Properties

Label 936.2.be.a.685.7
Level $936$
Weight $2$
Character 936.685
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(685,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,0,-1,0,0,-2,10,0,-3,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 685.7
Character \(\chi\) \(=\) 936.685
Dual form 936.2.be.a.757.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.262058 + 1.38972i) q^{2} +(-1.86265 + 0.728375i) q^{4} -0.497079i q^{5} +(-0.845740 - 1.46486i) q^{7} +(-1.50036 - 2.39769i) q^{8} +(0.690801 - 0.130263i) q^{10} +(3.29345 + 1.90148i) q^{11} +(-1.15864 - 3.41432i) q^{13} +(1.81412 - 1.55922i) q^{14} +(2.93894 - 2.71342i) q^{16} +(1.69983 + 2.94419i) q^{17} +(-1.05470 + 0.608933i) q^{19} +(0.362060 + 0.925884i) q^{20} +(-1.77945 + 5.07528i) q^{22} +(4.43183 - 7.67616i) q^{23} +4.75291 q^{25} +(4.44132 - 2.50493i) q^{26} +(2.64229 + 2.11252i) q^{28} +(-0.342961 - 0.198009i) q^{29} +2.08430 q^{31} +(4.54107 + 3.37323i) q^{32} +(-3.64615 + 3.13383i) q^{34} +(-0.728152 + 0.420399i) q^{35} +(8.53399 + 4.92710i) q^{37} +(-1.12264 - 1.30617i) q^{38} +(-1.19184 + 0.745797i) q^{40} +(2.30090 - 3.98527i) q^{41} +(-2.68011 + 1.54736i) q^{43} +(-7.51955 - 1.14292i) q^{44} +(11.8291 + 4.14741i) q^{46} +3.97467 q^{47} +(2.06945 - 3.58439i) q^{49} +(1.24554 + 6.60522i) q^{50} +(4.64504 + 5.51576i) q^{52} +5.68458i q^{53} +(0.945183 - 1.63711i) q^{55} +(-2.24337 + 4.22565i) q^{56} +(0.185301 - 0.528511i) q^{58} +(-5.36063 + 3.09496i) q^{59} +(3.53620 - 2.04163i) q^{61} +(0.546207 + 2.89659i) q^{62} +(-3.49783 + 7.19480i) q^{64} +(-1.69718 + 0.575933i) q^{65} +(-6.67080 - 3.85139i) q^{67} +(-5.31066 - 4.24588i) q^{68} +(-0.775056 - 0.901760i) q^{70} +(-3.83307 - 6.63908i) q^{71} +6.02464 q^{73} +(-4.61090 + 13.1511i) q^{74} +(1.52101 - 1.90245i) q^{76} -6.43262i q^{77} -9.36611 q^{79} +(-1.34878 - 1.46088i) q^{80} +(6.14138 + 2.15323i) q^{82} +7.17235i q^{83} +(1.46349 - 0.844947i) q^{85} +(-2.85275 - 3.31911i) q^{86} +(-0.382219 - 10.7496i) q^{88} +(6.31322 - 10.9348i) q^{89} +(-4.02161 + 4.58487i) q^{91} +(-2.66383 + 17.5260i) q^{92} +(1.04159 + 5.52368i) q^{94} +(0.302688 + 0.524270i) q^{95} +(0.832515 + 1.44196i) q^{97} +(5.52362 + 1.93664i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 3 q^{10} - 8 q^{14} - q^{16} + 11 q^{20} - 2 q^{22} + 14 q^{23} - 12 q^{25} + 3 q^{26} - 4 q^{28} - 8 q^{31} + 21 q^{32} + 14 q^{34} - 12 q^{38} + 54 q^{40}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.262058 + 1.38972i 0.185303 + 0.982681i
\(3\) 0 0
\(4\) −1.86265 + 0.728375i −0.931326 + 0.364188i
\(5\) 0.497079i 0.222300i −0.993804 0.111150i \(-0.964547\pi\)
0.993804 0.111150i \(-0.0354534\pi\)
\(6\) 0 0
\(7\) −0.845740 1.46486i −0.319660 0.553667i 0.660757 0.750600i \(-0.270235\pi\)
−0.980417 + 0.196933i \(0.936902\pi\)
\(8\) −1.50036 2.39769i −0.530458 0.847711i
\(9\) 0 0
\(10\) 0.690801 0.130263i 0.218450 0.0411929i
\(11\) 3.29345 + 1.90148i 0.993014 + 0.573317i 0.906174 0.422905i \(-0.138990\pi\)
0.0868401 + 0.996222i \(0.472323\pi\)
\(12\) 0 0
\(13\) −1.15864 3.41432i −0.321348 0.946961i
\(14\) 1.81412 1.55922i 0.484844 0.416720i
\(15\) 0 0
\(16\) 2.93894 2.71342i 0.734735 0.678354i
\(17\) 1.69983 + 2.94419i 0.412269 + 0.714070i 0.995137 0.0984962i \(-0.0314032\pi\)
−0.582869 + 0.812566i \(0.698070\pi\)
\(18\) 0 0
\(19\) −1.05470 + 0.608933i −0.241966 + 0.139699i −0.616080 0.787684i \(-0.711280\pi\)
0.374114 + 0.927383i \(0.377947\pi\)
\(20\) 0.362060 + 0.925884i 0.0809590 + 0.207034i
\(21\) 0 0
\(22\) −1.77945 + 5.07528i −0.379379 + 1.08205i
\(23\) 4.43183 7.67616i 0.924101 1.60059i 0.131099 0.991369i \(-0.458149\pi\)
0.793001 0.609220i \(-0.208517\pi\)
\(24\) 0 0
\(25\) 4.75291 0.950583
\(26\) 4.44132 2.50493i 0.871015 0.491257i
\(27\) 0 0
\(28\) 2.64229 + 2.11252i 0.499346 + 0.399228i
\(29\) −0.342961 0.198009i −0.0636863 0.0367693i 0.467819 0.883824i \(-0.345040\pi\)
−0.531505 + 0.847055i \(0.678373\pi\)
\(30\) 0 0
\(31\) 2.08430 0.374351 0.187176 0.982326i \(-0.440067\pi\)
0.187176 + 0.982326i \(0.440067\pi\)
\(32\) 4.54107 + 3.37323i 0.802755 + 0.596309i
\(33\) 0 0
\(34\) −3.64615 + 3.13383i −0.625309 + 0.537448i
\(35\) −0.728152 + 0.420399i −0.123080 + 0.0710604i
\(36\) 0 0
\(37\) 8.53399 + 4.92710i 1.40298 + 0.810011i 0.994697 0.102845i \(-0.0327944\pi\)
0.408283 + 0.912856i \(0.366128\pi\)
\(38\) −1.12264 1.30617i −0.182116 0.211888i
\(39\) 0 0
\(40\) −1.19184 + 0.745797i −0.188446 + 0.117921i
\(41\) 2.30090 3.98527i 0.359339 0.622394i −0.628511 0.777801i \(-0.716335\pi\)
0.987851 + 0.155406i \(0.0496687\pi\)
\(42\) 0 0
\(43\) −2.68011 + 1.54736i −0.408713 + 0.235971i −0.690237 0.723584i \(-0.742494\pi\)
0.281524 + 0.959554i \(0.409160\pi\)
\(44\) −7.51955 1.14292i −1.13361 0.172301i
\(45\) 0 0
\(46\) 11.8291 + 4.14741i 1.74411 + 0.611503i
\(47\) 3.97467 0.579765 0.289882 0.957062i \(-0.406384\pi\)
0.289882 + 0.957062i \(0.406384\pi\)
\(48\) 0 0
\(49\) 2.06945 3.58439i 0.295636 0.512056i
\(50\) 1.24554 + 6.60522i 0.176146 + 0.934120i
\(51\) 0 0
\(52\) 4.64504 + 5.51576i 0.644151 + 0.764899i
\(53\) 5.68458i 0.780837i 0.920637 + 0.390419i \(0.127670\pi\)
−0.920637 + 0.390419i \(0.872330\pi\)
