Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.db (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(328\) |
Relative dimension: | \(164\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61.1 | −1.41383 | − | 0.0328320i | 1.19534 | − | 1.25346i | 1.99784 | + | 0.0928379i | 1.07343 | − | 0.619746i | −1.73116 | + | 1.73294i | −3.62566 | −2.82157 | − | 0.196850i | −0.142340 | − | 2.99662i | −1.53800 | + | 0.840974i | ||
61.2 | −1.41382 | + | 0.0331869i | 1.68403 | − | 0.405016i | 1.99780 | − | 0.0938410i | −0.203142 | + | 0.117284i | −2.36748 | + | 0.628510i | 2.52349 | −2.82142 | + | 0.198975i | 2.67192 | − | 1.36412i | 0.283314 | − | 0.172560i | ||
61.3 | −1.41074 | + | 0.0991241i | −1.62386 | + | 0.602548i | 1.98035 | − | 0.279676i | −2.94424 | + | 1.69986i | 2.23112 | − | 1.01100i | −2.86012 | −2.76603 | + | 0.590849i | 2.27387 | − | 1.95691i | 3.98505 | − | 2.68990i | ||
61.4 | −1.40766 | + | 0.135961i | −0.195465 | + | 1.72099i | 1.96303 | − | 0.382776i | 0.951819 | − | 0.549533i | 0.0411610 | − | 2.44914i | −2.60565 | −2.71124 | + | 0.805715i | −2.92359 | − | 0.672785i | −1.26512 | + | 0.902967i | ||
61.5 | −1.40487 | − | 0.162318i | 0.958745 | + | 1.44250i | 1.94731 | + | 0.456070i | −0.947786 | + | 0.547205i | −1.11277 | − | 2.18214i | −2.57743 | −2.66168 | − | 0.956801i | −1.16162 | + | 2.76598i | 1.42034 | − | 0.614907i | ||
61.6 | −1.40448 | + | 0.165649i | 1.30381 | − | 1.14021i | 1.94512 | − | 0.465300i | 2.42054 | − | 1.39750i | −1.64230 | + | 1.81738i | 2.26644 | −2.65480 | + | 0.975710i | 0.399837 | − | 2.97324i | −3.16810 | + | 2.36372i | ||
61.7 | −1.40331 | + | 0.175255i | −1.70212 | − | 0.320630i | 1.93857 | − | 0.491875i | 2.82831 | − | 1.63292i | 2.44479 | + | 0.151640i | 0.761796 | −2.63422 | + | 1.03000i | 2.79439 | + | 1.09150i | −3.68282 | + | 2.78718i | ||
61.8 | −1.40283 | + | 0.179043i | −1.20910 | + | 1.24019i | 1.93589 | − | 0.502335i | −0.00979680 | + | 0.00565618i | 1.47412 | − | 1.95627i | 3.11386 | −2.62579 | + | 1.05130i | −0.0761639 | − | 2.99903i | 0.0127306 | − | 0.00968873i | ||
61.9 | −1.40265 | − | 0.180518i | −1.62706 | − | 0.593865i | 1.93483 | + | 0.506405i | −2.31463 | + | 1.33635i | 2.17498 | + | 1.12669i | 3.16045 | −2.62246 | − | 1.05958i | 2.29465 | + | 1.93251i | 3.48784 | − | 1.45660i | ||
61.10 | −1.39677 | + | 0.221459i | −1.10721 | − | 1.33195i | 1.90191 | − | 0.618653i | 2.08463 | − | 1.20356i | 1.84148 | + | 1.61522i | 0.223466 | −2.51952 | + | 1.28531i | −0.548181 | + | 2.94949i | −2.64520 | + | 2.14276i | ||
61.11 | −1.38780 | − | 0.272025i | 1.10140 | − | 1.33676i | 1.85201 | + | 0.755035i | −3.53261 | + | 2.03955i | −1.89216 | + | 1.55555i | −2.22614 | −2.36483 | − | 1.55163i | −0.573846 | − | 2.94461i | 5.45738 | − | 1.86954i | ||
61.12 | −1.37196 | + | 0.343128i | −0.241474 | − | 1.71514i | 1.76453 | − | 0.941512i | −0.309123 | + | 0.178472i | 0.919802 | + | 2.27023i | −3.61607 | −2.09779 | + | 1.89717i | −2.88338 | + | 0.828320i | 0.362864 | − | 0.350925i | ||
