564 + 41.3205i 0.915525 + 1.58574i
\(680\) −2.90110 + 4.17324i −0.111252 + 0.160037i
\(681\) 0 0
\(682\) 0.600416 21.4694i 0.0229911 0.822107i
\(683\) −24.6307 + 42.6617i −0.942469 + 1.63240i −0.181727 + 0.983349i \(0.558169\pi\)
−0.760742 + 0.649055i \(0.775165\pi\)
\(684\) 0 0
\(685\) 10.5508 + 6.09148i 0.403124 + 0.232743i
\(686\) 19.3636 + 11.9135i 0.739307 + 0.454859i
\(687\) 0 0
\(688\) 14.6429 6.39500i 0.558256 0.243807i
\(689\) 11.9104 + 1.94082i 0.453749 + 0.0739392i
\(690\) 0 0
\(691\) −12.6649 21.9363i −0.481797 0.834498i 0.517984 0.855390i \(-0.326683\pi\)
−0.999782 + 0.0208926i \(0.993349\pi\)
\(692\) 0.0694475 1.24067i 0.00264000 0.0471631i
\(693\) 0 0
\(694\) −24.3954 + 13.1895i −0.926037 + 0.500666i
\(695\) 13.9558 + 8.05740i 0.529375 + 0.305635i
\(696\) 0 0
\(697\) 0.0394762i 0.00149527i
\(698\) 6.54034 + 0.182908i 0.247555 + 0.00692316i
\(699\) 0 0
\(700\) −1.98204 + 35.4088i −0.0749142 + 1.33833i
\(701\) 37.7963i 1.42755i −0.700377 0.713773i \(-0.746985\pi\)
0.700377 0.713773i \(-0.253015\pi\)
\(702\) 0 0
\(703\) −6.37043 −0.240265
\(704\) 16.8216 + 45.2598i 0.633988 + 1.70579i
\(705\) 0 0
\(706\) 0.795615 28.4493i 0.0299434 1.07070i
\(707\) 53.9494 2.02898
\(708\) 0 0
\(709\) −14.8681 + 25.7524i −0.558385 + 0.967151i 0.439247 + 0.898367i \(0.355245\pi\)
−0.997632 + 0.0687845i \(0.978088\pi\)
\(710\) 2.84982 1.54077i 0.106952 0.0578240i
\(711\) 0 0
\(712\) 22.2514 10.4680i 0.833907 0.392304i
\(713\) 11.5701 6.67999i 0.433303 0.250168i
\(714\) 0 0
\(715\) 18.1817 6.88656i 0.679956 0.257543i
\(716\) 18.1606 + 11.8857i 0.678694 + 0.444190i
\(717\) 0 0
\(718\) −0.115200 0.0708768i −0.00429922 0.00264510i
\(719\) 12.2000 21.1310i 0.454983 0.788054i −0.543704 0.839277i \(-0.682979\pi\)
0.998687 + 0.0512233i \(0.0163120\pi\)
\(720\) 0 0
\(721\) −23.2378 13.4164i −0.865422 0.499652i
\(722\) 12.5176 + 0.350068i 0.465856 + 0.0130282i
\(723\) 0 0
\(724\) 28.6556 14.4726i 1.06498 0.537869i
\(725\) −18.9240 + 10.9258i −0.702820 + 0.405773i
\(726\) 0 0
\(727\) −44.0720 −1.63454 −0.817271 0.576254i \(-0.804514\pi\)
−0.817271 + 0.576254i \(0.804514\pi\)
\(728\) 29.9288 30.9264i 1.10924 1.14621i
\(729\) 0 0
\(730\) 13.0626 + 8.03676i 0.483468 + 0.297454i
\(731\) 6.95808 4.01725i 0.257354 0.148583i
\(732\) 0 0
\(733\) −28.9063 −1.06768 −0.533839 0.845586i \(-0.679251\pi\)
−0.533839 + 0.845586i \(0.679251\pi\)
\(734\) −44.6294 1.24811i −1.64730 0.0460686i
\(735\) 0 0
\(736\) −18.4953 + 23.6647i −0.681744 + 0.872291i
\(737\) −9.29138 + 16.0931i −0.342252 + 0.592799i