\(54\) 0 0
\(55\) 0.945183 1.63711i 0.127449 0.220747i
\(56\) −2.24337 + 4.22565i −0.299784 + 0.564676i
\(57\) 0 0
\(58\) 0.185301 0.528511i 0.0243313 0.0693968i
\(59\) −5.36063 + 3.09496i −0.697895 + 0.402930i −0.806563 0.591148i \(-0.798675\pi\)
0.108668 + 0.994078i \(0.465341\pi\)
\(60\) 0 0
\(61\) 3.53620 2.04163i 0.452764 0.261404i −0.256233 0.966615i \(-0.582481\pi\)
0.708997 + 0.705211i \(0.249148\pi\)
\(62\) 0.546207 + 2.89659i 0.0693684 + 0.367868i
\(63\) 0 0
\(64\) −3.49783 + 7.19480i −0.437229 + 0.899350i
\(65\) −1.69718 + 0.575933i −0.210510 + 0.0714357i
\(66\) 0 0
\(67\) −6.67080 3.85139i −0.814969 0.470522i 0.0337098 0.999432i \(-0.489268\pi\)
−0.848678 + 0.528909i \(0.822601\pi\)
\(68\) −5.31066 4.24588i −0.644012 0.514889i
\(69\) 0 0
\(70\) −0.775056 0.901760i −0.0926369 0.107781i
\(71\) −3.83307 6.63908i −0.454902 0.787913i 0.543781 0.839227i \(-0.316992\pi\)
−0.998683 + 0.0513141i \(0.983659\pi\)
\(72\) 0 0
\(73\) 6.02464 0.705131 0.352566 0.935787i \(-0.385309\pi\)
0.352566 + 0.935787i \(0.385309\pi\)
\(74\) −4.61090 + 13.1511i −0.536006 + 1.52878i
\(75\) 0 0
\(76\) 1.52101 1.90245i 0.174472 0.218226i
\(77\) 6.43262i 0.733065i
\(78\) 0 0
\(79\) −9.36611 −1.05377 −0.526885 0.849937i \(-0.676640\pi\)
−0.526885 + 0.849937i \(0.676640\pi\)
\(80\) −1.34878 1.46088i −0.150798 0.163332i
\(81\) 0 0
\(82\) 6.14138 + 2.15323i 0.678202 + 0.237785i
\(83\) 7.17235i 0.787268i 0.919267 + 0.393634i \(0.128782\pi\)
−0.919267 + 0.393634i \(0.871218\pi\)
\(84\) 0 0
\(85\) 1.46349 0.844947i 0.158738 0.0916474i
\(86\) −2.85275 3.31911i −0.307620 0.357909i
\(87\) 0 0
\(88\) −0.382219 10.7496i −0.0407447 1.14591i
\(89\) 6.31322 10.9348i 0.669200 1.15909i −0.308929 0.951085i \(-0.599970\pi\)
0.978128 0.208003i \(-0.0666963\pi\)
\(90\) 0 0
\(91\) −4.02161 + 4.58487i −0.421579 + 0.480625i
\(92\) −2.66383 + 17.5260i −0.277724 + 1.82722i
\(93\) 0 0
\(94\) 1.04159 + 5.52368i 0.107432 + 0.569724i
\(95\) 0.302688 + 0.524270i 0.0310551 + 0.0537890i
\(96\) 0 0
\(97\) 0.832515 + 1.44196i 0.0845291 + 0.146409i 0.905190 0.425006i \(-0.139728\pi\)
−0.820661 + 0.571415i \(0.806395\pi\)
\(98\) 5.52362 + 1.93664i 0.557970 + 0.195630i
\(99\) 0 0
\(100\) −8.85302 + 3.46190i −0.885302 + 0.346190i
\(101\) −6.79643 3.92392i −0.676270 0.390444i 0.122178 0.992508i \(-0.461012\pi\)
−0.798448 + 0.602064i \(0.794345\pi\)
\(102\) 0 0
\(103\) 13.2316 1.30375 0.651873 0.758328i \(-0.273983\pi\)
0.651873 + 0.758328i \(0.273983\pi\)
\(104\) −6.44810 + 7.90076i −0.632289 + 0.774733i
\(105\) 0 0
\(106\) −7.89998 + 1.48969i −0.767314 + 0.144691i
\(107\) −7.63683 4.40913i −0.738281 0.426247i 0.0831632 0.996536i \(-0.473498\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(108\) 0 0
\(109\) 3.65580i 0.350162i 0.984554 + 0.175081i \(0.0560188\pi\)
−0.984554 + 0.175081i \(0.943981\pi\)
\(110\) 2.52281 + 0.884525i 0.240541 + 0.0843362i
\(111\) 0 0
\(112\) −6.46037 2.01030i −0.610447 0.189956i
\(113\) 5.71030 + 9.89054i 0.537180 + 0.930423i 0.999054 + 0.0434779i \(0.0138438\pi\)
−0.461874 + 0.886945i \(0.652823\pi\)
\(114\) 0 0
\(115\) −3.81565 2.20297i −0.355811 0.205428i
\(116\) 0.783042 + 0.119017i 0.0727036 + 0.0110504i
\(117\) 0 0
\(118\) −5.70593 6.63872i −0.525274 0.611144i
\(119\) 2.87522 4.98003i 0.263571 0.456519i
\(120\) 0 0
\(121\) 1.73123 + 2.99858i 0.157384 + 0.272598i
\(122\) 3.76398 + 4.37931i 0.340775 + 0.396484i
\(123\) 0 0
\(124\) −3.88232 + 1.51815i −0.348643 + 0.136334i
\(125\) 4.84796i 0.433615i
\(126\) 0 0
\(127\) 6.38026 11.0509i 0.566157 0.980612i −0.430784 0.902455i \(-0.641763\pi\)
0.996941 0.0781574i \(-0.0249037\pi\)
\(128\) −10.9154 2.97556i −0.964795 0.263005i
\(129\) 0 0
\(130\) −1.24515 2.20769i −0.109207 0.193627i
\(131\) 11.2798i 0.985523i −0.870165 0.492761i \(-0.835988\pi\)
0.870165 0.492761i \(-0.164012\pi\)
\(132\) 0 0
\(133\) 1.78401 + 1.03000i 0.154693 + 0.0893121i
\(134\) 3.60422 10.2798i 0.311357 0.888044i
\(135\) 0 0
\(136\) 4.50889 8.49300i 0.386634 0.728269i
\(137\) 3.69961 + 6.40791i 0.316079 + 0.547465i 0.979666 0.200634i \(-0.0643002\pi\)
−0.663587 + 0.748099i \(0.730967\pi\)
\(138\) 0 0
\(139\) −10.2330 + 5.90805i −0.867956 + 0.501115i −0.866668 0.498885i \(-0.833743\pi\)
−0.00128744 + 0.999999i \(0.500410\pi\)
\(140\) 1.05009 1.31342i 0.0887485 0.111005i
\(141\) 0 0
\(142\) 8.22198 7.06673i 0.689973 0.593026i
\(143\) 2.67633 13.4480i 0.223806 1.12458i
\(144\) 0 0
\(145\) −0.0984260 + 0.170479i −0.00817383 + 0.0141575i
\(146\) 1.57881 + 8.37258i 0.130663 + 0.692919i
\(147\) 0 0
\(148\) −19.4846 2.96153i −1.60163 0.243436i
\(149\) 10.6954 6.17498i 0.876199 0.505874i 0.00679591 0.999977i \(-0.497837\pi\)
0.869403 + 0.494103i \(0.164503\pi\)
\(150\) 0 0
\(151\) −17.6993 −1.44035 −0.720175 0.693792i \(-0.755939\pi\)
−0.720175 + 0.693792i \(0.755939\pi\)
\(152\) 3.04247 + 1.61523i 0.246777 + 0.131013i
\(153\) 0 0
\(154\) 8.93955 1.68572i 0.720369 0.135839i
\(155\) 1.03606i 0.0832184i
\(156\) 0 0
\(157\) 2.70138i 0.215594i −0.994173 0.107797i \(-0.965620\pi\)
0.994173 0.107797i \(-0.0343796\pi\)
\(158\) −2.45446 13.0163i −0.195267 1.03552i
\(159\) 0 0
\(160\) 1.67676 2.25727i 0.132560 0.178453i
