Properties

Label 936.2.be.a.685.9
Level $936$
Weight $2$
Character 936.685
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(685,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,-1,0,0,-2,10,0,-3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 685.9
Character \(\chi\) \(=\) 936.685
Dual form 936.2.be.a.757.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.782694 - 1.17788i) q^{2} +(-0.774781 - 1.84383i) q^{4} -2.59989i q^{5} +(-0.300588 - 0.520633i) q^{7} +(-2.77822 - 0.530559i) q^{8} +(-3.06235 - 2.03492i) q^{10} +(-2.40956 - 1.39116i) q^{11} +(-3.60516 - 0.0531995i) q^{13} +(-0.848509 - 0.0534414i) q^{14} +(-2.79943 + 2.85713i) q^{16} +(1.29402 + 2.24132i) q^{17} +(4.38088 - 2.52930i) q^{19} +(-4.79376 + 2.01435i) q^{20} +(-3.52456 + 1.74931i) q^{22} +(-2.94353 + 5.09835i) q^{23} -1.75942 q^{25} +(-2.88440 + 4.20479i) q^{26} +(-0.727070 + 0.957610i) q^{28} +(-1.54071 - 0.889530i) q^{29} +5.09421 q^{31} +(1.17425 + 5.53364i) q^{32} +(3.65282 + 0.230064i) q^{34} +(-1.35359 + 0.781495i) q^{35} +(-8.82719 - 5.09638i) q^{37} +(0.449684 - 7.13981i) q^{38} +(-1.37940 + 7.22306i) q^{40} +(5.26242 - 9.11477i) q^{41} +(-8.44267 + 4.87438i) q^{43} +(-0.698182 + 5.52066i) q^{44} +(3.70134 + 7.45756i) q^{46} -2.13951 q^{47} +(3.31929 - 5.74919i) q^{49} +(-1.37709 + 2.07238i) q^{50} +(2.69512 + 6.68852i) q^{52} -6.01748i q^{53} +(-3.61686 + 6.26458i) q^{55} +(0.558872 + 1.60591i) q^{56} +(-2.25366 + 1.11854i) q^{58} +(9.44349 - 5.45220i) q^{59} +(1.84865 - 1.06732i) q^{61} +(3.98720 - 6.00034i) q^{62} +(7.43701 + 2.94802i) q^{64} +(-0.138313 + 9.37301i) q^{65} +(3.39076 + 1.95766i) q^{67} +(3.13002 - 4.12249i) q^{68} +(-0.138942 + 2.20603i) q^{70} +(-0.230832 - 0.399814i) q^{71} -14.8806 q^{73} +(-12.9119 + 6.40843i) q^{74} +(-8.05784 - 6.11795i) q^{76} +1.67266i q^{77} -7.83968 q^{79} +(7.42823 + 7.27820i) q^{80} +(-6.61721 - 13.3325i) q^{82} -0.930501i q^{83} +(5.82717 - 3.36432i) q^{85} +(-0.866614 + 13.7596i) q^{86} +(5.95619 + 5.14336i) q^{88} +(-1.17791 + 2.04019i) q^{89} +(1.05597 + 1.89296i) q^{91} +(11.6811 + 1.47727i) q^{92} +(-1.67458 + 2.52008i) q^{94} +(-6.57591 - 11.3898i) q^{95} +(5.91151 + 10.2390i) q^{97} +(-4.17383 - 8.40957i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 3 q^{10} - 8 q^{14} - q^{16} + 11 q^{20} - 2 q^{22} + 14 q^{23} - 12 q^{25} + 3 q^{26} - 4 q^{28} - 8 q^{31} + 21 q^{32} + 14 q^{34} - 12 q^{38} + 54 q^{40}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.782694 1.17788i 0.553448 0.832884i
\(3\) 0 0
\(4\) −0.774781 1.84383i −0.387391 0.921916i
\(5\) 2.59989i 1.16271i −0.813651 0.581353i \(-0.802524\pi\)
0.813651 0.581353i \(-0.197476\pi\)
\(6\) 0 0
\(7\) −0.300588 0.520633i −0.113611 0.196781i 0.803612 0.595153i \(-0.202909\pi\)
−0.917224 + 0.398372i \(0.869575\pi\)
\(8\) −2.77822 0.530559i −0.982249 0.187581i
\(9\) 0 0
\(10\) −3.06235 2.03492i −0.968399 0.643497i
\(11\) −2.40956 1.39116i −0.726509 0.419450i 0.0906348 0.995884i \(-0.471110\pi\)
−0.817144 + 0.576434i \(0.804444\pi\)
\(12\) 0 0
\(13\) −3.60516 0.0531995i −0.999891 0.0147549i
\(14\) −0.848509 0.0534414i −0.226774 0.0142828i
\(15\) 0 0
\(16\) −2.79943 + 2.85713i −0.699857 + 0.714283i
\(17\) 1.29402 + 2.24132i 0.313847 + 0.543599i 0.979192 0.202937i \(-0.0650487\pi\)
−0.665345 + 0.746536i \(0.731715\pi\)
\(18\) 0 0
\(19\) 4.38088 2.52930i 1.00504 0.580262i 0.0953071 0.995448i \(-0.469617\pi\)
0.909737 + 0.415186i \(0.136283\pi\)
\(20\) −4.79376 + 2.01435i −1.07192 + 0.450421i
\(21\) 0 0
\(22\) −3.52456 + 1.74931i −0.751438 + 0.372954i
\(23\) −2.94353 + 5.09835i −0.613769 + 1.06308i 0.376830 + 0.926282i \(0.377014\pi\)
−0.990599 + 0.136797i \(0.956319\pi\)
\(24\) 0 0
\(25\) −1.75942 −0.351885
\(26\) −2.88440 + 4.20479i −0.565677 + 0.824627i
\(27\) 0 0
\(28\) −0.727070 + 0.957610i −0.137403 + 0.180971i
\(29\) −1.54071 0.889530i −0.286103 0.165182i 0.350080 0.936720i \(-0.386154\pi\)
−0.636183 + 0.771538i \(0.719488\pi\)
\(30\) 0 0
\(31\) 5.09421 0.914947 0.457473 0.889223i \(-0.348755\pi\)
0.457473 + 0.889223i \(0.348755\pi\)
\(32\) 1.17425 + 5.53364i 0.207580 + 0.978218i
\(33\) 0 0
\(34\) 3.65282 + 0.230064i 0.626453 + 0.0394557i
\(35\) −1.35359 + 0.781495i −0.228798 + 0.132097i
\(36\) 0 0
\(37\) −8.82719 5.09638i −1.45118 0.837840i −0.452633 0.891697i \(-0.649515\pi\)
−0.998549 + 0.0538570i \(0.982848\pi\)
\(38\) 0.449684 7.13981i 0.0729484 1.15823i
\(39\) 0 0
\(40\) −1.37940 + 7.22306i −0.218102 + 1.14207i
\(41\) 5.26242 9.11477i 0.821851 1.42349i −0.0824509 0.996595i \(-0.526275\pi\)
0.904302 0.426893i \(-0.140392\pi\)
\(42\) 0 0
\(43\) −8.44267 + 4.87438i −1.28749 + 0.743335i −0.978207 0.207633i \(-0.933424\pi\)
−0.309288 + 0.950968i \(0.600091\pi\)
\(44\) −0.698182 + 5.52066i −0.105255 + 0.832271i
\(45\) 0 0
\(46\) 3.70134 + 7.45756i 0.545732 + 1.09956i
\(47\) −2.13951 −0.312080 −0.156040 0.987751i \(-0.549873\pi\)
−0.156040 + 0.987751i \(0.549873\pi\)
\(48\) 0 0
\(49\) 3.31929 5.74919i 0.474185 0.821312i
\(50\) −1.37709 + 2.07238i −0.194750 + 0.293079i
\(51\) 0 0
\(52\) 2.69512 + 6.68852i 0.373746 + 0.927531i
\(53\) 6.01748i 0.826565i −0.910603 0.413282i \(-0.864382\pi\)
0.910603 0.413282i \(-0.135618\pi\)
\(54\) 0 0
\(55\) −3.61686 + 6.26458i −0.487697 + 0.844716i
\(56\) 0.558872 + 1.60591i 0.0746824 + 0.214599i
\(57\) 0 0
\(58\) −2.25366 + 1.11854i −0.295920 + 0.146871i
\(59\) 9.44349 5.45220i 1.22944 0.709816i 0.262526 0.964925i \(-0.415445\pi\)
0.966912 + 0.255109i \(0.0821112\pi\)
\(60\) 0 0
\(61\) 1.84865 1.06732i 0.236696 0.136656i −0.376961 0.926229i \(-0.623031\pi\)
0.613657 + 0.789573i \(0.289698\pi\)
\(62\) 3.98720 6.00034i 0.506375 0.762044i
\(63\) 0 0
\(64\) 7.43701 + 2.94802i 0.929627 + 0.368503i
\(65\) −0.138313 + 9.37301i −0.0171556 + 1.16258i
\(66\) 0 0
\(67\) 3.39076 + 1.95766i 0.414247 + 0.239166i 0.692613 0.721309i \(-0.256459\pi\)
−0.278366 + 0.960475i \(0.589793\pi\)
\(68\) 3.13002 4.12249i 0.379571 0.499926i
\(69\) 0 0
\(70\) −0.138942 + 2.20603i −0.0166067 + 0.263671i
\(71\) −0.230832 0.399814i −0.0273948 0.0474491i 0.852003 0.523537i \(-0.175388\pi\)
−0.879398 + 0.476088i \(0.842054\pi\)
\(72\) 0 0
\(73\) −14.8806 −1.74165 −0.870824 0.491595i \(-0.836414\pi\)