\(738\) 0 0
\(739\) 12.3818 + 21.4460i 0.455474 + 0.788903i 0.998715 0.0506730i \(-0.0161366\pi\)
−0.543242 + 0.839576i \(0.682803\pi\)
\(740\) 1.95704 2.99023i 0.0719421 0.109923i
\(741\) 0 0
\(742\) −9.49994 17.5712i −0.348754 0.645058i
\(743\) −44.5277 + 25.7081i −1.63356 + 0.943139i −0.650582 + 0.759436i \(0.725475\pi\)
−0.982982 + 0.183703i \(0.941192\pi\)
\(744\) 0 0
\(745\) −0.631456 + 1.09371i −0.0231348 + 0.0400706i
\(746\) 13.1323 7.10002i 0.480806 0.259950i
\(747\) 0 0
\(748\) 10.9455 + 21.6719i 0.400206 + 0.792405i
\(749\) −17.7613 −0.648983
\(750\) 0 0
\(751\) 10.4756 + 18.1442i 0.382259 + 0.662093i 0.991385 0.130981i \(-0.0418127\pi\)
−0.609125 + 0.793074i \(0.708479\pi\)
\(752\) 10.3804 + 7.65521i 0.378533 + 0.279157i
\(753\) 0 0
\(754\) 26.0429 + 4.99481i 0.948425 + 0.181900i
\(755\) 5.20712i 0.189507i
\(756\) 0 0
\(757\) −21.8620 + 12.6220i −0.794587 + 0.458755i −0.841575 0.540140i \(-0.818371\pi\)
0.0469876 + 0.998895i \(0.485038\pi\)
\(758\) −40.1068 1.12163i −1.45674 0.0407394i
\(759\) 0 0
\(760\) 4.59422 6.60879i 0.166650 0.239726i
\(761\) 5.11797 + 2.95486i 0.185526 + 0.107114i 0.589886 0.807486i \(-0.299172\pi\)
−0.404360 + 0.914600i \(0.632506\pi\)
\(762\) 0 0
\(763\) 56.0928 + 32.3852i 2.03069 + 1.17242i
\(764\) −43.8335 2.45362i −1.58584 0.0887688i
\(765\) 0 0
\(766\) 31.4503 17.0038i 1.13635 0.614370i
\(767\) 17.5944 + 14.3779i 0.635298 + 0.519155i
\(768\) 0 0
\(769\) 15.8579 9.15556i 0.571850 0.330158i −0.186038 0.982543i \(-0.559565\pi\)
0.757888 + 0.652385i \(0.226231\pi\)
\(770\) −27.4097 16.8638i −0.987776 0.607730i
\(771\) 0 0
\(772\) 14.4116 + 9.43208i 0.518685 + 0.339468i
\(773\) −9.59015 + 16.6106i −0.344934 + 0.597443i −0.985342 0.170592i \(-0.945432\pi\)
0.640408 + 0.768035i \(0.278765\pi\)
\(774\) 0 0
\(775\) 10.5728i 0.379788i
\(776\) −26.2571 18.2531i −0.942576 0.655248i
\(777\) 0 0
\(778\) −18.3232 11.2734i −0.656919 0.404169i
\(779\) 0.0625150i 0.00223983i
\(780\) 0 0
\(781\) 15.4757i 0.553765i
\(782\) −7.91393 + 12.8629i −0.283002 + 0.459978i
\(783\) 0 0
\(784\) −42.9675 4.82541i −1.53455 0.172336i
\(785\) 2.79890i 0.0998970i
\(786\) 0 0
\(787\) −3.92375 + 6.79613i −0.139867 + 0.242256i −0.927446 0.373957i \(-0.878001\pi\)
0.787579 + 0.616213i \(0.211334\pi\)
\(788\) −10.0296 + 15.3246i −0.357291 + 0.545917i
\(789\) 0 0
\(790\) −1.99375 + 3.24055i −0.0709344 + 0.115294i
\(791\) −38.8507 + 22.4305i −1.38137 + 0.797535i
\(792\) 0 0
\(793\) −17.9025 + 21.9075i −0.635735 + 0.777960i