\(161\) −14.9927 −1.18159
\(162\) 0 0
\(163\) 1.86997 1.07963i 0.146467 0.0845630i −0.424975 0.905205i \(-0.639717\pi\)
0.571443 + 0.820642i \(0.306384\pi\)
\(164\) −1.38300 + 9.09908i −0.107994 + 0.710519i
\(165\) 0 0
\(166\) −9.96757 + 1.87957i −0.773634 + 0.145883i
\(167\) −3.70257 + 6.41303i −0.286513 + 0.496255i −0.972975 0.230910i \(-0.925830\pi\)
0.686462 + 0.727166i \(0.259163\pi\)
\(168\) 0 0
\(169\) −10.3151 + 7.91190i −0.793471 + 0.608607i
\(170\) 1.55776 + 1.81242i 0.119475 + 0.139006i
\(171\) 0 0
\(172\) 3.86505 4.83432i 0.294707 0.368614i
\(173\) −3.65801 + 2.11195i −0.278113 + 0.160569i −0.632569 0.774504i \(-0.718000\pi\)
0.354456 + 0.935073i \(0.384666\pi\)
\(174\) 0 0
\(175\) −4.01973 6.96237i −0.303863 0.526306i
\(176\) 14.8388 3.34819i 1.11851 0.252379i
\(177\) 0 0
\(178\) 16.8508 + 5.90806i 1.26302 + 0.442828i
\(179\) 0.388283 + 0.224175i 0.0290216 + 0.0167557i 0.514441 0.857526i \(-0.328000\pi\)
−0.485419 + 0.874282i \(0.661333\pi\)
\(180\) 0 0
\(181\) 1.46266i 0.108718i 0.998521 + 0.0543592i \(0.0173116\pi\)
−0.998521 + 0.0543592i \(0.982688\pi\)
\(182\) −7.42558 4.38741i −0.550421 0.325217i
\(183\) 0 0
\(184\) −25.0544 + 0.890850i −1.84703 + 0.0656743i
\(185\) 2.44916 4.24207i 0.180066 0.311883i
\(186\) 0 0
\(187\) 12.9287i 0.945442i
\(188\) −7.40342 + 2.89505i −0.539950 + 0.211143i
\(189\) 0 0
\(190\) −0.649268 + 0.558041i −0.0471029 + 0.0404845i
\(191\) 4.12331 + 7.14178i 0.298352 + 0.516761i 0.975759 0.218847i \(-0.0702297\pi\)
−0.677407 + 0.735609i \(0.736896\pi\)
\(192\) 0 0
\(193\) −6.31137 + 10.9316i −0.454302 + 0.786875i −0.998648 0.0519863i \(-0.983445\pi\)
0.544345 + 0.838861i \(0.316778\pi\)
\(194\) −1.78575 + 1.53484i −0.128210 + 0.110195i
\(195\) 0 0
\(196\) −1.24388 + 8.18381i −0.0888486 + 0.584558i
\(197\) 15.2949 + 8.83050i 1.08971 + 0.629147i 0.933500 0.358576i \(-0.116738\pi\)
0.156214 + 0.987723i \(0.450071\pi\)
\(198\) 0 0
\(199\) −9.92096 17.1836i −0.703278 1.21811i −0.967309 0.253599i \(-0.918386\pi\)
0.264032 0.964514i \(-0.414948\pi\)
\(200\) −7.13109 11.3960i −0.504244 0.805820i
\(201\) 0 0
\(202\) 3.67210 10.4734i 0.258368 0.736908i
\(203\) 0.669856i 0.0470147i
\(204\) 0 0
\(205\) −1.98099 1.14373i −0.138358 0.0798813i
\(206\) 3.46744 + 18.3882i 0.241588 + 1.28117i
\(207\) 0 0
\(208\) −12.6696 6.89061i −0.878481 0.477778i
\(209\) −4.63149 −0.320367
\(210\) 0 0
\(211\) 13.0695 + 7.54568i 0.899742 + 0.519466i 0.877116 0.480278i \(-0.159464\pi\)
0.0226255 + 0.999744i \(0.492797\pi\)
\(212\) −4.14051 10.5884i −0.284371 0.727214i
\(213\) 0 0
\(214\) 4.12617 11.7685i 0.282059 0.804479i
\(215\) 0.769161 + 1.33223i 0.0524563 + 0.0908570i
\(216\) 0 0
\(217\) −1.76277 3.05321i −0.119665 0.207266i
\(218\) −5.08055 + 0.958032i −0.344098 + 0.0648861i
\(219\) 0 0
\(220\) −0.568120 + 3.73781i −0.0383026 + 0.252003i
\(221\) 8.08291 9.21499i 0.543715 0.619867i
\(222\) 0 0
\(223\) 4.97902 8.62392i 0.333420 0.577500i −0.649760 0.760139i \(-0.725131\pi\)
0.983180 + 0.182639i \(0.0584640\pi\)
\(224\) 1.10077 9.50492i 0.0735483 0.635074i
\(225\) 0 0
\(226\) −12.2487 + 10.5276i −0.814769 + 0.700287i
\(227\) −1.19973 + 0.692666i −0.0796291 + 0.0459739i −0.539286 0.842123i \(-0.681306\pi\)
0.459657 + 0.888097i \(0.347972\pi\)
\(228\) 0 0
\(229\) 22.8190i 1.50793i −0.656917 0.753963i \(-0.728140\pi\)
0.656917 0.753963i \(-0.271860\pi\)
\(230\) 2.06159 5.88000i 0.135937 0.387716i
\(231\) 0 0
\(232\) 0.0398021 + 1.11940i 0.00261313 + 0.0734922i
\(233\) −4.47546 −0.293197 −0.146599 0.989196i \(-0.546833\pi\)
−0.146599 + 0.989196i \(0.546833\pi\)
\(234\) 0 0
\(235\) 1.97572i 0.128882i
\(236\) 7.73069 9.66939i 0.503225 0.629423i
\(237\) 0 0
\(238\) 7.67433 + 2.69070i 0.497453 + 0.174412i
\(239\) −18.4932 −1.19623 −0.598114 0.801411i \(-0.704083\pi\)
−0.598114 + 0.801411i \(0.704083\pi\)
\(240\) 0 0
\(241\) 6.87454 + 11.9070i 0.442828 + 0.767000i 0.997898 0.0648032i \(-0.0206420\pi\)
−0.555070 + 0.831803i \(0.687309\pi\)
\(242\) −3.71350 + 3.19173i −0.238713 + 0.205172i
\(243\) 0 0
\(244\) −5.09964 + 6.37852i −0.326471 + 0.408343i
\(245\) −1.78172 1.02868i −0.113830 0.0657199i
\(246\) 0 0
\(247\) 3.30111 + 2.89556i 0.210044 + 0.184240i
\(248\) −3.12720 4.99750i −0.198577 0.317342i
\(249\) 0 0
\(250\) 6.73732 1.27045i 0.426105 0.0803502i
\(251\) 3.45759 1.99624i 0.218241 0.126002i −0.386894 0.922124i \(-0.626452\pi\)
0.605136 + 0.796122i \(0.293119\pi\)
\(252\) 0 0
\(253\) 29.1921 16.8540i 1.83529 1.05960i
\(254\) 17.0297 + 5.97080i 1.06854 + 0.374641i
\(255\) 0 0
\(256\) 1.27473 15.9491i 0.0796706 0.996821i
\(257\) 3.41417 5.91352i 0.212970 0.368875i −0.739673 0.672967i \(-0.765020\pi\)
0.952643 + 0.304092i \(0.0983530\pi\)
\(258\) 0 0
\(259\) 16.6682i 1.03571i
\(260\) 2.74177 2.30895i 0.170037 0.143195i
\(261\) 0 0
\(262\) 15.6758 2.95597i 0.968455 0.182620i
\(263\) −5.96177 + 10.3261i −0.367619 + 0.636734i −0.989193 0.146621i \(-0.953160\pi\)
0.621574 + 0.783355i \(0.286493\pi\)
\(264\) 0 0
\(265\) 2.82568 0.173580
\(266\) −0.963896 + 2.74919i −0.0591003 + 0.168564i
\(267\) 0 0
\(268\) 15.2306 + 2.31495i 0.930359 + 0.141408i
\(269\) 18.3269 10.5811i 1.11741 0.645139i 0.176674 0.984270i \(-0.443466\pi\)