−0.870824 + 0.491595i \(0.836414\pi\)
\(74\) −12.9119 + 6.40843i −1.50098 + 0.744965i
\(75\) 0 0
\(76\) −8.05784 6.11795i −0.924297 0.701777i
\(77\) 1.67266i 0.190617i
\(78\) 0 0
\(79\) −7.83968 −0.882033 −0.441017 0.897499i \(-0.645382\pi\)
−0.441017 + 0.897499i \(0.645382\pi\)
\(80\) 7.42823 + 7.27820i 0.830501 + 0.813728i
\(81\) 0 0
\(82\) −6.61721 13.3325i −0.730748 1.47233i
\(83\) 0.930501i 0.102136i −0.998695 0.0510679i \(-0.983738\pi\)
0.998695 0.0510679i \(-0.0162625\pi\)
\(84\) 0 0
\(85\) 5.82717 3.36432i 0.632046 0.364912i
\(86\) −0.866614 + 13.7596i −0.0934494 + 1.48373i
\(87\) 0 0
\(88\) 5.95619 + 5.14336i 0.634932 + 0.548284i
\(89\) −1.17791 + 2.04019i −0.124858 + 0.216260i −0.921677 0.387957i \(-0.873181\pi\)
0.796820 + 0.604217i \(0.206514\pi\)
\(90\) 0 0
\(91\) 1.05597 + 1.89296i 0.110696 + 0.198436i
\(92\) 11.6811 + 1.47727i 1.21784 + 0.154016i
\(93\) 0 0
\(94\) −1.67458 + 2.52008i −0.172720 + 0.259926i
\(95\) −6.57591 11.3898i −0.674674 1.16857i
\(96\) 0 0
\(97\) 5.91151 + 10.2390i 0.600223 + 1.03962i 0.992787 + 0.119892i \(0.0382549\pi\)
−0.392564 + 0.919725i \(0.628412\pi\)
\(98\) −4.17383 8.40957i −0.421621 0.849495i
\(99\) 0 0
\(100\) 1.36317 + 3.24408i 0.136317 + 0.324408i
\(101\) −11.2176 6.47646i −1.11619 0.644432i −0.175763 0.984432i \(-0.556239\pi\)
−0.940425 + 0.340001i \(0.889573\pi\)
\(102\) 0 0
\(103\) 6.61141 0.651441 0.325721 0.945466i \(-0.394393\pi\)
0.325721 + 0.945466i \(0.394393\pi\)
\(104\) 9.98770 + 2.06055i 0.979374 + 0.202054i
\(105\) 0 0
\(106\) −7.08785 4.70985i −0.688432 0.457461i
\(107\) 8.87612 + 5.12463i 0.858087 + 0.495417i 0.863371 0.504569i \(-0.168349\pi\)
−0.00528438 + 0.999986i \(0.501682\pi\)
\(108\) 0 0
\(109\) 10.8192i 1.03630i −0.855291 0.518148i \(-0.826622\pi\)
0.855291 0.518148i \(-0.173378\pi\)
\(110\) 4.54801 + 9.16346i 0.433635 + 0.873701i
\(111\) 0 0
\(112\) 2.32899 + 0.598656i 0.220069 + 0.0565677i
\(113\) −4.75708 8.23951i −0.447509 0.775108i 0.550714 0.834694i \(-0.314355\pi\)
−0.998223 + 0.0595859i \(0.981022\pi\)
\(114\) 0 0
\(115\) 13.2551 + 7.65286i 1.23605 + 0.713633i
\(116\) −0.446429 + 3.53000i −0.0414499 + 0.327752i
\(117\) 0 0
\(118\) 0.969346 15.3907i 0.0892355 1.41683i
\(119\) 0.777936 1.34742i 0.0713133 0.123518i
\(120\) 0 0
\(121\) −1.62936 2.82213i −0.148123 0.256557i
\(122\) 0.189758 3.01287i 0.0171799 0.272772i
\(123\) 0 0
\(124\) −3.94690 9.39286i −0.354442 0.843504i
\(125\) 8.42514i 0.753567i
\(126\) 0 0
\(127\) 9.21128 15.9544i 0.817369 1.41572i −0.0902451 0.995920i \(-0.528765\pi\)
0.907614 0.419805i \(-0.137902\pi\)
\(128\) 9.29330 6.45248i 0.821420 0.570324i
\(129\) 0 0
\(130\) 10.9320 + 7.49911i 0.958799 + 0.657716i
\(131\) 0.795820i 0.0695311i 0.999395 + 0.0347655i \(0.0110684\pi\)
−0.999395 + 0.0347655i \(0.988932\pi\)
\(132\) 0 0
\(133\) −2.63368 1.52056i −0.228369 0.131849i
\(134\) 4.95980 2.46165i 0.428461 0.212654i
\(135\) 0 0
\(136\) −2.40593 6.91343i −0.206307 0.592822i
\(137\) −1.77845 3.08037i −0.151943 0.263174i 0.779998 0.625781i \(-0.215220\pi\)
−0.931942 + 0.362608i \(0.881886\pi\)
\(138\) 0 0
\(139\) 1.86181 1.07491i 0.157916 0.0911731i −0.418959 0.908005i \(-0.637605\pi\)
0.576876 + 0.816832i \(0.304272\pi\)
\(140\) 2.48968 + 1.89030i 0.210416 + 0.159760i
\(141\) 0 0
\(142\) −0.651602 0.0410396i −0.0546812 0.00344397i
\(143\) 8.61283 + 5.14353i 0.720241 + 0.430124i
\(144\) 0 0
\(145\) −2.31268 + 4.00568i −0.192058 + 0.332653i
\(146\) −11.6470 + 17.5275i −0.963911 + 1.45059i
\(147\) 0 0
\(148\) −2.55773 + 20.2244i −0.210244 + 1.66244i
\(149\) 2.87752 1.66134i 0.235736 0.136102i −0.377480 0.926018i \(-0.623209\pi\)
0.613215 + 0.789916i \(0.289876\pi\)
\(150\) 0 0
\(151\) −6.66412 −0.542318 −0.271159 0.962535i \(-0.587407\pi\)
−0.271159 + 0.962535i \(0.587407\pi\)
\(152\) −13.5130 + 4.70265i −1.09605 + 0.381435i
\(153\) 0 0
\(154\) 1.97019 + 1.30918i 0.158762 + 0.105497i
\(155\) 13.2444i 1.06381i
\(156\) 0 0
\(157\) 1.24154i 0.0990854i 0.998772 + 0.0495427i \(0.0157764\pi\)
−0.998772 + 0.0495427i \(0.984224\pi\)
\(158\) −6.13607 + 9.23417i −0.488159 + 0.734631i
\(159\) 0 0
\(160\) 14.3868 3.05292i 1.13738 0.241355i
\(161\) 3.53916 0.278925
\(162\) 0 0
\(163\) 9.43363 5.44651i 0.738899 0.426604i −0.0827698 0.996569i \(-0.526377\pi\)
0.821669 + 0.569965i \(0.193043\pi\)
\(164\) −20.8833 2.64105i −1.63071 0.206232i
\(165\) 0 0
\(166\) −1.09601 0.728297i −0.0850672 0.0565268i
\(167\) 6.68150 11.5727i 0.517030 0.895522i −0.482775 0.875745i \(-0.660371\pi\)
0.999804 0.0197773i \(-0.00629571\pi\)
\(168\) 0 0
\(169\) 12.9943 + 0.383585i 0.999565 + 0.0295065i
\(170\) 0.598142 9.49692i 0.0458754 0.728380i
\(171\) 0 0
\(172\) 15.5287 + 11.7903i 1.18406 + 0.899000i
\(173\) 5.66761 3.27220i 0.430901 0.248781i −0.268830 0.963188i \(-0.586637\pi\)
0.699730 + 0.714407i \(0.253304\pi\)
\(174\) 0 0
\(175\) 0.528861 + 0.916015i 0.0399782 + 0.0692442i
\(176\) 10.7201 2.98997i 0.808058 0.225378i
\(177\) 0 0
\(178\) 1.48115 + 2.98427i 0.111017 + 0.223681i
\(179\) 13.5832 + 7.84225i 1.01525 + 0.586157i 0.912726 0.408573i \(-0.133973\pi\)
0.102528 + 0.994730i \(0.467307\pi\)
\(180\) 0 0
\(181\) 4.65816i 0.346238i −0.984901 0.173119i \(-0.944615\pi\)
0.984901 0.173119i \(-0.0553846\pi\)
\(182\) 3.05617 + 0.237805i 0.226538 + 0.0176273i
\(183\) 0 0
\(184\) 10.8828 12.6026i 0.802288 0.929077i
\(185\) −13.2500 + 22.9497i −0.974162 + 1.68730i
\(186\) 0 0
\(187\) 7.20077i 0.526573i
\(188\) 1.65765 + 3.94490i 0.120897 + 0.287711i
\(189\) 0 0
\(190\) −18.5627 1.16913i −1.34668 0.0848176i
\(191\) −4.34236 7.52119i −0.314202 0.544214i 0.665066 0.746785i \(-0.268404\pi\)
−0.979268 + 0.202571i \(0.935070\pi\)
\(192\) 0 0
\(193\) 0.788692 1.36605i 0.0567713 0.0983308i −0.836243 0.548359i \(-0.815253\pi\)
0.893014 + 0.450028i \(0.148586\pi\)
\(194\) 16.6872 + 1.05101i 1.19807 + 0.0754578i
\(195\) 0 0
\(196\) −13.1723 1.66586i −0.940875 0.118990i
\(197\) 22.1460 + 12.7860i 1.57784 + 0.910964i 0.995161 + 0.0982592i \(0.0313274\pi\)
0.582675 + 0.812705i \(0.302006\pi\)
\(198\) 0 0
\(199\) 10.3516 + 17.9295i 0.733807 + 1.27099i 0.955245 + 0.295816i \(0.0955915\pi\)
−0.221438 + 0.975174i \(0.571075\pi\)