\(794\) −25.3724 46.9290i −0.900433 1.66545i
\(795\) 0 0
\(796\) −31.3089 1.75255i −1.10971 0.0621173i
\(797\) 22.6302 + 13.0656i 0.801605 + 0.462807i 0.844032 0.536293i \(-0.180176\pi\)
−0.0424273 + 0.999100i \(0.513509\pi\)
\(798\) 0 0
\(799\) 5.61657 + 3.24273i 0.198700 + 0.114719i
\(800\) −8.90034 22.0397i −0.314674 0.779223i
\(801\) 0 0
\(802\) −1.29042 + 46.1424i −0.0455664 + 1.62934i
\(803\) 63.4482 36.6318i 2.23904 1.29271i
\(804\) 0 0
\(805\) 20.0183i 0.705554i
\(806\) 8.39335 9.70425i 0.295643 0.341818i
\(807\) 0 0
\(808\) −32.7185 + 15.3921i −1.15103 + 0.541494i
\(809\) −6.20747 10.7517i −0.218243 0.378008i 0.736028 0.676951i \(-0.236699\pi\)
−0.954271 + 0.298943i \(0.903366\pi\)
\(810\) 0 0
\(811\) 15.9619 0.560499 0.280249 0.959927i \(-0.409583\pi\)
0.280249 + 0.959927i \(0.409583\pi\)
\(812\) −19.7880 39.1801i −0.694422 1.37495i
\(813\) 0 0
\(814\) −8.11911 15.0172i −0.284575 0.526352i
\(815\) −1.73230 + 3.00043i −0.0606797 + 0.105100i
\(816\) 0 0
\(817\) −11.0189 + 6.36176i −0.385502 + 0.222570i
\(818\) 4.33387 2.34313i 0.151530 0.0819256i
\(819\) 0 0
\(820\) 0.0293440 + 0.0192050i 0.00102474 + 0.000670667i
\(821\) 22.5254 + 39.0152i 0.786144 + 1.36164i 0.928314 + 0.371798i \(0.121259\pi\)
−0.142170 + 0.989842i \(0.545408\pi\)
\(822\) 0 0
\(823\) −16.7658 + 29.0393i −0.584420 + 1.01224i 0.410528 + 0.911848i \(0.365345\pi\)
−0.994947 + 0.100397i \(0.967989\pi\)
\(824\) 17.9207 + 1.50666i 0.624299 + 0.0524871i
\(825\) 0 0
\(826\) 1.05142 37.5962i 0.0365835 1.30814i
\(827\) −51.5687 −1.79322 −0.896610 0.442820i \(-0.853978\pi\)
−0.896610 + 0.442820i \(0.853978\pi\)
\(828\) 0 0
\(829\) −18.8521 + 10.8842i −0.654759 + 0.378025i −0.790277 0.612750i \(-0.790063\pi\)
0.135518 + 0.990775i \(0.456730\pi\)
\(830\) 5.89496 9.58140i 0.204617 0.332575i
\(831\) 0 0
\(832\) −9.32732 + 27.2947i −0.323367 + 0.946274i
\(833\) −21.7413 −0.753291
\(834\) 0 0
\(835\) −12.2094 + 7.04907i −0.422522 + 0.243943i
\(836\) −17.3333 34.3199i −0.599486 1.18698i
\(837\) 0 0
\(838\) 1.25673 44.9376i 0.0434130 1.55234i
\(839\) 22.6729 + 13.0902i 0.782755 + 0.451924i 0.837406 0.546582i \(-0.184071\pi\)
−0.0546509 + 0.998506i \(0.517405\pi\)
\(840\) 0 0
\(841\) −0.977337 + 1.69280i −0.0337013 + 0.0583723i
\(842\) −28.8415 + 46.8777i −0.993945 + 1.61551i
\(843\) 0 0
\(844\) −27.5870 18.0551i −0.949584 0.621482i
\(845\) 11.0136 + 3.68727i 0.378878 + 0.126846i
\(846\) 0 0
\(847\) −92.9336 + 53.6552i −3.19324 + 1.84362i
\(848\) 10.7746 + 7.94592i 0.370000 + 0.272864i
\(849\) 0 0