0.940739 + 0.339131i \(0.110133\pi\)
\(270\) 0 0
\(271\) −10.8551 + 18.8016i −0.659402 + 1.14212i 0.321368 + 0.946954i \(0.395857\pi\)
−0.980771 + 0.195164i \(0.937476\pi\)
\(272\) 12.9845 + 4.04045i 0.787301 + 0.244988i
\(273\) 0 0
\(274\) −7.93570 + 6.82067i −0.479413 + 0.412052i
\(275\) 15.6535 + 9.03755i 0.943942 + 0.544985i
\(276\) 0 0
\(277\) −1.51540 + 0.874918i −0.0910517 + 0.0525687i −0.544835 0.838544i \(-0.683408\pi\)
0.453783 + 0.891112i \(0.350074\pi\)
\(278\) −10.8922 12.6728i −0.653271 0.760066i
\(279\) 0 0
\(280\) 2.10048 + 1.11513i 0.125528 + 0.0666420i
\(281\) 16.9779 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(282\) 0 0
\(283\) −14.3699 8.29645i −0.854200 0.493173i 0.00786548 0.999969i \(-0.497496\pi\)
−0.862066 + 0.506796i \(0.830830\pi\)
\(284\) 11.9754 + 9.57437i 0.710610 + 0.568134i
\(285\) 0 0
\(286\) 19.3904 + 0.195198i 1.14658 + 0.0115423i
\(287\) −7.78383 −0.459465
\(288\) 0 0
\(289\) 2.72118 4.71322i 0.160069 0.277248i
\(290\) −0.262711 0.0921093i −0.0154269 0.00540885i
\(291\) 0 0
\(292\) −11.2218 + 4.38820i −0.656707 + 0.256800i
\(293\) −19.9026 + 11.4908i −1.16272 + 0.671299i −0.951955 0.306237i \(-0.900930\pi\)
−0.210769 + 0.977536i \(0.567597\pi\)
\(294\) 0 0
\(295\) 1.53844 + 2.66465i 0.0895714 + 0.155142i
\(296\) −0.990405 27.8543i −0.0575661 1.61900i
\(297\) 0 0
\(298\) 11.3843 + 13.2454i 0.659475 + 0.767285i
\(299\) −31.3437 6.23781i −1.81265 0.360742i
\(300\) 0 0
\(301\) 4.53335 + 2.61733i 0.261298 + 0.150860i
\(302\) −4.63825 24.5971i −0.266901 1.41541i
\(303\) 0 0
\(304\) −1.44742 + 4.65147i −0.0830152 + 0.266780i
\(305\) −1.01485 1.75777i −0.0581101 0.100650i
\(306\) 0 0
\(307\) 14.1283i 0.806346i 0.915124 + 0.403173i \(0.132093\pi\)
−0.915124 + 0.403173i \(0.867907\pi\)
\(308\) 4.68536 + 11.9817i 0.266973 + 0.682722i
\(309\) 0 0
\(310\) 1.43983 0.271508i 0.0817771 0.0154206i
\(311\) −18.5022 −1.04917 −0.524583 0.851359i \(-0.675779\pi\)
−0.524583 + 0.851359i \(0.675779\pi\)
\(312\) 0 0
\(313\) −30.0763 −1.70001 −0.850007 0.526772i \(-0.823402\pi\)
−0.850007 + 0.526772i \(0.823402\pi\)
\(314\) 3.75417 0.707918i 0.211860 0.0399501i
\(315\) 0 0
\(316\) 17.4458 6.82204i 0.981403 0.383770i
\(317\) 29.4608i 1.65469i 0.561698 + 0.827343i \(0.310148\pi\)
−0.561698 + 0.827343i \(0.689852\pi\)
\(318\) 0 0
\(319\) −0.753019 1.30427i −0.0421609 0.0730249i
\(320\) 3.57638 + 1.73870i 0.199926 + 0.0971962i
\(321\) 0 0
\(322\) −3.92896 20.8357i −0.218952 1.16113i
\(323\) −3.58563 2.07016i −0.199510 0.115187i
\(324\) 0 0
\(325\) −5.50689 16.2280i −0.305467 0.900165i
\(326\) 1.99042 + 2.31581i 0.110239 + 0.128261i
\(327\) 0 0
\(328\) −13.0076 + 0.462507i −0.718225 + 0.0255377i
\(329\) −3.36153 5.82234i −0.185327 0.320996i
\(330\) 0 0
\(331\) 5.82316 3.36200i 0.320070 0.184792i −0.331354 0.943507i \(-0.607505\pi\)
0.651424 + 0.758714i \(0.274172\pi\)
\(332\) −5.22416 13.3596i −0.286713 0.733203i
\(333\) 0 0
\(334\) −9.88262 3.46495i −0.540753 0.189594i
\(335\) −1.91444 + 3.31591i −0.104597 + 0.181168i
\(336\) 0 0
\(337\) 24.6061 1.34038 0.670191 0.742189i \(-0.266212\pi\)
0.670191 + 0.742189i \(0.266212\pi\)
\(338\) −13.6985 12.2618i −0.745100 0.666953i
\(339\) 0 0
\(340\) −2.11054 + 2.63981i −0.114460 + 0.143164i
\(341\) 6.86454 + 3.96325i 0.371736 + 0.214622i
\(342\) 0 0
\(343\) −18.8412 −1.01733
\(344\) 7.73123 + 4.10447i 0.416840 + 0.221298i
\(345\) 0 0
\(346\) −3.89364 4.53016i −0.209323 0.243543i
\(347\) −24.0795 + 13.9023i −1.29265 + 0.746314i −0.979124 0.203264i \(-0.934845\pi\)
−0.313530 + 0.949578i \(0.601512\pi\)
\(348\) 0 0
\(349\) −1.80201 1.04039i −0.0964596 0.0556910i 0.450994 0.892527i \(-0.351069\pi\)
−0.547454 + 0.836836i \(0.684403\pi\)
\(350\) 8.62235 7.41084i 0.460884 0.396126i
\(351\) 0 0
\(352\) 8.54167 + 19.7443i 0.455273 + 1.05238i
\(353\) −9.53154 + 16.5091i −0.507312 + 0.878691i 0.492652 + 0.870227i \(0.336028\pi\)
−0.999964 + 0.00846439i \(0.997306\pi\)
\(354\) 0 0
\(355\) −3.30014 + 1.90534i −0.175153 + 0.101125i
\(356\) −3.79468 + 24.9661i −0.201117 + 1.32320i
\(357\) 0 0
\(358\) −0.209789 + 0.598352i −0.0110877 + 0.0316239i
\(359\) 6.51007 0.343588 0.171794 0.985133i \(-0.445044\pi\)
0.171794 + 0.985133i \(0.445044\pi\)
\(360\) 0 0
\(361\) −8.75840 + 15.1700i −0.460968 + 0.798421i
\(362\) −2.03268 + 0.383301i −0.106836 + 0.0201458i
\(363\) 0 0
\(364\) 4.15135 11.4692i 0.217590 0.601152i
\(365\) 2.99472i 0.156751i
\(366\) 0 0
\(367\) 2.78509 4.82392i 0.145381 0.251806i −0.784134 0.620591i \(-0.786893\pi\)
0.929515 + 0.368785i \(0.120226\pi\)
\(368\) −7.80373 34.5852i −0.406798 1.80288i
\(369\) 0 0
\(370\) 6.53711 + 2.29198i 0.339848 + 0.119154i
\(371\) 8.32714 4.80768i 0.432323 0.249602i
\(372\) 0 0
\(373\) −14.8322 + 8.56338i −0.767982 + 0.443395i −0.832154 0.554544i \(-0.812893\pi\)
0.0641721 + 0.997939i \(0.479559\pi\)
\(374\) −17.9673 + 3.38808i −0.929068 + 0.175193i
\(375\) 0 0
\(376\) −5.96343 9.53002i −0.307541 0.491473i
\(377\) −0.278698 + 1.40040i −0.0143537 + 0.0721242i
\(378\) 0 0
\(379\) 10.6206 + 6.13180i 0.545543 + 0.314969i 0.747322 0.664462i \(-0.231339\pi\)
−0.201780 + 0.979431i \(0.564672\pi\)