\(200\) 4.88807 + 0.933479i 0.345639 + 0.0660069i
\(201\) 0 0
\(202\) −16.4084 + 8.14380i −1.15449 + 0.572996i
\(203\) 1.06953i 0.0750661i
\(204\) 0 0
\(205\) −23.6974 13.6817i −1.65510 0.955571i
\(206\) 5.17471 7.78741i 0.360539 0.542575i
\(207\) 0 0
\(208\) 10.2444 10.1515i 0.710320 0.703879i
\(209\) −14.0747 −0.973564
\(210\) 0 0
\(211\) 18.3083 + 10.5703i 1.26040 + 0.727691i 0.973151 0.230166i \(-0.0739270\pi\)
0.287246 + 0.957857i \(0.407260\pi\)
\(212\) −11.0952 + 4.66223i −0.762023 + 0.320203i
\(213\) 0 0
\(214\) 12.9835 6.44395i 0.887531 0.440499i
\(215\) 12.6728 + 21.9500i 0.864281 + 1.49698i
\(216\) 0 0
\(217\) −1.53126 2.65221i −0.103948 0.180044i
\(218\) −12.7437 8.46816i −0.863114 0.573536i
\(219\) 0 0
\(220\) 14.3531 + 1.81520i 0.967686 + 0.122380i
\(221\) −4.54593 8.14914i −0.305792 0.548171i
\(222\) 0 0
\(223\) 4.03692 6.99214i 0.270332 0.468229i −0.698615 0.715498i \(-0.746200\pi\)
0.968947 + 0.247269i \(0.0795332\pi\)
\(224\) 2.52803 2.27470i 0.168911 0.151985i
\(225\) 0 0
\(226\) −13.4285 0.845760i −0.893248 0.0562591i
\(227\) −19.8519 + 11.4615i −1.31761 + 0.760725i −0.983344 0.181752i \(-0.941823\pi\)
−0.334270 + 0.942477i \(0.608490\pi\)
\(228\) 0 0
\(229\) 0.594709i 0.0392995i −0.999807 0.0196497i \(-0.993745\pi\)
0.999807 0.0196497i \(-0.00625511\pi\)
\(230\) 19.3888 9.62306i 1.27846 0.634526i
\(231\) 0 0
\(232\) 3.80849 + 3.28875i 0.250039 + 0.215917i
\(233\) 0.0945847 0.00619645 0.00309823 0.999995i \(-0.499014\pi\)
0.00309823 + 0.999995i \(0.499014\pi\)
\(234\) 0 0
\(235\) 5.56249i 0.362857i
\(236\) −17.3696 13.1879i −1.13066 0.858462i
\(237\) 0 0
\(238\) −0.978213 1.97093i −0.0634081 0.127757i
\(239\) 15.3694 0.994166 0.497083 0.867703i \(-0.334404\pi\)
0.497083 + 0.867703i \(0.334404\pi\)
\(240\) 0 0
\(241\) 5.02102 + 8.69665i 0.323432 + 0.560201i 0.981194 0.193025i \(-0.0618300\pi\)
−0.657762 + 0.753226i \(0.728497\pi\)
\(242\) −4.59940 0.289683i −0.295661 0.0186215i
\(243\) 0 0
\(244\) −3.40026 2.58166i −0.217679 0.165274i
\(245\) −14.9472 8.62980i −0.954945 0.551338i
\(246\) 0 0
\(247\) −15.9283 + 8.88548i −1.01350 + 0.565370i
\(248\) −14.1528 2.70278i −0.898705 0.171627i
\(249\) 0 0
\(250\) −9.92376 6.59430i −0.627634 0.417060i
\(251\) −14.8114 + 8.55135i −0.934886 + 0.539757i −0.888353 0.459160i \(-0.848150\pi\)
−0.0465324 + 0.998917i \(0.514817\pi\)
\(252\) 0 0
\(253\) 14.1852 8.18984i 0.891818 0.514891i
\(254\) −11.5827 23.3372i −0.726763 1.46430i
\(255\) 0 0
\(256\) −0.326406 15.9967i −0.0204003 0.999792i
\(257\) 10.3500 17.9267i 0.645616 1.11824i −0.338543 0.940951i \(-0.609934\pi\)
0.984159 0.177288i \(-0.0567325\pi\)
\(258\) 0 0
\(259\) 6.12764i 0.380753i
\(260\) 17.3894 7.00701i 1.07845 0.434556i
\(261\) 0 0
\(262\) 0.937376 + 0.622883i 0.0579113 + 0.0384818i
\(263\) 0.515631 0.893099i 0.0317952 0.0550708i −0.849690 0.527283i \(-0.823211\pi\)
0.881485 + 0.472212i \(0.156544\pi\)
\(264\) 0 0
\(265\) −15.6448 −0.961052
\(266\) −3.85239 + 1.91202i −0.236205 + 0.117233i
\(267\) 0 0
\(268\) 0.982490 7.76874i 0.0600151 0.474551i
\(269\) −5.34569 + 3.08633i −0.325932 + 0.188177i −0.654034 0.756465i \(-0.726925\pi\)
0.328101 + 0.944642i \(0.393591\pi\)
\(270\) 0 0
\(271\) 6.85287 11.8695i 0.416282 0.721022i −0.579280 0.815129i \(-0.696666\pi\)
0.995562 + 0.0941065i \(0.0299994\pi\)
\(272\) −10.0263 2.57720i −0.607932 0.156266i
\(273\) 0 0
\(274\) −5.02027 0.316191i −0.303286 0.0191018i
\(275\) 4.23944 + 2.44764i 0.255648 + 0.147598i
\(276\) 0 0
\(277\) −24.4764 + 14.1314i −1.47064 + 0.849076i −0.999457 0.0329570i \(-0.989508\pi\)
−0.471187 + 0.882033i \(0.656174\pi\)
\(278\) 0.191109 3.03430i 0.0114619 0.181986i
\(279\) 0 0
\(280\) 4.17520 1.45301i 0.249516 0.0868337i
\(281\) 12.3330 0.735724 0.367862 0.929880i \(-0.380090\pi\)
0.367862 + 0.929880i \(0.380090\pi\)
\(282\) 0 0
\(283\) 17.0408 + 9.83851i 1.01297 + 0.584838i 0.912060 0.410057i \(-0.134491\pi\)
0.100910 + 0.994896i \(0.467825\pi\)
\(284\) −0.558344 + 0.735384i −0.0331316 + 0.0436370i
\(285\) 0 0
\(286\) 12.7996 6.11903i 0.756859 0.361826i
\(287\) −6.32727 −0.373487
\(288\) 0 0
\(289\) 5.15100 8.92179i 0.303000 0.524811i
\(290\) 2.90807 + 5.85927i 0.170768 + 0.344068i
\(291\) 0 0
\(292\) 11.5292 + 27.4374i 0.674698 + 1.60565i
\(293\) −10.1639 + 5.86812i −0.593780 + 0.342819i −0.766591 0.642136i \(-0.778048\pi\)
0.172811 + 0.984955i \(0.444715\pi\)
\(294\) 0 0
\(295\) −14.1751 24.5520i −0.825308 1.42947i
\(296\) 21.8200 + 18.8422i 1.26826 + 1.09518i
\(297\) 0 0
\(298\) 0.295369 4.68968i 0.0171103 0.271666i
\(299\) 10.8831 18.2238i 0.629388 1.05391i
\(300\) 0 0
\(301\) 5.07552 + 2.93036i 0.292548 + 0.168903i
\(302\) −5.21596 + 7.84950i −0.300145 + 0.451688i
\(303\) 0 0
\(304\) −5.03741 + 19.5974i −0.288915 + 1.12399i
\(305\) −2.77491 4.80629i −0.158891 0.275207i
\(306\) 0 0
\(307\) 5.08990i 0.290496i −0.989395 0.145248i \(-0.953602\pi\)
0.989395 0.145248i \(-0.0463980\pi\)
\(308\) 3.08410 1.29595i 0.175733 0.0738434i
\(309\) 0 0
\(310\) −15.6002 10.3663i −0.886033 0.588766i
\(311\) −25.1578 −1.42657 −0.713284 0.700875i \(-0.752793\pi\)
−0.713284 + 0.700875i \(0.752793\pi\)
\(312\) 0 0
\(313\) 12.4651 0.704569 0.352285 0.935893i \(-0.385405\pi\)
0.352285 + 0.935893i \(0.385405\pi\)
\(314\) 1.46237 + 0.971742i 0.0825266 + 0.0548386i
\(315\) 0 0
\(316\) 6.07404 + 14.4550i 0.341691 + 0.813160i
\(317\) 11.0238i 0.619160i −0.950873 0.309580i \(-0.899811\pi\)
0.950873 0.309580i \(-0.100189\pi\)
\(318\) 0 0
\(319\) 2.47495 + 4.28675i 0.138571 + 0.240012i
\(320\) 7.66453 19.3354i 0.428460 1.08088i
\(321\) 0 0
\(322\) 2.77008 4.16869i 0.154370 0.232312i
\(323\) 11.3379 + 6.54597i 0.630860 + 0.364227i
\(324\) 0 0
\(325\) 6.34301 + 0.0936005i 0.351847 + 0.00519202i
\(326\) 0.968334 15.3746i 0.0536310 0.851520i
\(327\) 0 0
\(328\) −19.4561 + 22.5308i −1.07428 + 1.24406i
\(329\) 0.643110 + 1.11390i 0.0354558 + 0.0614113i
\(330\) 0 0
\(331\) −14.3890 + 8.30750i −0.790891 + 0.456621i −0.840276 0.542158i \(-0.817607\pi\)
0.0493848 + 0.998780i \(0.484274\pi\)
\(332\) −1.71569 + 0.720935i −0.0941606 + 0.0395664i
\(333\) 0 0
\(334\) −8.40163 16.9278i −0.459717 0.926251i
\(335\) 5.08969 8.81560i 0.278079 0.481647i
\(336\) 0 0