\(850\) −5.68423 10.5136i −0.194968 0.360614i
\(851\) 5.30954 9.19640i 0.182009 0.315249i
\(852\) 0 0
\(853\) −33.0664 −1.13217 −0.566086 0.824346i \(-0.691543\pi\)
−0.566086 + 0.824346i \(0.691543\pi\)
\(854\) 46.8125 + 1.30916i 1.60189 + 0.0447987i
\(855\) 0 0
\(856\) 10.7716 5.06742i 0.368166 0.173201i
\(857\) −27.7866 −0.949172 −0.474586 0.880209i \(-0.657402\pi\)
−0.474586 + 0.880209i \(0.657402\pi\)
\(858\) 0 0
\(859\) 53.8754i 1.83820i 0.394020 + 0.919102i \(0.371084\pi\)
−0.394020 + 0.919102i \(0.628916\pi\)
\(860\) 0.398915 7.12655i 0.0136029 0.243013i
\(861\) 0 0
\(862\) 0.960553 34.3471i 0.0327166 1.16987i
\(863\) 48.6608i 1.65643i 0.560408 + 0.828217i \(0.310645\pi\)
−0.560408 + 0.828217i \(0.689355\pi\)
\(864\) 0 0
\(865\) −0.480716 0.277541i −0.0163448 0.00943669i
\(866\) −15.5733 28.8046i −0.529204 0.978820i
\(867\) 0 0
\(868\) −21.2046 1.18695i −0.719732 0.0402877i
\(869\) 9.08758 + 15.7401i 0.308275 + 0.533948i
\(870\) 0 0
\(871\) −10.3813 + 3.93206i −0.351757 + 0.133233i
\(872\) −43.2581 3.63686i −1.46490 0.123160i
\(873\) 0 0
\(874\) 12.5326 20.3699i 0.423921 0.689022i
\(875\) 30.0457 + 17.3469i 1.01573 + 0.586431i
\(876\) 0 0
\(877\) 1.83365 3.17598i 0.0619181 0.107245i −0.833405 0.552663i \(-0.813612\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(878\) −41.7157 1.16662i −1.40784 0.0393717i
\(879\) 0 0
\(880\) 21.4344 + 2.40716i 0.722554 + 0.0811455i
\(881\) 0.624583 + 1.08181i 0.0210427 + 0.0364471i 0.876355 0.481666i \(-0.159968\pi\)
−0.855312 + 0.518113i \(0.826635\pi\)
\(882\) 0 0
\(883\) 4.46615i 0.150298i 0.997172 + 0.0751489i \(0.0239432\pi\)
−0.997172 + 0.0751489i \(0.976057\pi\)
\(884\) −3.12908 + 14.1624i −0.105242 + 0.476332i
\(885\) 0 0
\(886\) 10.7344 + 6.60433i 0.360628 + 0.221877i
\(887\) 6.70566 + 11.6145i 0.225154 + 0.389978i 0.956366 0.292173i \(-0.0943782\pi\)
−0.731212 + 0.682151i \(0.761045\pi\)
\(888\) 0 0
\(889\) 10.7026i 0.358953i
\(890\) 0.307084 10.9806i 0.0102935 0.368070i
\(891\) 0 0
\(892\) −8.00633 5.23996i −0.268072 0.175447i
\(893\) −8.89445 5.13521i −0.297641 0.171843i
\(894\) 0 0
\(895\) 8.39654 4.84774i 0.280665 0.162042i
\(896\) 45.2016 15.3760i 1.51008 0.513677i
\(897\) 0 0
\(898\) 12.0049 6.49052i 0.400610 0.216591i
\(899\) −6.54292 11.3327i −0.218219 0.377966i
\(900\) 0 0
\(901\) 5.82986 + 3.36587i 0.194221 + 0.112133i
\(902\) 0.147368 0.0796753i 0.00490682 0.00265290i
\(903\) 0 0
\(904\) 17.1621 24.6877i 0.570802 0.821100i
\(905\) 14.3406i 0.476698i
\(906\) 0 0