\(380\) −0.945667 0.756063i −0.0485117 0.0387852i
\(381\) 0 0
\(382\) −8.84454 + 7.60181i −0.452526 + 0.388943i
\(383\) 1.62701 + 2.81807i 0.0831365 + 0.143997i 0.904596 0.426271i \(-0.140173\pi\)
−0.821459 + 0.570267i \(0.806840\pi\)
\(384\) 0 0
\(385\) −3.19752 −0.162961
\(386\) −16.8458 5.90633i −0.857431 0.300624i
\(387\) 0 0
\(388\) −2.60097 2.07948i −0.132044 0.105570i
\(389\) 17.9829i 0.911769i −0.890039 0.455884i \(-0.849323\pi\)
0.890039 0.455884i \(-0.150677\pi\)
\(390\) 0 0
\(391\) 30.1334 1.52391
\(392\) −11.6992 + 0.415983i −0.590898 + 0.0210103i
\(393\) 0 0
\(394\) −8.26379 + 23.5697i −0.416324 + 1.18743i
\(395\) 4.65569i 0.234253i
\(396\) 0 0
\(397\) −17.9828 + 10.3824i −0.902532 + 0.521077i −0.878021 0.478622i \(-0.841136\pi\)
−0.0245115 + 0.999700i \(0.507803\pi\)
\(398\) 21.2806 18.2905i 1.06670 0.916818i
\(399\) 0 0
\(400\) 13.9685 12.8966i 0.698426 0.644832i
\(401\) −1.17622 + 2.03728i −0.0587377 + 0.101737i −0.893899 0.448268i \(-0.852041\pi\)
0.835161 + 0.550005i \(0.185374\pi\)
\(402\) 0 0
\(403\) −2.41494 7.11646i −0.120297 0.354496i
\(404\) 15.5175 + 2.35854i 0.772022 + 0.117342i
\(405\) 0 0
\(406\) −0.930913 + 0.175541i −0.0462004 + 0.00871195i
\(407\) 18.7376 + 32.4544i 0.928786 + 1.60870i
\(408\) 0 0
\(409\) 18.1089 + 31.3655i 0.895426 + 1.55092i 0.833276 + 0.552857i \(0.186462\pi\)
0.0621499 + 0.998067i \(0.480204\pi\)
\(410\) 1.07033 3.05275i 0.0528596 0.150764i
\(411\) 0 0
\(412\) −24.6458 + 9.63755i −1.21421 + 0.474808i
\(413\) 9.06740 + 5.23506i 0.446177 + 0.257601i
\(414\) 0 0
\(415\) 3.56522 0.175010
\(416\) 6.25585 19.4130i 0.306718 0.951800i
\(417\) 0 0
\(418\) −1.21372 6.43648i −0.0593649 0.314819i
\(419\) 20.6067 + 11.8973i 1.00671 + 0.581222i 0.910225 0.414113i \(-0.135908\pi\)
0.0964800 + 0.995335i \(0.469242\pi\)
\(420\) 0 0
\(421\) 19.8220i 0.966067i 0.875602 + 0.483033i \(0.160465\pi\)
−0.875602 + 0.483033i \(0.839535\pi\)
\(422\) −7.06143 + 20.1404i −0.343745 + 0.980418i
\(423\) 0 0
\(424\) 13.6299 8.52892i 0.661925 0.414201i
\(425\) 8.07913 + 13.9935i 0.391895 + 0.678783i
\(426\) 0 0
\(427\) −5.98141 3.45337i −0.289461 0.167120i
\(428\) 17.4363 + 2.65019i 0.842813 + 0.128102i
\(429\) 0 0
\(430\) −1.64986 + 1.41804i −0.0795632 + 0.0683839i
\(431\) −0.190576 + 0.330088i −0.00917975 + 0.0158998i −0.870579 0.492029i \(-0.836255\pi\)
0.861399 + 0.507929i \(0.169589\pi\)
\(432\) 0 0
\(433\) −1.76379 3.05497i −0.0847622 0.146813i 0.820528 0.571607i \(-0.193680\pi\)
−0.905290 + 0.424794i \(0.860346\pi\)
\(434\) 3.78117 3.24988i 0.181502 0.155999i
\(435\) 0 0
\(436\) −2.66280 6.80949i −0.127525 0.326115i
\(437\) 10.7948i 0.516383i
\(438\) 0 0
\(439\) 3.20727 5.55516i 0.153075 0.265133i −0.779282 0.626674i \(-0.784416\pi\)
0.932356 + 0.361541i \(0.117749\pi\)
\(440\) −5.34339 + 0.189993i −0.254736 + 0.00905756i
\(441\) 0 0
\(442\) 14.9245 + 8.81813i 0.709884 + 0.419436i
\(443\) 17.5752i 0.835023i 0.908672 + 0.417512i \(0.137098\pi\)
−0.908672 + 0.417512i \(0.862902\pi\)
\(444\) 0 0
\(445\) −5.43546 3.13816i −0.257666 0.148763i
\(446\) 13.2896 + 4.65949i 0.629283 + 0.220633i
\(447\) 0 0
\(448\) 13.4977 0.961078i 0.637705 0.0454067i
\(449\) 18.1700 + 31.4714i 0.857498 + 1.48523i 0.874308 + 0.485371i \(0.161315\pi\)
−0.0168107 + 0.999859i \(0.505351\pi\)
\(450\) 0 0
\(451\) 15.1558 8.75020i 0.713658 0.412031i
\(452\) −17.8403 14.2634i −0.839138 0.670893i
\(453\) 0 0
\(454\) −1.27701 1.48578i −0.0599332 0.0697309i
\(455\) 2.27904 + 1.99905i 0.106843 + 0.0937171i
\(456\) 0 0
\(457\) −6.58332 + 11.4026i −0.307955 + 0.533393i −0.977915 0.209004i \(-0.932978\pi\)
0.669960 + 0.742397i \(0.266311\pi\)
\(458\) 31.7121 5.97991i 1.48181 0.279423i
\(459\) 0 0
\(460\) 8.71182 + 1.32413i 0.406191 + 0.0617381i
\(461\) −12.7594 + 7.36666i −0.594266 + 0.343099i −0.766782 0.641907i \(-0.778143\pi\)
0.172517 + 0.985007i \(0.444810\pi\)
\(462\) 0 0
\(463\) −5.65151 −0.262648 −0.131324 0.991339i \(-0.541923\pi\)
−0.131324 + 0.991339i \(0.541923\pi\)
\(464\) −1.54522 + 0.348661i −0.0717352 + 0.0161862i
\(465\) 0 0
\(466\) −1.17283 6.21965i −0.0543303 0.288120i
\(467\) 29.5883i 1.36918i −0.728926 0.684592i \(-0.759980\pi\)
0.728926 0.684592i \(-0.240020\pi\)
\(468\) 0 0
\(469\) 13.0291i 0.601628i
\(470\) 2.74570 0.517753i 0.126650 0.0238822i
\(471\) 0 0
\(472\) 15.4636 + 8.20957i 0.711772 + 0.377876i
\(473\) −11.7691 −0.541144
\(474\) 0 0
\(475\) −5.01291 + 2.89421i −0.230008 + 0.132795i
\(476\) −1.72821 + 11.3703i −0.0792122 + 0.521157i
\(477\) 0 0
\(478\) −4.84630 25.7004i −0.221665 1.17551i
\(479\) −7.57479 + 13.1199i −0.346101 + 0.599464i −0.985553 0.169367i \(-0.945828\pi\)
0.639452 + 0.768831i \(0.279161\pi\)
\(480\) 0 0
\(481\) 6.93491 34.8465i 0.316205 1.58886i
\(482\) −14.7459 + 12.6740i −0.671660 + 0.577286i
\(483\) 0 0
\(484\) −5.40877 4.32432i −0.245853 0.196560i
\(485\) 0.716766 0.413825i 0.0325467 0.0187908i
\(486\) 0 0
\(487\) 15.0531 + 26.0728i 0.682122 + 1.18147i 0.974332 + 0.225116i \(0.0722761\pi\)
−0.292210 + 0.956354i \(0.594391\pi\)
\(488\) −10.2008 5.41554i −0.461767 0.245150i
\(489\) 0 0
\(490\) 0.962662 2.74567i 0.0434886 0.124037i
\(491\) 23.2315 + 13.4127i 1.04842 + 0.605307i 0.922208 0.386695i \(-0.126383\pi\)