\(337\) −11.0591 −0.602427 −0.301214 0.953557i \(-0.597392\pi\)
−0.301214 + 0.953557i \(0.597392\pi\)
\(338\) 10.6224 15.0055i 0.577783 0.816191i
\(339\) 0 0
\(340\) −10.7180 8.13771i −0.581267 0.441330i
\(341\) −12.2748 7.08685i −0.664717 0.383774i
\(342\) 0 0
\(343\) −8.19918 −0.442714
\(344\) 26.0417 9.06276i 1.40408 0.488631i
\(345\) 0 0
\(346\) 0.581763 9.23687i 0.0312758 0.496577i
\(347\) 1.92350 1.11054i 0.103259 0.0596167i −0.447481 0.894293i \(-0.647679\pi\)
0.550740 + 0.834677i \(0.314345\pi\)
\(348\) 0 0
\(349\) 11.6899 + 6.74919i 0.625748 + 0.361276i 0.779104 0.626895i \(-0.215675\pi\)
−0.153355 + 0.988171i \(0.549008\pi\)
\(350\) 1.49289 + 0.0940261i 0.0797982 + 0.00502591i
\(351\) 0 0
\(352\) 4.86874 14.9672i 0.259505 0.797754i
\(353\) 1.75509 3.03991i 0.0934143 0.161798i −0.815531 0.578713i \(-0.803555\pi\)
0.908946 + 0.416915i \(0.136889\pi\)
\(354\) 0 0
\(355\) −1.03947 + 0.600139i −0.0551694 + 0.0318521i
\(356\) 4.67439 + 0.591157i 0.247742 + 0.0313312i
\(357\) 0 0
\(358\) 19.8687 9.86121i 1.05009 0.521181i
\(359\) −25.0138 −1.32018 −0.660090 0.751187i \(-0.729482\pi\)
−0.660090 + 0.751187i \(0.729482\pi\)
\(360\) 0 0
\(361\) 3.29476 5.70670i 0.173409 0.300353i
\(362\) −5.48673 3.64591i −0.288376 0.191625i
\(363\) 0 0
\(364\) 2.67215 3.41366i 0.140059 0.178924i
\(365\) 38.6880i 2.02502i
\(366\) 0 0
\(367\) −10.2910 + 17.8245i −0.537186 + 0.930434i 0.461868 + 0.886949i \(0.347179\pi\)
−0.999054 + 0.0434851i \(0.986154\pi\)
\(368\) −6.32645 22.6825i −0.329789 1.18241i
\(369\) 0 0
\(370\) 16.6612 + 33.5695i 0.866175 + 1.74519i
\(371\) −3.13290 + 1.80878i −0.162652 + 0.0939072i
\(372\) 0 0
\(373\) 12.3015 7.10225i 0.636946 0.367741i −0.146491 0.989212i \(-0.546798\pi\)
0.783437 + 0.621471i \(0.213465\pi\)
\(374\) −8.48162 5.63600i −0.438574 0.291431i
\(375\) 0 0
\(376\) 5.94403 + 1.13514i 0.306540 + 0.0585402i
\(377\) 5.50718 + 3.28886i 0.283634 + 0.169385i
\(378\) 0 0
\(379\) −6.23669 3.60075i −0.320357 0.184958i 0.331195 0.943562i \(-0.392548\pi\)
−0.651552 + 0.758604i \(0.725882\pi\)
\(380\) −15.9060 + 20.9495i −0.815961 + 1.07469i
\(381\) 0 0
\(382\) −12.2578 0.772027i −0.627161 0.0395003i
\(383\) 11.8763 + 20.5704i 0.606852 + 1.05110i 0.991756 + 0.128142i \(0.0409014\pi\)
−0.384903 + 0.922957i \(0.625765\pi\)
\(384\) 0 0
\(385\) 4.34873 0.221632
\(386\) −0.991738 1.99818i −0.0504781 0.101705i
\(387\) 0 0
\(388\) 14.2989 18.8328i 0.725918 0.956093i
\(389\) 20.6264i 1.04580i 0.852394 + 0.522900i \(0.175150\pi\)
−0.852394 + 0.522900i \(0.824850\pi\)
\(390\) 0 0
\(391\) −15.2360 −0.770519
\(392\) −12.2720 + 14.2114i −0.619830 + 0.717785i
\(393\) 0 0
\(394\) 32.3938 16.0777i 1.63198 0.809983i
\(395\) 20.3823i 1.02554i
\(396\) 0 0
\(397\) −25.6669 + 14.8188i −1.28819 + 0.743734i −0.978330 0.207050i \(-0.933614\pi\)
−0.309855 + 0.950784i \(0.600280\pi\)
\(398\) 29.2209 + 1.84041i 1.46471 + 0.0922515i
\(399\) 0 0
\(400\) 4.92538 5.02691i 0.246269 0.251345i
\(401\) −5.32482 + 9.22286i −0.265909 + 0.460568i −0.967801 0.251715i \(-0.919005\pi\)
0.701892 + 0.712283i \(0.252339\pi\)
\(402\) 0 0
\(403\) −18.3654 0.271009i −0.914847 0.0134999i
\(404\) −3.25035 + 25.7011i −0.161711 + 1.27868i
\(405\) 0 0
\(406\) 1.25977 + 0.837112i 0.0625213 + 0.0415452i
\(407\) 14.1798 + 24.5600i 0.702864 + 1.21740i
\(408\) 0 0
\(409\) −0.271387 0.470056i −0.0134192 0.0232428i 0.859238 0.511576i \(-0.170938\pi\)
−0.872657 + 0.488334i \(0.837605\pi\)
\(410\) −34.6631 + 17.2040i −1.71189 + 0.849645i
\(411\) 0 0
\(412\) −5.12239 12.1903i −0.252362 0.600574i
\(413\) −5.67720 3.27773i −0.279357 0.161287i
\(414\) 0 0
\(415\) −2.41920 −0.118754
\(416\) −3.93897 20.0121i −0.193124 0.981174i
\(417\) 0 0
\(418\) −11.0161 + 16.5782i −0.538817 + 0.810866i
\(419\) 17.8473 + 10.3042i 0.871900 + 0.503392i 0.867979 0.496601i \(-0.165419\pi\)
0.00392074 + 0.999992i \(0.498752\pi\)
\(420\) 0 0
\(421\) 2.14198i 0.104394i 0.998637 + 0.0521968i \(0.0166223\pi\)
−0.998637 + 0.0521968i \(0.983378\pi\)
\(422\) 26.7803 13.2916i 1.30365 0.647025i
\(423\) 0 0
\(424\) −3.19263 + 16.7179i −0.155048 + 0.811893i
\(425\) −2.27674 3.94343i −0.110438 0.191284i
\(426\) 0 0
\(427\) −1.11136 0.641646i −0.0537827 0.0310514i
\(428\) 2.57190 20.3365i 0.124318 0.983003i
\(429\) 0 0
\(430\) 35.7733 + 2.25310i 1.72514 + 0.108654i
\(431\) 5.72822 9.92157i 0.275919 0.477905i −0.694448 0.719543i \(-0.744351\pi\)
0.970366 + 0.241638i \(0.0776846\pi\)
\(432\) 0 0
\(433\) −8.14866 14.1139i −0.391600 0.678270i 0.601061 0.799203i \(-0.294745\pi\)
−0.992661 + 0.120933i \(0.961411\pi\)
\(434\) −4.32248 0.272242i −0.207486 0.0130680i
\(435\) 0 0
\(436\) −19.9489 + 8.38255i −0.955378 + 0.401451i
\(437\) 29.7804i 1.42459i
\(438\) 0 0
\(439\) −1.34252 + 2.32532i −0.0640751 + 0.110981i −0.896283 0.443482i \(-0.853743\pi\)
0.832208 + 0.554463i \(0.187076\pi\)
\(440\) 13.3722 15.4854i 0.637493 0.738239i
\(441\) 0 0
\(442\) −13.1567 1.02375i −0.625803 0.0486946i
\(443\) 14.6679i 0.696891i 0.937329 + 0.348446i \(0.113290\pi\)
−0.937329 + 0.348446i \(0.886710\pi\)
\(444\) 0 0
\(445\) 5.30428 + 3.06242i 0.251447 + 0.145173i
\(446\) −5.07621 10.2277i −0.240365 0.484295i
\(447\) 0 0
\(448\) −0.700637 4.75809i −0.0331020 0.224799i
\(449\) −0.656457 1.13702i −0.0309801 0.0536591i 0.850120 0.526590i \(-0.176530\pi\)
−0.881100 + 0.472930i \(0.843196\pi\)
\(450\) 0 0
\(451\) −25.3602 + 14.6417i −1.19416 + 0.689451i
\(452\) −11.5066 + 15.1551i −0.541223 + 0.712835i
\(453\) 0 0
\(454\) −2.03773 + 32.3539i −0.0956356 + 1.51844i
\(455\) 4.92148 2.74540i 0.230722 0.128706i
\(456\) 0 0
\(457\) 9.83743 17.0389i 0.460176 0.797048i −0.538794 0.842438i \(-0.681120\pi\)
0.998969 + 0.0453901i \(0.0144531\pi\)
\(458\) −0.700493 0.465475i −0.0327319 0.0217502i
\(459\) 0 0
\(460\) 3.84075 30.3695i 0.179076 1.41599i
\(461\) 10.1402 5.85445i 0.472277 0.272669i −0.244916 0.969544i \(-0.578760\pi\)
0.717192 + 0.696875i \(0.245427\pi\)
\(462\) 0 0
\(463\) 20.0915 0.933731 0.466866 0.884328i \(-0.345383\pi\)
0.466866 + 0.884328i \(0.345383\pi\)
\(464\) 6.85461 1.91184i 0.318217 0.0887549i
\(465\) 0 0
\(466\) 0.0740309 0.111409i 0.00342941 0.00516092i
\(467\) 38.0472i 1.76061i 0.474405 + 0.880307i \(0.342663\pi\)