\(907\) 28.1142 16.2318i 0.933518 0.538967i 0.0455956 0.998960i \(-0.485481\pi\)
0.887923 + 0.459993i \(0.152148\pi\)
\(908\) 8.80383 + 0.492803i 0.292165 + 0.0163542i
\(909\) 0 0
\(910\) −6.30436 18.1619i −0.208988 0.602059i
\(911\) −24.4263 −0.809279 −0.404639 0.914476i \(-0.632603\pi\)
−0.404639 + 0.914476i \(0.632603\pi\)
\(912\) 0 0
\(913\) −26.8694 46.5392i −0.889248 1.54022i
\(914\) −0.287935 + 10.2959i −0.00952404 + 0.340557i
\(915\) 0 0
\(916\) −17.1062 33.8701i −0.565204 1.11910i
\(917\) 4.24876 7.35906i 0.140306 0.243018i
\(918\) 0 0
\(919\) 22.1908 38.4356i 0.732008 1.26787i −0.224016 0.974585i \(-0.571917\pi\)
0.956024 0.293289i \(-0.0947498\pi\)
\(920\) 5.71137 + 12.1404i 0.188298 + 0.400259i
\(921\) 0 0
\(922\) 19.0582 + 35.2501i 0.627647 + 1.16090i
\(923\) 5.84995 7.15868i 0.192554 0.235631i
\(924\) 0 0
\(925\) 4.20188 + 7.27786i 0.138157 + 0.239295i
\(926\) 41.5071 + 25.5372i 1.36401 + 0.839206i
\(927\) 0 0
\(928\) 23.1791 + 18.1157i 0.760891 + 0.594679i
\(929\) 21.9114 + 12.6505i 0.718889 + 0.415051i 0.814344 0.580383i \(-0.197097\pi\)
−0.0954546 + 0.995434i \(0.530430\pi\)
\(930\) 0 0
\(931\) 34.4297 1.12839
\(932\) −14.6100 28.9276i −0.478565 0.947555i
\(933\) 0 0
\(934\) −40.0464 24.6386i −1.31036 0.806198i
\(935\) 10.8457 0.354692
\(936\) 0 0
\(937\) −41.0474 −1.34096 −0.670479 0.741928i \(-0.733912\pi\)
−0.670479 + 0.741928i \(0.733912\pi\)
\(938\) 15.6503 + 9.62883i 0.510999 + 0.314393i
\(939\) 0 0
\(940\) 5.14286 2.59741i 0.167742 0.0847182i
\(941\) −36.6752 −1.19558 −0.597789 0.801653i \(-0.703954\pi\)
−0.597789 + 0.801653i \(0.703954\pi\)
\(942\) 0 0
\(943\) 0.0902470 + 0.0521041i 0.00293885 + 0.00169674i
\(944\) 10.0888 + 23.1008i 0.328363 + 0.751867i
\(945\) 0 0
\(946\) −29.0403 17.8671i −0.944181 0.580908i
\(947\) −10.9465 18.9599i −0.355714 0.616114i 0.631526 0.775355i \(-0.282429\pi\)
−0.987240 + 0.159240i \(0.949096\pi\)
\(948\) 0 0
\(949\) 43.1966 + 7.03898i 1.40222 + 0.228495i
\(950\) 9.00161 + 16.6495i 0.292051 + 0.540180i
\(951\) 0 0
\(952\) 21.7240 10.2199i 0.704078 0.331228i
\(953\) −24.7900 + 42.9375i −0.803026 + 1.39088i 0.114590 + 0.993413i \(0.463445\pi\)
−0.917616 + 0.397469i \(0.869889\pi\)
\(954\) 0 0
\(955\) −9.80570 + 16.9840i −0.317305 + 0.549588i
\(956\) 6.52571 3.29582i 0.211057 0.106595i
\(957\) 0 0
\(958\) 0.836115 29.8974i 0.0270136 0.965943i
\(959\) −28.7736 49.8373i −0.929147 1.60933i
\(960\) 0 0
\(961\) 24.6684 0.795756
\(962\) 1.92092 10.0157i 0.0619331 0.322918i
\(963\) 0 0
\(964\) −2.55120 + 45.5768i −0.0821688 + 1.46793i