0.126216 + 0.992003i \(0.459717\pi\)
\(492\) 0 0
\(493\) 1.34632i 0.0606353i
\(494\) −3.15894 + 5.34642i −0.142127 + 0.240547i
\(495\) 0 0
\(496\) 6.12563 5.65557i 0.275049 0.253943i
\(497\) −6.48356 + 11.2299i −0.290828 + 0.503728i
\(498\) 0 0
\(499\) 18.5109i 0.828660i 0.910127 + 0.414330i \(0.135984\pi\)
−0.910127 + 0.414330i \(0.864016\pi\)
\(500\) 3.53114 + 9.03007i 0.157917 + 0.403837i
\(501\) 0 0
\(502\) 3.68031 + 4.28196i 0.164260 + 0.191113i
\(503\) −7.36468 12.7560i −0.328375 0.568762i 0.653815 0.756655i \(-0.273168\pi\)
−0.982190 + 0.187893i \(0.939834\pi\)
\(504\) 0 0
\(505\) −1.95050 + 3.37836i −0.0867959 + 0.150335i
\(506\) 31.0724 + 36.1521i 1.38134 + 1.60716i
\(507\) 0 0
\(508\) −3.83498 + 25.2313i −0.170150 + 1.11946i
\(509\) −28.9656 16.7233i −1.28388 0.741248i −0.306324 0.951927i \(-0.599099\pi\)
−0.977555 + 0.210680i \(0.932432\pi\)
\(510\) 0 0
\(511\) −5.09528 8.82528i −0.225402 0.390408i
\(512\) 22.4989 2.40808i 0.994321 0.106423i
\(513\) 0 0
\(514\) 9.11285 + 3.19506i 0.401951 + 0.140928i
\(515\) 6.57713i 0.289823i
\(516\) 0 0
\(517\) 13.0904 + 7.55773i 0.575714 + 0.332389i
\(518\) 23.1641 4.36803i 1.01777 0.191920i
\(519\) 0 0
\(520\) 3.92730 + 3.20521i 0.172223 + 0.140558i
\(521\) −29.7885 −1.30506 −0.652530 0.757763i \(-0.726292\pi\)
−0.652530 + 0.757763i \(0.726292\pi\)
\(522\) 0 0
\(523\) −1.49190 0.861351i −0.0652364 0.0376642i 0.467027 0.884243i \(-0.345325\pi\)
−0.532263 + 0.846579i \(0.678658\pi\)
\(524\) 8.21594 + 21.0104i 0.358915 + 0.917843i
\(525\) 0 0
\(526\) −15.9127 5.57917i −0.693828 0.243263i
\(527\) 3.54295 + 6.13656i 0.154333 + 0.267313i
\(528\) 0 0
\(529\) −27.7822 48.1203i −1.20792 2.09218i
\(530\) 0.740493 + 3.92691i 0.0321650 + 0.170574i
\(531\) 0 0
\(532\) −4.07321 0.619099i −0.176596 0.0268414i
\(533\) −16.2729 3.23852i −0.704856 0.140276i
\(534\) 0 0
\(535\) −2.19168 + 3.79611i −0.0947547 + 0.164120i
\(536\) 0.774174 + 21.7730i 0.0334392 + 0.940450i
\(537\) 0 0
\(538\) 19.5074 + 22.6965i 0.841026 + 0.978515i
\(539\) 13.6313 7.87002i 0.587141 0.338986i
\(540\) 0 0
\(541\) 36.6856i 1.57724i 0.614883 + 0.788618i \(0.289203\pi\)
−0.614883 + 0.788618i \(0.710797\pi\)
\(542\) −28.9737 10.1585i −1.24453 0.436345i
\(543\) 0 0
\(544\) −2.21240 + 19.1037i −0.0948560 + 0.819063i
\(545\) 1.81722 0.0778412
\(546\) 0 0
\(547\) 33.7227i 1.44188i 0.692999 + 0.720939i \(0.256289\pi\)
−0.692999 + 0.720939i \(0.743711\pi\)
\(548\) −11.5584 9.24100i −0.493752 0.394756i
\(549\) 0 0
\(550\) −8.45756 + 24.1224i −0.360631 + 1.02858i
\(551\) 0.482297 0.0205465
\(552\) 0 0
\(553\) 7.92129 + 13.7201i 0.336848 + 0.583437i
\(554\) −1.61302 1.87671i −0.0685305 0.0797337i
\(555\) 0 0
\(556\) 14.7573 18.4581i 0.625850 0.782800i
\(557\) −2.44793 1.41331i −0.103722 0.0598839i 0.447242 0.894413i \(-0.352406\pi\)
−0.550964 + 0.834529i \(0.685740\pi\)
\(558\) 0 0
\(559\) 8.38846 + 7.35792i 0.354794 + 0.311207i
\(560\) −0.999278 + 3.21131i −0.0422272 + 0.135703i
\(561\) 0 0
\(562\) 4.44919 + 23.5945i 0.187678 + 0.995275i
\(563\) 7.06225 4.07739i 0.297638 0.171842i −0.343743 0.939064i \(-0.611695\pi\)
0.641381 + 0.767222i \(0.278362\pi\)
\(564\) 0 0
\(565\) 4.91637 2.83847i 0.206833 0.119415i
\(566\) 7.76402 22.1443i 0.326346 0.930793i
\(567\) 0 0
\(568\) −10.1675 + 19.1515i −0.426617 + 0.803580i
\(569\) 15.0669 26.0967i 0.631638 1.09403i −0.355579 0.934646i \(-0.615716\pi\)
0.987217 0.159382i \(-0.0509503\pi\)
\(570\) 0 0
\(571\) 32.3914i 1.35554i −0.735276 0.677768i \(-0.762947\pi\)
0.735276 0.677768i \(-0.237053\pi\)
\(572\) 4.81012 + 26.9983i 0.201121 + 1.12886i
\(573\) 0 0
\(574\) −2.03982 10.8174i −0.0851402 0.451508i
\(575\) 21.0641 36.4841i 0.878434 1.52149i
\(576\) 0 0
\(577\) 15.3547 0.639225 0.319612 0.947548i \(-0.396447\pi\)
0.319612 + 0.947548i \(0.396447\pi\)
\(578\) 7.26317 + 2.54654i 0.302108 + 0.105922i
\(579\) 0 0
\(580\) 0.0591608 0.389233i 0.00245652 0.0161620i
\(581\) 10.5065 6.06594i 0.435884 0.251658i
\(582\) 0 0
\(583\) −10.8091 + 18.7219i −0.447667 + 0.775382i
\(584\) −9.03914 14.4452i −0.374042 0.597748i
\(585\) 0 0
\(586\) −21.1846 24.6479i −0.875129 1.01819i
\(587\) 0.529297 + 0.305590i 0.0218464 + 0.0126130i 0.510883 0.859650i \(-0.329318\pi\)
−0.489037 + 0.872263i \(0.662652\pi\)
\(588\) 0 0
\(589\) −2.19832 + 1.26920i −0.0905800 + 0.0522964i
\(590\) −3.29997 + 2.83630i −0.135858 + 0.116768i
\(591\) 0 0
\(592\) 38.4502 8.67583i 1.58029 0.356574i
\(593\) −39.5530 −1.62425 −0.812123 0.583486i \(-0.801688\pi\)
−0.812123 + 0.583486i \(0.801688\pi\)
\(594\) 0 0
\(595\) −2.47547 1.42921i −0.101484 0.0585919i
\(596\) −15.4241 + 19.2921i −0.631794 + 0.790234i
\(597\) 0 0
\(598\) 0.454955 45.1937i 0.0186045 1.84811i
\(599\) 18.3132 0.748257 0.374128 0.927377i \(-0.377942\pi\)
0.374128 + 0.927377i \(0.377942\pi\)
\(600\) 0 0
\(601\) 5.87056 10.1681i 0.239465 0.414766i −0.721096 0.692836i \(-0.756361\pi\)
0.960561 + 0.278069i \(0.0896945\pi\)
\(602\) −2.44936 + 6.98599i −0.0998285 + 0.284728i
\(603\) 0 0
\(604\) 32.9677 12.8917i 1.34144 0.524558i
\(605\) 1.49053 0.860557i 0.0605986 0.0349866i
\(606\) 0 0
\(607\) 17.0834 + 29.5893i 0.693393 + 1.20099i 0.970719 + 0.240216i \(0.0772184\pi\)