−0.474405 + 0.880307i \(0.657337\pi\)
\(468\) 0 0
\(469\) 2.35379i 0.108688i
\(470\) 6.55192 + 4.35373i 0.302218 + 0.200822i
\(471\) 0 0
\(472\) −29.1288 + 10.1371i −1.34076 + 0.466597i
\(473\) 27.1241 1.24717
\(474\) 0 0
\(475\) −7.70784 + 4.45012i −0.353660 + 0.204186i
\(476\) −3.08715 0.390423i −0.141499 0.0178950i
\(477\) 0 0
\(478\) 12.0296 18.1033i 0.550219 0.828025i
\(479\) −4.96607 + 8.60149i −0.226906 + 0.393012i −0.956889 0.290452i \(-0.906194\pi\)
0.729984 + 0.683465i \(0.239528\pi\)
\(480\) 0 0
\(481\) 31.5523 + 18.8429i 1.43866 + 0.859161i
\(482\) 14.1735 + 0.892685i 0.645585 + 0.0406607i
\(483\) 0 0
\(484\) −3.94113 + 5.19079i −0.179142 + 0.235945i
\(485\) 26.6204 15.3693i 1.20877 0.697883i
\(486\) 0 0
\(487\) 11.7461 + 20.3448i 0.532265 + 0.921910i 0.999290 + 0.0376664i \(0.0119924\pi\)
−0.467025 + 0.884244i \(0.654674\pi\)
\(488\) −5.70224 + 1.98443i −0.258128 + 0.0898309i
\(489\) 0 0
\(490\) −21.8639 + 10.8515i −0.987712 + 0.490221i
\(491\) −26.6538 15.3886i −1.20287 0.694478i −0.241679 0.970356i \(-0.577698\pi\)
−0.961193 + 0.275878i \(0.911031\pi\)
\(492\) 0 0
\(493\) 4.60429i 0.207367i
\(494\) −2.00102 + 25.7162i −0.0900300 + 1.15703i
\(495\) 0 0
\(496\) −14.2609 + 14.5548i −0.640332 + 0.653531i
\(497\) −0.138771 + 0.240358i −0.00622472 + 0.0107815i
\(498\) 0 0
\(499\) 4.61772i 0.206718i 0.994644 + 0.103359i \(0.0329590\pi\)
−0.994644 + 0.103359i \(0.967041\pi\)
\(500\) −15.5345 + 6.52764i −0.694725 + 0.291925i
\(501\) 0 0
\(502\) −1.52034 + 24.1390i −0.0678562 + 1.07738i
\(503\) −14.8441 25.7107i −0.661865 1.14638i −0.980125 0.198381i \(-0.936432\pi\)
0.318260 0.948004i \(-0.396902\pi\)
\(504\) 0 0
\(505\) −16.8381 + 29.1644i −0.749285 + 1.29780i
\(506\) 1.45607 23.1186i 0.0647302 1.02775i
\(507\) 0 0
\(508\) −36.5540 4.62287i −1.62182 0.205107i
\(509\) −20.3599 11.7548i −0.902438 0.521023i −0.0244475 0.999701i \(-0.507783\pi\)
−0.877990 + 0.478678i \(0.841116\pi\)
\(510\) 0 0
\(511\) 4.47294 + 7.74736i 0.197871 + 0.342723i
\(512\) −19.0976 12.1360i −0.844001 0.536342i
\(513\) 0 0
\(514\) −13.0146 26.2222i −0.574049 1.15661i
\(515\) 17.1889i 0.757435i
\(516\) 0 0
\(517\) 5.15527 + 2.97640i 0.226729 + 0.130902i
\(518\) 7.21759 + 4.79606i 0.317123 + 0.210727i
\(519\) 0 0
\(520\) 5.35720 25.9669i 0.234929 1.13872i
\(521\) 11.7037 0.512747 0.256374 0.966578i \(-0.417472\pi\)
0.256374 + 0.966578i \(0.417472\pi\)
\(522\) 0 0
\(523\) −10.9235 6.30668i −0.477651 0.275772i 0.241786 0.970330i \(-0.422267\pi\)
−0.719437 + 0.694558i \(0.755600\pi\)
\(524\) 1.46736 0.616586i 0.0641018 0.0269357i
\(525\) 0 0
\(526\) −0.648378 1.30637i −0.0282706 0.0569605i
\(527\) 6.59203 + 11.4177i 0.287153 + 0.497364i
\(528\) 0 0
\(529\) −5.82878 10.0957i −0.253425 0.438945i
\(530\) −12.2451 + 18.4276i −0.531892 + 0.800444i
\(531\) 0 0
\(532\) −0.763123 + 6.03416i −0.0330856 + 0.261614i
\(533\) −19.4567 + 32.5802i −0.842765 + 1.41121i
\(534\) 0 0
\(535\) 13.3235 23.0769i 0.576024 0.997703i
\(536\) −8.38162 7.23780i −0.362031 0.312625i
\(537\) 0 0
\(538\) −0.548718 + 8.71221i −0.0236569 + 0.375610i
\(539\) −15.9961 + 9.23533i −0.688999 + 0.397794i
\(540\) 0 0
\(541\) 40.4799i 1.74037i 0.492728 + 0.870183i \(0.336000\pi\)
−0.492728 + 0.870183i \(0.664000\pi\)
\(542\) −8.61712 17.3620i −0.370137 0.745763i
\(543\) 0 0
\(544\) −10.8831 + 9.79253i −0.466610 + 0.419851i
\(545\) −28.1288 −1.20491
\(546\) 0 0
\(547\) 27.1567i 1.16114i 0.814212 + 0.580568i \(0.197169\pi\)
−0.814212 + 0.580568i \(0.802831\pi\)
\(548\) −4.30177 + 5.66578i −0.183763 + 0.242030i
\(549\) 0 0
\(550\) 6.20119 3.07778i 0.264420 0.131237i
\(551\) −8.99957 −0.383394
\(552\) 0 0
\(553\) 2.35651 + 4.08160i 0.100209 + 0.173567i
\(554\) −2.51243 + 39.8907i −0.106743 + 1.69479i
\(555\) 0 0
\(556\) −3.42445 2.60003i −0.145229 0.110266i
\(557\) 26.2789 + 15.1721i 1.11347 + 0.642863i 0.939726 0.341927i \(-0.111080\pi\)
0.173746 + 0.984791i \(0.444413\pi\)
\(558\) 0 0
\(559\) 30.6965 17.1238i 1.29832 0.724258i
\(560\) 1.55644 6.05512i 0.0657716 0.255875i
\(561\) 0 0
\(562\) 9.65294 14.5267i 0.407185 0.612772i
\(563\) 7.83182 4.52170i 0.330072 0.190567i −0.325801 0.945438i \(-0.605634\pi\)
0.655873 + 0.754871i \(0.272301\pi\)
\(564\) 0 0
\(565\) −21.4218 + 12.3679i −0.901222 + 0.520321i
\(566\) 24.9263 12.3714i 1.04773 0.520008i
\(567\) 0 0
\(568\) 0.429179 + 1.23324i 0.0180079 + 0.0517456i
\(569\) 18.1496 31.4361i 0.760872 1.31787i −0.181529 0.983386i \(-0.558105\pi\)
0.942401 0.334484i \(-0.108562\pi\)
\(570\) 0 0
\(571\) 24.9740i 1.04513i −0.852599 0.522566i \(-0.824975\pi\)
0.852599 0.522566i \(-0.175025\pi\)
\(572\) 2.81075 19.8657i 0.117523 0.830627i
\(573\) 0 0
\(574\) −4.95231 + 7.45273i −0.206706 + 0.311071i
\(575\) 5.17893 8.97016i 0.215976 0.374082i
\(576\) 0 0
\(577\) 14.7654 0.614692 0.307346 0.951598i \(-0.400559\pi\)
0.307346 + 0.951598i \(0.400559\pi\)
\(578\) −6.47711 13.0503i −0.269412 0.542820i
\(579\) 0 0
\(580\) 9.17761 + 1.16067i 0.381080 + 0.0481940i
\(581\) −0.484450 + 0.279697i −0.0200984 + 0.0116038i
\(582\) 0 0
\(583\) −8.37127 + 14.4995i −0.346703 + 0.600507i
\(584\) 41.3417 + 7.89506i 1.71073 + 0.326700i
\(585\) 0 0
\(586\) −1.04329 + 16.5647i −0.0430979 + 0.684282i
\(587\) −33.7254 19.4714i −1.39200 0.803669i −0.398460 0.917186i \(-0.630455\pi\)
−0.993536 + 0.113517i \(0.963788\pi\)
\(588\) 0 0
\(589\) 22.3171 12.8848i 0.919561 0.530909i
\(590\) −40.0140 2.52019i −1.64735 0.103755i
\(591\) 0 0
\(592\) 39.2721 10.9535i 1.61407 0.450186i
\(593\) −19.6722 −0.807842 −0.403921 0.914794i \(-0.632353\pi\)
−0.403921 + 0.914794i \(0.632353\pi\)
\(594\) 0 0
\(595\) −3.50315 2.02255i −0.143615 0.0829163i
\(596\) −5.29268 4.01849i −0.216796 0.164604i
\(597\) 0 0
\(598\) −12.9472 27.0826i −0.529449 1.10749i
\(599\) 0.289136 0.0118138 0.00590689 0.999983i \(-0.498120\pi\)
0.00590689 + 0.999983i \(0.498120\pi\)
\(600\) 0 0
\(601\) −13.3071 + 23.0486i −0.542808 + 0.940171i 0.455933 + 0.890014i \(0.349305\pi\)
−0.998741 + 0.0501569i \(0.984028\pi\)
\(602\) 7.42417 3.68476i 0.302587 0.150180i
\(603\) 0 0
\(604\) 5.16324 + 12.2875i 0.210089 + 0.499972i
\(605\) −7.33722 + 4.23614i −0.298300 + 0.172224i
\(606\) 0 0