\(965\) 6.66320 3.84700i 0.214496 0.123839i
\(966\) 0 0
\(967\) 31.4252i 1.01057i −0.862953 0.505284i \(-0.831388\pi\)
0.862953 0.505284i \(-0.168612\pi\)
\(968\) 41.0529 59.0547i 1.31949 1.89809i
\(969\) 0 0
\(970\) −12.5660 + 6.79385i −0.403469 + 0.218137i
\(971\) 42.8554 + 24.7426i 1.37530 + 0.794028i 0.991589 0.129427i \(-0.0413139\pi\)
0.383707 + 0.923455i \(0.374647\pi\)
\(972\) 0 0
\(973\) −38.0598 65.9215i −1.22014 2.11334i
\(974\) 22.3575 12.0877i 0.716380 0.387314i
\(975\) 0 0
\(976\) −28.7637 + 12.5620i −0.920705 + 0.402099i
\(977\) −34.7979 + 20.0906i −1.11328 + 0.642754i −0.939678 0.342061i \(-0.888875\pi\)
−0.173605 + 0.984815i \(0.555542\pi\)
\(978\) 0 0
\(979\) −45.4440 26.2371i −1.45240 0.838542i
\(980\) −10.5770 + 16.1610i −0.337871 + 0.516245i
\(981\) 0 0
\(982\) −0.202364 + 7.23603i −0.00645768 + 0.230911i
\(983\) 53.9410i 1.72045i −0.509913 0.860226i \(-0.670323\pi\)
0.509913 0.860226i \(-0.329677\pi\)
\(984\) 0 0
\(985\) 4.09072 + 7.08533i 0.130341 + 0.225757i
\(986\) 12.5990 + 7.75154i 0.401234 + 0.246859i
\(987\) 0 0
\(988\) 4.95524 22.4277i 0.157647 0.713519i
\(989\) 21.2092i 0.674415i
\(990\) 0 0
\(991\) 21.4117 + 37.0862i 0.680166 + 1.17808i 0.974930 + 0.222512i \(0.0714255\pi\)
−0.294764 + 0.955570i \(0.595241\pi\)
\(992\) 13.1985 5.32998i 0.419054 0.169227i
\(993\) 0 0
\(994\) −15.2968 0.427793i −0.485186 0.0135688i
\(995\) −7.00391 + 12.1311i −0.222039 + 0.384583i
\(996\) 0 0
\(997\) −38.5110 22.2343i −1.21966 0.704168i −0.254811 0.966991i \(-0.582013\pi\)
−0.964844 + 0.262822i \(0.915347\pi\)
\(998\) −14.2834 + 23.2156i −0.452133 + 0.734877i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.d.829.7 16
3.2 odd 2 104.2.s.c.101.2 yes 16
8.5 even 2 inner 936.2.dg.d.829.8 16
12.11 even 2 416.2.ba.c.49.3 16
13.4 even 6 inner 936.2.dg.d.901.8 16
24.5 odd 2 104.2.s.c.101.1 yes 16
24.11 even 2 416.2.ba.c.49.6 16
39.17 odd 6 104.2.s.c.69.1 16
104.69 even 6 inner 936.2.dg.d.901.7 16
156.95 even 6 416.2.ba.c.17.6 16
312.173 odd 6 104.2.s.c.69.2 yes 16
312.251 even 6 416.2.ba.c.17.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.s.c.69.1 16 39.17 odd 6
104.2.s.c.69.2 yes 16 312.173 odd 6
104.2.s.c.101.1 yes 16 24.5 odd 2
104.2.s.c.101.2 yes 16 3.2 odd 2
416.2.ba.c.17.3 16 312.251 even 6
416.2.ba.c.17.6 16 156.95 even 6
416.2.ba.c.49.3 16 12.11 even 2
416.2.ba.c.49.6 16 24.11 even 2
936.2.dg.d.829.7 16 1.1 even 1 trivial
936.2.dg.d.829.8 16 8.5 even 2 inner
936.2.dg.d.901.7 16 104.69 even 6 inner
936.2.dg.d.901.8 16 13.4 even 6 inner