−0.277326 + 0.960776i \(0.589448\pi\)
\(608\) −6.84355 0.792555i −0.277543 0.0321423i
\(609\) 0 0
\(610\) 2.17686 1.87100i 0.0881386 0.0757544i
\(611\) −4.60519 13.5708i −0.186306 0.549015i
\(612\) 0 0
\(613\) −17.1561 9.90507i −0.692928 0.400062i 0.111780 0.993733i \(-0.464345\pi\)
−0.804708 + 0.593671i \(0.797678\pi\)
\(614\) −19.6344 + 3.70244i −0.792381 + 0.149418i
\(615\) 0 0
\(616\) −15.4234 + 9.65125i −0.621427 + 0.388860i
\(617\) −3.28645 5.69230i −0.132308 0.229164i 0.792258 0.610186i \(-0.208905\pi\)
−0.924566 + 0.381023i \(0.875572\pi\)
\(618\) 0 0
\(619\) 12.1233i 0.487277i 0.969866 + 0.243638i \(0.0783410\pi\)
−0.969866 + 0.243638i \(0.921659\pi\)
\(620\) 0.754640 + 1.92982i 0.0303071 + 0.0775034i
\(621\) 0 0
\(622\) −4.84866 25.7130i −0.194414 1.03100i
\(623\) −21.3574 −0.855664
\(624\) 0 0
\(625\) 21.3547 0.854190
\(626\) −7.88174 41.7977i −0.315017 1.67057i
\(627\) 0 0
\(628\) 1.96762 + 5.03173i 0.0785165 + 0.200788i
\(629\) 33.5009i 1.33577i
\(630\) 0 0
\(631\) 7.76063 + 13.4418i 0.308946 + 0.535110i 0.978132 0.207985i \(-0.0666905\pi\)
−0.669186 + 0.743095i \(0.733357\pi\)
\(632\) 14.0526 + 22.4570i 0.558980 + 0.893293i
\(633\) 0 0
\(634\) −40.9424 + 7.72045i −1.62603 + 0.306618i
\(635\) −5.49319 3.17149i −0.217990 0.125857i
\(636\) 0 0
\(637\) −14.6360 2.91276i −0.579899 0.115408i
\(638\) 1.61523 1.38828i 0.0639477 0.0549625i
\(639\) 0 0
\(640\) −1.47909 + 5.42581i −0.0584660 + 0.214474i
\(641\) 5.10157 + 8.83618i 0.201500 + 0.349008i 0.949012 0.315240i \(-0.102085\pi\)
−0.747512 + 0.664248i \(0.768752\pi\)
\(642\) 0 0
\(643\) 35.8102 20.6750i 1.41222 0.815343i 0.416619 0.909081i \(-0.363215\pi\)
0.995597 + 0.0937380i \(0.0298816\pi\)
\(644\) 27.9262 10.9203i 1.10045 0.430320i
\(645\) 0 0
\(646\) 1.93731 5.52552i 0.0762223 0.217399i
\(647\) 2.36752 4.10066i 0.0930767 0.161214i −0.815728 0.578436i \(-0.803663\pi\)
0.908804 + 0.417223i \(0.136996\pi\)
\(648\) 0 0
\(649\) −23.5400 −0.924026
\(650\) 21.1092 11.9057i 0.827971 0.466980i
\(651\) 0 0
\(652\) −2.69673 + 3.37301i −0.105612 + 0.132097i
\(653\) 11.0711 + 6.39190i 0.433245 + 0.250134i 0.700728 0.713428i \(-0.252859\pi\)
−0.267483 + 0.963563i \(0.586192\pi\)
\(654\) 0 0
\(655\) −5.60696 −0.219082
\(656\) −4.05150 17.9558i −0.158185 0.701054i
\(657\) 0 0
\(658\) 7.21052 6.19738i 0.281095 0.241599i
\(659\) 26.7651 15.4528i 1.04262 0.601957i 0.122046 0.992524i \(-0.461054\pi\)
0.920574 + 0.390567i \(0.127721\pi\)
\(660\) 0 0
\(661\) 37.1109 + 21.4260i 1.44345 + 0.833374i 0.998078 0.0619739i \(-0.0197396\pi\)
0.445368 + 0.895348i \(0.353073\pi\)
\(662\) 6.19825 + 7.21153i 0.240902 + 0.280284i
\(663\) 0 0
\(664\) 17.1971 10.7611i 0.667376 0.417613i
\(665\) 0.511990 0.886792i 0.0198541 0.0343883i
\(666\) 0 0
\(667\) −3.03989 + 1.75508i −0.117705 + 0.0679571i
\(668\) 2.22550 14.6421i 0.0861070 0.566520i
\(669\) 0 0
\(670\) −5.10989 1.79158i −0.197412 0.0692149i
\(671\) 15.5284 0.599469
\(672\) 0 0
\(673\) −1.93359 + 3.34907i −0.0745343 + 0.129097i −0.900884 0.434061i \(-0.857080\pi\)
0.826349 + 0.563158i \(0.190414\pi\)
\(674\) 6.44823 + 34.1957i 0.248377 + 1.31717i
\(675\) 0 0
\(676\) 13.4507 22.2504i 0.517333 0.855784i
\(677\) 35.0468i 1.34696i −0.739206 0.673479i \(-0.764799\pi\)
0.739206 0.673479i \(-0.235201\pi\)
\(678\) 0 0
\(679\) 1.40818 2.43904i 0.0540411 0.0936018i
\(680\) −4.22169 2.24127i −0.161894 0.0859489i
\(681\) 0 0
\(682\) −3.70890 + 10.5784i −0.142021 + 0.405068i
\(683\) −27.6732 + 15.9771i −1.05889 + 0.611348i −0.925124 0.379665i \(-0.876039\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(684\) 0 0
\(685\) 3.18524 1.83900i 0.121702 0.0702645i
\(686\) −4.93749 26.1840i −0.188514 0.999711i
\(687\) 0 0
\(688\) −3.67804 + 11.8199i −0.140224 + 0.450628i
\(689\) 19.4090 6.58636i 0.739423 0.250920i
\(690\) 0 0
\(691\) 5.89675 + 3.40449i 0.224323 + 0.129513i 0.607950 0.793975i \(-0.291992\pi\)
−0.383627 + 0.923488i \(0.625325\pi\)
\(692\) 5.27530 6.59824i 0.200537 0.250827i
\(693\) 0 0
\(694\) −25.6305 29.8206i −0.972921 1.13197i
\(695\) 2.93677 + 5.08663i 0.111398 + 0.192947i
\(696\) 0 0
\(697\) 15.6445 0.592577
\(698\) 0.973624 2.77694i 0.0368522 0.105109i
\(699\) 0 0
\(700\) 12.5586 + 10.0406i 0.474669 + 0.379499i
\(701\) 39.0001i 1.47301i −0.676431 0.736506i \(-0.736474\pi\)
0.676431 0.736506i \(-0.263526\pi\)
\(702\) 0 0
\(703\) −12.0011 −0.452630
\(704\) −25.2007 + 17.0447i −0.949787 + 0.642396i
\(705\) 0 0
\(706\) −25.4409 8.91984i −0.957480 0.335703i
\(707\) 13.2745i 0.499237i
\(708\) 0 0
\(709\) −11.4006 + 6.58214i −0.428159 + 0.247198i −0.698562 0.715550i \(-0.746176\pi\)
0.270403 + 0.962747i \(0.412843\pi\)
\(710\) −3.51272 4.08697i −0.131830 0.153381i
\(711\) 0 0
\(712\) −35.6904 + 1.26903i −1.33755 + 0.0475589i
\(713\) 9.23726 15.9994i 0.345938 0.599182i
\(714\) 0 0
\(715\) −6.68472 1.33035i −0.249994 0.0497522i
\(716\) −0.886520 0.134745i −0.0331308 0.00503565i
\(717\) 0 0
\(718\) 1.70602 + 9.04719i 0.0636680 + 0.337638i
\(719\) −4.83129 8.36804i −0.180177 0.312075i 0.761764 0.647855i \(-0.224334\pi\)
−0.941941 + 0.335779i \(0.891000\pi\)
\(720\) 0 0
\(721\) −11.1905 19.3825i −0.416755 0.721841i