\(607\) −4.23231 7.33058i −0.171784 0.297539i 0.767259 0.641337i \(-0.221620\pi\)
−0.939044 + 0.343798i \(0.888287\pi\)
\(608\) 19.1405 + 21.2722i 0.776250 + 0.862701i
\(609\) 0 0
\(610\) −7.83312 0.493351i −0.317154 0.0199752i
\(611\) 7.71327 + 0.113821i 0.312046 + 0.00460470i
\(612\) 0 0
\(613\) −11.1194 6.41977i −0.449107 0.259292i 0.258346 0.966053i \(-0.416823\pi\)
−0.707453 + 0.706760i \(0.750156\pi\)
\(614\) −5.99527 3.98383i −0.241949 0.160774i
\(615\) 0 0
\(616\) 0.887446 4.64702i 0.0357562 0.187234i
\(617\) 2.51106 + 4.34928i 0.101091 + 0.175095i 0.912135 0.409891i \(-0.134433\pi\)
−0.811043 + 0.584986i \(0.801100\pi\)
\(618\) 0 0
\(619\) 25.2782i 1.01602i −0.861353 0.508008i \(-0.830382\pi\)
0.861353 0.508008i \(-0.169618\pi\)
\(620\) −24.4204 + 10.2615i −0.980747 + 0.412111i
\(621\) 0 0
\(622\) −19.6909 + 29.6328i −0.789531 + 1.18817i
\(623\) 1.41626 0.0567411
\(624\) 0 0
\(625\) −30.7015 −1.22806
\(626\) 9.75636 14.6823i 0.389943 0.586824i
\(627\) 0 0
\(628\) 2.28918 0.961919i 0.0913483 0.0383847i
\(629\) 26.3794i 1.05181i
\(630\) 0 0
\(631\) 16.7070 + 28.9374i 0.665097 + 1.15198i 0.979259 + 0.202612i \(0.0649430\pi\)
−0.314163 + 0.949369i \(0.601724\pi\)
\(632\) 21.7804 + 4.15942i 0.866376 + 0.165453i
\(633\) 0 0
\(634\) −12.9847 8.62829i −0.515689 0.342673i
\(635\) −41.4797 23.9483i −1.64607 0.950360i
\(636\) 0 0
\(637\) −12.2724 + 20.5501i −0.486252 + 0.814226i
\(638\) 6.98638 + 0.440021i 0.276594 + 0.0174206i
\(639\) 0 0
\(640\) −16.7757 24.1616i −0.663119 0.955070i
\(641\) 5.95235 + 10.3098i 0.235104 + 0.407212i 0.959303 0.282379i \(-0.0911236\pi\)
−0.724199 + 0.689591i \(0.757790\pi\)
\(642\) 0 0
\(643\) 29.4994 17.0315i 1.16334 0.671656i 0.211239 0.977434i \(-0.432250\pi\)
0.952103 + 0.305778i \(0.0989167\pi\)
\(644\) −2.74207 6.52561i −0.108053 0.257145i
\(645\) 0 0
\(646\) 16.5845 8.23120i 0.652507 0.323852i
\(647\) 19.9224 34.5065i 0.783229 1.35659i −0.146823 0.989163i \(-0.546905\pi\)
0.930052 0.367429i \(-0.119762\pi\)
\(648\) 0 0
\(649\) −30.3395 −1.19093
\(650\) 5.07488 7.39801i 0.199053 0.290174i
\(651\) 0 0
\(652\) −17.3514 13.1742i −0.679535 0.515940i
\(653\) 17.1513 + 9.90232i 0.671183 + 0.387508i 0.796525 0.604606i \(-0.206669\pi\)
−0.125342 + 0.992114i \(0.540003\pi\)
\(654\) 0 0
\(655\) 2.06904 0.0808442
\(656\) 11.3103 + 40.5516i 0.441595 + 1.58327i
\(657\) 0 0
\(658\) 1.81539 + 0.114338i 0.0707714 + 0.00445738i
\(659\) 24.1533 13.9449i 0.940880 0.543218i 0.0506442 0.998717i \(-0.483873\pi\)
0.890236 + 0.455499i \(0.150539\pi\)
\(660\) 0 0
\(661\) 17.0661 + 9.85313i 0.663795 + 0.383242i 0.793722 0.608281i \(-0.208141\pi\)
−0.129926 + 0.991524i \(0.541474\pi\)
\(662\) −1.47699 + 23.4507i −0.0574048 + 0.911437i
\(663\) 0 0
\(664\) −0.493686 + 2.58514i −0.0191587 + 0.100323i
\(665\) −3.95328 + 6.84728i −0.153301 + 0.265526i
\(666\) 0 0
\(667\) 9.07027 5.23672i 0.351202 0.202767i
\(668\) −26.5148 3.35325i −1.02589 0.129741i
\(669\) 0 0
\(670\) −6.40001 12.8949i −0.247254 0.498175i
\(671\) −5.93924 −0.229282
\(672\) 0 0
\(673\) 18.0814 31.3179i 0.696986 1.20722i −0.272521 0.962150i \(-0.587857\pi\)
0.969507 0.245065i \(-0.0788094\pi\)
\(674\) −8.65589 + 13.0262i −0.333412 + 0.501752i
\(675\) 0 0
\(676\) −9.36050 24.2566i −0.360019 0.932945i
\(677\) 43.5560i 1.67399i −0.547209 0.836996i \(-0.684310\pi\)
0.547209 0.836996i \(-0.315690\pi\)
\(678\) 0 0
\(679\) 3.55386 6.15546i 0.136384 0.236225i
\(680\) −17.9741 + 6.25516i −0.689277 + 0.239875i
\(681\) 0 0
\(682\) −17.9548 + 8.91133i −0.687526 + 0.341233i
\(683\) −6.89615 + 3.98149i −0.263874 + 0.152348i −0.626100 0.779742i \(-0.715350\pi\)
0.362227 + 0.932090i \(0.382017\pi\)
\(684\) 0 0
\(685\) −8.00862 + 4.62378i −0.305994 + 0.176666i
\(686\) −6.41745 + 9.65762i −0.245019 + 0.368730i
\(687\) 0 0
\(688\) 9.70790 37.7673i 0.370110 1.43986i
\(689\) −0.320127 + 21.6940i −0.0121959 + 0.826475i
\(690\) 0 0
\(691\) −30.2709 17.4769i −1.15156 0.664854i −0.202294 0.979325i \(-0.564840\pi\)
−0.949267 + 0.314471i \(0.898173\pi\)
\(692\) −10.4245 7.91488i −0.396282 0.300879i
\(693\) 0 0
\(694\) 0.197442 3.13486i 0.00749479 0.118998i
\(695\) −2.79466 4.84049i −0.106007 0.183610i
\(696\) 0 0
\(697\) 27.2388 1.03174
\(698\) 17.0993 8.48675i 0.647220 0.321228i
\(699\) 0 0
\(700\) 1.27922 1.68484i 0.0483502 0.0636811i
\(701\) 10.8831i 0.411050i 0.978652 + 0.205525i \(0.0658901\pi\)
−0.978652 + 0.205525i \(0.934110\pi\)
\(702\) 0 0
\(703\) −51.5612 −1.94467
\(704\) −13.8187 17.4495i −0.520814 0.657652i
\(705\) 0 0
\(706\) −2.20694 4.44660i −0.0830592 0.167350i
\(707\) 7.78698i 0.292859i
\(708\) 0 0
\(709\) 31.1767 17.9999i 1.17087 0.676000i 0.216982 0.976176i \(-0.430379\pi\)
0.953884 + 0.300176i \(0.0970454\pi\)
\(710\) −0.106699 + 1.69409i −0.00400432 + 0.0635781i
\(711\) 0 0
\(712\) 4.35492 5.04316i 0.163208 0.189000i
\(713\) −14.9950 + 25.9720i −0.561566 + 0.972661i
\(714\) 0 0
\(715\) 13.3726 22.3924i 0.500108 0.837428i
\(716\) 3.93580 31.1211i 0.147088 1.16305i
\(717\) 0 0
\(718\) −19.5782 + 29.4632i −0.730651 + 1.09956i
\(719\) 2.97642 + 5.15531i 0.111002 + 0.192261i 0.916174 0.400780i \(-0.131261\pi\)
−0.805173 + 0.593040i \(0.797927\pi\)
\(720\) 0 0
\(721\) −1.98731 3.44212i −0.0740112 0.128191i
\(722\) −4.14299 8.34742i −0.154186 0.310659i
\(723\) 0 0
\(724\) −8.58887 + 3.60906i −0.319203 + 0.134130i
\(725\) 2.71076 + 1.56506i 0.100675 + 0.0581249i
\(726\) 0 0
\(727\) 34.3229 1.27297 0.636484 0.771290i \(-0.280388\pi\)
0.636484 + 0.771290i \(0.280388\pi\)
\(728\) −1.92939 5.81930i −0.0715079 0.215678i
\(729\) 0 0
\(730\) 45.5697 + 30.2809i 1.68661 + 1.12075i
\(731\) −21.8500 12.6151i −0.808153 0.466587i
\(732\) 0 0
\(733\) 6.24499i 0.230664i −0.993327 0.115332i \(-0.963207\pi\)
0.993327 0.115332i \(-0.0367932\pi\)
\(734\) 12.9404 + 26.0727i 0.477639 + 0.962360i
\(735\) 0 0
\(736\) −31.6689 10.3017i −1.16733 0.379726i
\(737\) −5.44682 9.43417i −0.200636 0.347512i
\(738\) 0 0
\(739\) −5.26210 3.03807i −0.193569 0.111757i 0.400083 0.916479i \(-0.368981\pi\)
−0.593652 + 0.804722i \(0.702315\pi\)
\(740\) 52.5813 + 6.64980i 1.93293 + 0.244452i
\(741\) 0 0
\(742\) −0.321583 + 5.10589i −0.0118057 + 0.187443i