61.13 | −1.36693 | − | 0.362617i | −0.347433 | − | 1.69685i | 1.73702 | + | 0.991346i | −0.513997 | + | 0.296756i | −0.140387 | + | 2.44546i | 3.23696 | −2.01491 | − | 1.98498i | −2.75858 | + | 1.17908i | 0.810208 | − | 0.219262i | ||
61.14 | −1.36024 | + | 0.386956i | 0.0294737 | + | 1.73180i | 1.70053 | − | 1.05271i | −3.14960 | + | 1.81842i | −0.710221 | − | 2.34427i | 3.48447 | −1.90579 | + | 2.08997i | −2.99826 | + | 0.102085i | 3.58058 | − | 3.69226i | ||
61.15 | −1.35749 | − | 0.396522i | 1.70060 | + | 0.328583i | 1.68554 | + | 1.07655i | 2.88728 | − | 1.66697i | −2.17825 | − | 1.12037i | 1.57859 | −1.86123 | − | 2.12975i | 2.78407 | + | 1.11757i | −4.58044 | + | 1.11803i | ||
61.16 | −1.33779 | + | 0.458590i | 1.73180 | + | 0.0293872i | 1.57939 | − | 1.22700i | −2.62102 | + | 1.51325i | −2.33027 | + | 0.754873i | 0.0194906 | −1.55021 | + | 2.36577i | 2.99827 | + | 0.101786i | 2.81243 | − | 3.22639i | ||
61.17 | −1.33515 | − | 0.466242i | −1.42357 | − | 0.986631i | 1.56524 | + | 1.24500i | 0.715331 | − | 0.412997i | 1.44067 | + | 1.98103i | −2.35753 | −1.50935 | − | 2.39204i | 1.05312 | + | 2.80908i | −1.14763 | + | 0.217894i | ||
61.18 | −1.33314 | − | 0.471953i | 1.60244 | + | 0.657405i | 1.55452 | + | 1.25836i | −0.823961 | + | 0.475714i | −1.82601 | − | 1.63269i | −1.67702 | −1.47851 | − | 2.41123i | 2.13564 | + | 2.10691i | 1.32297 | − | 0.245323i | ||
61.19 | −1.31791 | − | 0.512942i | 0.259180 | + | 1.71255i | 1.47378 | + | 1.35202i | 3.37624 | − | 1.94927i | 0.536863 | − | 2.38993i | 0.690243 | −1.24880 | − | 2.53781i | −2.86565 | + | 0.887716i | −5.44944 | + | 0.837152i | ||
61.20 | −1.31196 | + | 0.527970i | 0.650684 | − | 1.60518i | 1.44250 | − | 1.38535i | −0.862801 | + | 0.498139i | −0.00618455 | + | 2.44948i | 4.66240 | −1.16107 | + | 2.57913i | −2.15322 | − | 2.08893i | 0.868961 | − | 1.10907i | ||
See next 80 embeddings (of 328 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
117.f | even | 3 | 1 | inner |
936.db | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.db.a | yes | 328 |
8.b | even | 2 | 1 | inner | 936.2.db.a | yes | 328 |
9.c | even | 3 | 1 | 936.2.cj.a | ✓ | 328 | |
13.c | even | 3 | 1 | 936.2.cj.a | ✓ | 328 | |
72.n | even | 6 | 1 | 936.2.cj.a | ✓ | 328 | |
104.r | even | 6 | 1 | 936.2.cj.a | ✓ | 328 | |
117.f | even | 3 | 1 | inner | 936.2.db.a | yes | 328 |
936.db | even | 6 | 1 | inner | 936.2.db.a | yes | 328 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.cj.a | ✓ | 328 | 9.c | even | 3 | 1 | |
936.2.cj.a | ✓ | 328 | 13.c | even | 3 | 1 | |
936.2.cj.a | ✓ | 328 | 72.n | even | 6 | 1 | |
936.2.cj.a | ✓ | 328 | 104.r | even | 6 | 1 | |
936.2.db.a | yes | 328 | 1.a | even | 1 | 1 | trivial |
936.2.db.a | yes | 328 | 8.b | even | 2 | 1 | inner |
936.2.db.a | yes | 328 | 117.f | even | 3 | 1 | inner |
936.2.db.a | yes | 328 | 936.db | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(936, [\chi])\).