\(743\) 4.10832 7.11582i 0.150720 0.261054i −0.780773 0.624815i \(-0.785174\pi\)
0.931492 + 0.363761i \(0.118508\pi\)
\(744\) 0 0
\(745\) −4.31929 7.48124i −0.158247 0.274091i
\(746\) 1.26271 20.0485i 0.0462310 0.734027i
\(747\) 0 0
\(748\) −13.2770 + 5.57902i −0.485456 + 0.203989i
\(749\) 6.16160i 0.225140i
\(750\) 0 0
\(751\) −10.9266 + 18.9254i −0.398717 + 0.690599i −0.993568 0.113238i \(-0.963878\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(752\) 5.98941 6.11286i 0.218411 0.222913i
\(753\) 0 0
\(754\) 8.18431 3.91261i 0.298055 0.142489i
\(755\) 17.3260i 0.630557i
\(756\) 0 0
\(757\) 18.5854 + 10.7303i 0.675498 + 0.389999i 0.798157 0.602450i \(-0.205809\pi\)
−0.122659 + 0.992449i \(0.539142\pi\)
\(758\) −9.12266 + 4.52776i −0.331350 + 0.164456i
\(759\) 0 0
\(760\) 12.2264 + 35.1323i 0.443497 + 1.27438i
\(761\) 11.7372 + 20.3294i 0.425472 + 0.736939i 0.996464 0.0840166i \(-0.0267749\pi\)
−0.570993 + 0.820955i \(0.693442\pi\)
\(762\) 0 0
\(763\) −5.63286 + 3.25213i −0.203923 + 0.117735i
\(764\) −10.5034 + 13.8338i −0.380000 + 0.500491i
\(765\) 0 0
\(766\) 33.5249 + 2.11149i 1.21130 + 0.0762912i
\(767\) −34.3353 + 19.1537i −1.23978 + 0.691599i
\(768\) 0 0
\(769\) −5.94997 + 10.3056i −0.214561 + 0.371631i −0.953137 0.302540i \(-0.902165\pi\)
0.738575 + 0.674171i \(0.235499\pi\)
\(770\) 3.40373 5.12227i 0.122662 0.184594i
\(771\) 0 0
\(772\) −3.12984 0.395822i −0.112645 0.0142459i
\(773\) 12.2803 7.09004i 0.441692 0.255011i −0.262623 0.964898i \(-0.584588\pi\)
0.704315 + 0.709888i \(0.251254\pi\)
\(774\) 0 0
\(775\) −8.96287 −0.321956
\(776\) −10.9911 31.5827i −0.394556 1.13375i
\(777\) 0 0
\(778\) 24.2953 + 16.1442i 0.871030 + 0.578796i
\(779\) 53.2410i 1.90756i
\(780\) 0 0
\(781\) 1.28450i 0.0459630i
\(782\) −11.9251 + 17.9461i −0.426442 + 0.641752i
\(783\) 0 0
\(784\) 7.13406 + 25.5781i 0.254788 + 0.913503i
\(785\) 3.22786 0.115207
\(786\) 0 0
\(787\) −7.12142 + 4.11155i −0.253851 + 0.146561i −0.621526 0.783393i \(-0.713487\pi\)
0.367675 + 0.929954i \(0.380154\pi\)
\(788\) 6.41692 50.7398i 0.228593 1.80753i
\(789\) 0 0
\(790\) 24.0078 + 15.9531i 0.854160 + 0.567586i
\(791\) −2.85984 + 4.95339i −0.101684 + 0.176122i
\(792\) 0 0
\(793\) −6.72146 + 3.74951i −0.238686 + 0.133149i
\(794\) −2.63463 + 41.8310i −0.0934995 + 1.48453i
\(795\) 0 0
\(796\) 25.0388 32.9781i 0.887476 1.16888i
\(797\) −1.61224 + 0.930825i −0.0571083 + 0.0329715i −0.528282 0.849069i \(-0.677164\pi\)
0.471174 + 0.882040i \(0.343830\pi\)
\(798\) 0 0
\(799\) −2.76858 4.79532i −0.0979453 0.169646i
\(800\) −2.06601 9.73602i −0.0730444 0.344220i
\(801\) 0 0
\(802\) 6.69568 + 13.4907i 0.236433 + 0.476372i
\(803\) 35.8558 + 20.7013i 1.26532 + 0.730534i
\(804\) 0 0
\(805\) 9.20142i 0.324308i
\(806\) −14.6937 + 21.4201i −0.517564 + 0.754490i
\(807\) 0 0
\(808\) 27.7287 + 23.9446i 0.975492 + 0.842368i
\(809\) 18.9274 32.7832i 0.665452 1.15260i −0.313711 0.949519i \(-0.601572\pi\)
0.979163 0.203078i \(-0.0650943\pi\)
\(810\) 0 0
\(811\) 16.1872i 0.568409i −0.958764 0.284205i \(-0.908270\pi\)
0.958764 0.284205i \(-0.0917295\pi\)
\(812\) 1.97203 0.828649i 0.0692046 0.0290799i
\(813\) 0 0
\(814\) 40.0271 + 2.52101i 1.40295 + 0.0883615i
\(815\) −14.1603 24.5264i −0.496015 0.859122i
\(816\) 0 0
\(817\) −24.6576 + 42.7082i −0.862659 + 1.49417i
\(818\) −0.766080 0.0482498i −0.0267854 0.00168702i
\(819\) 0 0
\(820\) −6.86645 + 54.2943i −0.239787 + 1.89604i
\(821\) 23.9391 + 13.8212i 0.835479 + 0.482364i 0.855725 0.517431i \(-0.173111\pi\)
−0.0202456 + 0.999795i \(0.506445\pi\)
\(822\) 0 0
\(823\) −16.9386 29.3385i −0.590442 1.02268i −0.994173 0.107797i \(-0.965620\pi\)
0.403731 0.914878i \(-0.367713\pi\)
\(824\) −18.3679 3.50774i −0.639878 0.122198i
\(825\) 0 0
\(826\) −8.30426 + 4.12157i −0.288942 + 0.143408i
\(827\) 1.10220i 0.0383272i −0.999816 0.0191636i \(-0.993900\pi\)
0.999816 0.0191636i \(-0.00610034\pi\)
\(828\) 0 0
\(829\) 17.1870 + 9.92292i 0.596929 + 0.344637i 0.767833 0.640650i \(-0.221335\pi\)
−0.170903 + 0.985288i \(0.554669\pi\)
\(830\) −1.89349 + 2.84952i −0.0657241 + 0.0989082i
\(831\) 0 0
\(832\) −26.6548 11.0237i −0.924088 0.382179i
\(833\) 17.1810 0.595286
\(834\) 0 0
\(835\) −30.0877 17.3712i −1.04123 0.601154i
\(836\) 10.9048 + 25.9513i 0.377150 + 0.897544i
\(837\) 0 0
\(838\) 26.1060 12.9569i 0.901818 0.447590i
\(839\) 8.38043 + 14.5153i 0.289325 + 0.501125i 0.973649 0.228053i \(-0.0732359\pi\)
−0.684324 + 0.729178i \(0.739903\pi\)
\(840\) 0 0
\(841\) −12.9175 22.3737i −0.445430 0.771508i
\(842\) 2.52298 + 1.67651i 0.0869478 + 0.0577764i
\(843\) 0 0
\(844\) 5.30493 41.9471i 0.182603 1.44388i
\(845\) 0.997279 33.7838i 0.0343074 1.16220i
\(846\) 0 0
\(847\) −0.979528 + 1.69659i −0.0336570 + 0.0582956i
\(848\) 17.1927 + 16.8455i 0.590401 + 0.578477i
\(849\) 0 0
\(850\) −6.42686 0.404781i −0.220439 0.0138839i
\(851\) 51.9663 30.0027i 1.78138 1.02848i
\(852\) 0 0
\(853\) 12.5392i 0.429333i 0.976687 + 0.214666i \(0.0688664\pi\)
−0.976687 + 0.214666i \(0.931134\pi\)
\(854\) −1.62564 + 0.806836i −0.0556281 + 0.0276093i
\(855\) 0 0
\(856\) −21.9409 18.9467i −0.749924 0.647583i
\(857\) −34.8182 −1.18937 −0.594684 0.803960i \(-0.702723\pi\)
−0.594684 + 0.803960i \(0.702723\pi\)
\(858\) 0 0
\(859\) 33.1090i 1.12966i −0.825206 0.564832i \(-0.808941\pi\)
0.825206 0.564832i \(-0.191059\pi\)
\(860\) 30.6534 40.3730i 1.04527 1.37671i
\(861\) 0 0
\(862\) −7.20293 14.5127i −0.245333 0.494304i
\(863\) 48.3902 1.64722 0.823611 0.567155i \(-0.191956\pi\)
0.823611 + 0.567155i \(0.191956\pi\)
\(864\) 0 0
\(865\) −8.50735 14.7352i −0.289259 0.501011i
\(866\) −23.0023 1.44875i −0.781650 0.0492305i
\(867\) 0 0
\(868\) −3.70384 + 4.87826i −0.125717 + 0.165579i
\(869\) 18.8902 + 10.9062i 0.640805 + 0.369969i
\(870\) 0 0
\(871\) −12.1201 7.23804i −0.410673 0.245252i
\(872\) −5.74025 + 30.0583i −0.194389 + 1.01790i
\(873\) 0 0
\(874\) 35.0776 + 23.3089i 1.18652 + 0.788436i
\(875\) −4.38641 + 2.53249i −0.148288 + 0.0856139i
\(876\) 0 0
\(877\) 36.8042 21.2489i 1.24279 0.717524i 0.273127 0.961978i \(-0.411942\pi\)
0.969661 + 0.244454i \(0.0786087\pi\)
\(878\) 1.68815 + 3.40134i 0.0569723 + 0.114790i
\(879\) 0 0
\(880\) −7.77360 27.8711i −0.262048 0.939534i
\(881\) −0.254151 + 0.440202i −0.00856257 + 0.0148308i −0.870275 0.492566i \(-0.836059\pi\)
0.861712 + 0.507397i \(0.169392\pi\)
\(882\) 0 0
\(883\) 47.2885i 1.59139i 0.605700 + 0.795693i \(0.292893\pi\)
−0.605700 + 0.795693i \(0.707107\pi\)
\(884\) −11.5035 + 14.6957i −0.386906 + 0.494271i
\(885\) 0 0
\(886\) 17.2769 + 11.4804i 0.580430 + 0.385693i
\(887\) −5.21481 + 9.03232i −0.175096 + 0.303276i −0.940195 0.340638i \(-0.889357\pi\)
0.765098 + 0.643914i \(0.222690\pi\)
\(888\) 0 0
\(889\) −11.0752 −0.371450
\(890\) 7.75878 3.85084i 0.260075 0.129080i
\(891\) 0 0
\(892\) −16.0201 2.02601i −0.536391 0.0678358i
\(893\) −9.37295 + 5.41147i −0.313654 + 0.181088i
\(894\) 0 0
\(895\) 20.3890 35.3147i 0.681528 1.18044i
\(896\) −6.15283 2.89887i −0.205552 0.0968443i
\(897\) 0 0
\(898\) −1.85307 0.116711i −0.0618377 0.00389470i
\(899\) −7.84870 4.53145i −0.261769 0.151132i
\(900\) 0 0
\(901\) 13.4871 7.78677i 0.449320 0.259415i
\(902\) −2.60315 + 41.3311i −0.0866753 + 1.37618i
\(903\) 0 0
\(904\) 8.84468 + 25.4151i 0.294170 + 0.845293i
\(905\) −12.1107 −0.402573
\(906\) 0 0
\(907\) −20.2878 11.7132i −0.673646 0.388930i 0.123811 0.992306i \(-0.460488\pi\)
−0.797457 + 0.603376i \(0.793822\pi\)
\(908\) 36.5139 + 27.7234i 1.21176 + 0.920032i
\(909\) 0 0
\(910\) 0.618267 7.94570i 0.0204953 0.263397i
\(911\) −53.8994 −1.78577 −0.892883 0.450289i \(-0.851321\pi\)
−0.892883 + 0.450289i \(0.851321\pi\)
\(912\) 0 0
\(913\) −1.29447 + 2.24210i −0.0428409 + 0.0742025i
\(914\) −12.3700 24.9235i −0.409165 0.824397i
\(915\) 0 0
\(916\) −1.09654 + 0.460769i −0.0362308 + 0.0152242i
\(917\) 0.414330 0.239214i 0.0136824 0.00789953i
\(918\) 0 0
\(919\) −21.8643 37.8701i −0.721237 1.24922i −0.960504 0.278265i \(-0.910241\pi\)
0.239268 0.970954i \(-0.423093\pi\)
\(920\) −32.7654 28.2940i −1.08024 0.932825i
\(921\) 0 0
\(922\) 1.04086 16.5261i 0.0342789 0.544260i
\(923\) 0.810918 + 1.45367i 0.0266917 + 0.0478482i
\(924\) 0 0
\(925\) 15.5308 + 8.96670i 0.510649 + 0.294823i
\(926\) 15.7255 23.6653i 0.516772 0.777690i
\(927\) 0 0
\(928\) 3.11315 9.57026i 0.102194 0.314159i
\(929\) 2.52459 + 4.37272i 0.0828291 + 0.143464i 0.904464 0.426550i \(-0.140271\pi\)
−0.821635 + 0.570014i \(0.806938\pi\)
\(930\) 0 0
\(931\) 33.5820i 1.10061i
\(932\) −0.0732825 0.174398i −0.00240045 0.00571260i
\(933\) 0 0
\(934\) 44.8148 + 29.7793i 1.46639 + 0.974408i
\(935\) −18.7212 −0.612249
\(936\) 0 0
\(937\) 44.5775 1.45628 0.728141 0.685427i \(-0.240385\pi\)
0.728141 + 0.685427i \(0.240385\pi\)
\(938\) −2.77247 1.84230i −0.0905243 0.0601531i
\(939\) 0 0
\(940\) 10.2563 4.30971i 0.334523 0.140567i
\(941\) 58.1679i 1.89622i 0.317943 + 0.948110i \(0.397008\pi\)
−0.317943 + 0.948110i \(0.602992\pi\)
\(942\) 0 0
\(943\) 30.9802 + 53.6593i 1.00885 + 1.74739i
\(944\) −10.8587 + 42.2444i −0.353421 + 1.37494i
\(945\) 0 0
\(946\) 21.2299 31.9488i 0.690243 1.03875i
\(947\) −8.18618 4.72629i −0.266015 0.153584i 0.361060 0.932542i \(-0.382415\pi\)
−0.627075 + 0.778959i \(0.715748\pi\)
\(948\) 0 0
\(949\) 53.6471 + 0.791642i 1.74146 + 0.0256978i
\(950\) −0.791186 + 12.5620i −0.0256695 + 0.407564i
\(951\) 0 0
\(952\) −2.87617 + 3.33070i −0.0932170 + 0.107949i
\(953\) −9.38165 16.2495i −0.303901 0.526373i 0.673115 0.739538i \(-0.264956\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(954\) 0 0
\(955\) −19.5542 + 11.2897i −0.632761 + 0.365325i
\(956\) −11.9079 28.3386i −0.385131 0.916537i
\(957\) 0 0
\(958\) 6.24457 + 12.5818i 0.201753 + 0.406498i
\(959\) −1.06916 + 1.85184i −0.0345250 + 0.0597991i
\(960\) 0 0
\(961\) −5.04906 −0.162873
\(962\) 46.8903 22.4165i 1.51181 0.722737i
\(963\) 0 0
\(964\) 12.1450 15.9959i 0.391163 0.515194i
\(965\) −3.55159 2.05051i −0.114330 0.0660083i
\(966\) 0 0
\(967\) 13.9692 0.449218 0.224609 0.974449i \(-0.427889\pi\)
0.224609 + 0.974449i \(0.427889\pi\)
\(968\) 3.02940 + 8.70496i 0.0973687 + 0.279788i
\(969\) 0 0
\(970\) 2.73250 43.3849i 0.0877353 1.39301i
\(971\) −10.8263 + 6.25059i −0.347434 + 0.200591i −0.663555 0.748128i \(-0.730953\pi\)
0.316121 + 0.948719i \(0.397620\pi\)
\(972\) 0 0
\(973\) −1.11927 0.646212i −0.0358822 0.0207166i
\(974\) 33.1572 + 2.08833i 1.06243 + 0.0669144i
\(975\) 0 0
\(976\) −2.12569 + 8.26973i −0.0680418 + 0.264707i
\(977\) 7.03484 12.1847i 0.225065 0.389823i −0.731274 0.682084i \(-0.761074\pi\)
0.956339 + 0.292260i \(0.0944074\pi\)
\(978\) 0 0
\(979\) 5.67646 3.27731i 0.181421 0.104743i
\(980\) −4.33104 + 34.2464i −0.138350 + 1.09396i
\(981\) 0 0
\(982\) −38.9877 + 19.3503i −1.24415 + 0.617494i
\(983\) 42.4961 1.35541 0.677707 0.735332i \(-0.262974\pi\)
0.677707 + 0.735332i \(0.262974\pi\)
\(984\) 0 0
\(985\) 33.2422 57.5771i 1.05918 1.83456i
\(986\) −5.42328 3.60375i −0.172713 0.114767i
\(987\) 0 0
\(988\) 28.7243 + 22.4849i 0.913842 + 0.715339i
\(989\) 57.3916i 1.82495i
\(990\) 0 0
\(991\) 4.71260 8.16245i 0.149701 0.259289i −0.781416 0.624010i \(-0.785502\pi\)
0.931117 + 0.364721i \(0.118836\pi\)
\(992\) 5.98188 + 28.1895i 0.189925 + 0.895017i
\(993\) 0 0
\(994\) 0.174497 + 0.351581i 0.00553470 + 0.0111515i
\(995\) 46.6148 26.9131i 1.47779 0.853201i
\(996\) 0 0
\(997\) −6.28844 + 3.63063i −0.199157 + 0.114983i −0.596262 0.802790i \(-0.703348\pi\)
0.397105 + 0.917773i \(0.370015\pi\)
\(998\) 5.43910 + 3.61426i 0.172172 + 0.114408i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.be.a.685.9 24
3.2 odd 2 104.2.r.a.61.4 yes 24
8.5 even 2 inner 936.2.be.a.685.8 24
12.11 even 2 416.2.z.a.113.3 24
13.3 even 3 inner 936.2.be.a.757.8 24
24.5 odd 2 104.2.r.a.61.5 yes 24
24.11 even 2 416.2.z.a.113.10 24
39.29 odd 6 104.2.r.a.29.5 yes 24
104.29 even 6 inner 936.2.be.a.757.9 24
156.107 even 6 416.2.z.a.81.10 24
312.29 odd 6 104.2.r.a.29.4 24
312.107 even 6 416.2.z.a.81.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.r.a.29.4 24 312.29 odd 6
104.2.r.a.29.5 yes 24 39.29 odd 6
104.2.r.a.61.4 yes 24 3.2 odd 2
104.2.r.a.61.5 yes 24 24.5 odd 2
416.2.z.a.81.3 24 312.107 even 6
416.2.z.a.81.10 24 156.107 even 6
416.2.z.a.113.3 24 12.11 even 2
416.2.z.a.113.10 24 24.11 even 2
936.2.be.a.685.8 24 8.5 even 2 inner
936.2.be.a.685.9 24 1.1 even 1 trivial
936.2.be.a.757.8 24 13.3 even 3 inner
936.2.be.a.757.9 24 104.29 even 6 inner