\(722\) −23.3773 8.19632i −0.870012 0.305035i
\(723\) 0 0
\(724\) −1.06536 2.72442i −0.0395939 0.101252i
\(725\) −1.63007 0.941119i −0.0605391 0.0349523i
\(726\) 0 0
\(727\) −34.2293 −1.26949 −0.634747 0.772720i \(-0.718896\pi\)
−0.634747 + 0.772720i \(0.718896\pi\)
\(728\) 17.0270 + 2.76361i 0.631061 + 0.102426i
\(729\) 0 0
\(730\) 4.16183 0.784791i 0.154036 0.0290464i
\(731\) −9.11145 5.26050i −0.336999 0.194566i
\(732\) 0 0
\(733\) 4.21648i 0.155739i 0.996964 + 0.0778697i \(0.0248118\pi\)
−0.996964 + 0.0778697i \(0.975188\pi\)
\(734\) 7.43376 + 2.60635i 0.274385 + 0.0962023i
\(735\) 0 0
\(736\) 46.0187 19.9083i 1.69627 0.733831i
\(737\) −14.6467 25.3688i −0.539517 0.934470i
\(738\) 0 0
\(739\) −36.8643 21.2836i −1.35608 0.782931i −0.366983 0.930228i \(-0.619609\pi\)
−0.989092 + 0.147297i \(0.952943\pi\)
\(740\) −1.47211 + 9.68540i −0.0541159 + 0.356042i
\(741\) 0 0
\(742\) 8.86352 + 10.3125i 0.325390 + 0.378584i
\(743\) −20.6614 + 35.7866i −0.757994 + 1.31288i 0.185878 + 0.982573i \(0.440487\pi\)
−0.943872 + 0.330311i \(0.892846\pi\)
\(744\) 0 0
\(745\) −3.06945 5.31644i −0.112456 0.194779i
\(746\) −15.7876 18.3685i −0.578025 0.672520i
\(747\) 0 0
\(748\) −9.41696 24.0817i −0.344318 0.880514i
\(749\) 14.9159i 0.545015i
\(750\) 0 0
\(751\) 6.54731 11.3403i 0.238915 0.413812i −0.721488 0.692427i \(-0.756542\pi\)
0.960403 + 0.278614i \(0.0898750\pi\)
\(752\) 11.6813 10.7849i 0.425973 0.393286i
\(753\) 0 0
\(754\) −2.01920 0.0203268i −0.0735349 0.000740260i
\(755\) 8.79795i 0.320190i
\(756\) 0 0
\(757\) −0.284326 0.164156i −0.0103340 0.00596635i 0.494824 0.868993i \(-0.335232\pi\)
−0.505158 + 0.863027i \(0.668566\pi\)
\(758\) −5.73828 + 16.3665i −0.208424 + 0.594459i
\(759\) 0 0
\(760\) 0.802897 1.51235i 0.0291241 0.0548586i
\(761\) −8.81782 15.2729i −0.319646 0.553642i 0.660768 0.750590i \(-0.270231\pi\)
−0.980414 + 0.196947i \(0.936897\pi\)
\(762\) 0 0
\(763\) 5.35525 3.09186i 0.193873 0.111933i
\(764\) −12.8822 10.2993i −0.466061 0.372617i
\(765\) 0 0
\(766\) −3.48996 + 2.99959i −0.126097 + 0.108380i
\(767\) 16.7782 + 14.7170i 0.605826 + 0.531399i
\(768\) 0 0
\(769\) 25.0216 43.3387i 0.902302 1.56283i 0.0778027 0.996969i \(-0.475210\pi\)
0.824499 0.565864i \(-0.191457\pi\)
\(770\) −0.837935 4.44366i −0.0301971 0.160138i
\(771\) 0 0
\(772\) 3.79357 24.9588i 0.136533 0.898288i
\(773\) 13.1919 7.61633i 0.474479 0.273940i −0.243634 0.969867i \(-0.578340\pi\)
0.718113 + 0.695927i \(0.245006\pi\)
\(774\) 0 0
\(775\) 9.90649 0.355852
\(776\) 2.20830 4.15957i 0.0792732 0.149320i
\(777\) 0 0
\(778\) 24.9912 4.71256i 0.895978 0.168953i
\(779\) 5.60437i 0.200797i
\(780\) 0 0
\(781\) 29.1540i 1.04321i
\(782\) 7.89669 + 41.8770i 0.282385 + 1.49752i
\(783\) 0 0
\(784\) −3.64396 16.1496i −0.130142 0.576771i
\(785\) −1.34280 −0.0479265
\(786\) 0 0
\(787\) 47.6148 27.4904i 1.69728 0.979927i 0.748963 0.662611i \(-0.230552\pi\)
0.948320 0.317316i \(-0.102781\pi\)
\(788\) −34.9209 5.30774i −1.24401 0.189080i
\(789\) 0 0
\(790\) −6.47012 + 1.22006i −0.230196 + 0.0434078i
\(791\) 9.65886 16.7296i 0.343429 0.594837i
\(792\) 0 0
\(793\) −11.0679 9.70822i −0.393034 0.344749i
\(794\) −19.1412 22.2703i −0.679295 0.790345i
\(795\) 0 0
\(796\) 30.9954 + 24.7809i 1.09860 + 0.878335i
\(797\) −43.7170 + 25.2400i −1.54853 + 0.894047i −0.550281 + 0.834980i \(0.685479\pi\)
−0.998254 + 0.0590673i \(0.981187\pi\)
\(798\) 0 0
\(799\) 6.75624 + 11.7022i 0.239019 + 0.413992i
\(800\) 21.5833 + 16.0327i 0.763085 + 0.566841i
\(801\) 0 0
\(802\) −3.13949 1.10074i −0.110859 0.0388684i
\(803\) 19.8419 + 11.4557i 0.700205 + 0.404264i
\(804\) 0 0
\(805\) 7.45255i 0.262668i
\(806\) 9.25704 5.22102i 0.326065 0.183903i
\(807\) 0 0
\(808\) 0.788753 + 22.1830i 0.0277482 + 0.780396i
\(809\) −2.20857 + 3.82536i −0.0776493 + 0.134493i −0.902235 0.431244i \(-0.858075\pi\)
0.824586 + 0.565737i \(0.191408\pi\)
\(810\) 0 0
\(811\) 2.09970i 0.0737305i 0.999320 + 0.0368652i \(0.0117372\pi\)
−0.999320 + 0.0368652i \(0.988263\pi\)
\(812\) −0.487906 1.24771i −0.0171222 0.0437860i
\(813\) 0 0
\(814\) −40.1922 + 34.5449i −1.40874 + 1.21080i
\(815\) −0.536660 0.929523i −0.0187984 0.0325598i
\(816\) 0 0
\(817\) 1.88448 3.26402i 0.0659296 0.114193i
\(818\) −38.8437 + 33.3859i −1.35814 + 1.16731i
\(819\) 0 0
\(820\) 4.52296 + 0.687458i 0.157949 + 0.0240071i
\(821\) 18.0251 + 10.4068i 0.629079 + 0.363199i 0.780395 0.625286i \(-0.215018\pi\)
−0.151316 + 0.988485i \(0.548351\pi\)
\(822\) 0 0
\(823\) 3.91287 + 6.77729i 0.136394 + 0.236241i 0.926129 0.377207i \(-0.123115\pi\)
−0.789735 + 0.613448i \(0.789782\pi\)
\(824\) −19.8521 31.7252i −0.691582 1.10520i
\(825\) 0 0
\(826\) −4.89910 + 13.9730i −0.170461 + 0.486184i
\(827\) 25.1308i 0.873884i −0.899490 0.436942i \(-0.856062\pi\)
0.899490 0.436942i \(-0.143938\pi\)
\(828\) 0 0
\(829\) −43.4669 25.0957i −1.50967 0.871608i −0.999936 0.0112755i \(-0.996411\pi\)
−0.509733 0.860333i \(-0.670256\pi\)
\(830\) 0.934295 + 4.95467i 0.0324299 + 0.171979i
\(831\) 0 0
\(832\) 28.6180 + 3.60657i 0.992152 + 0.125035i
\(833\) 14.0708 0.487525
\(834\) 0 0
\(835\) 3.18778 + 1.84047i 0.110318 + 0.0636920i
\(836\) 8.62685 3.37346i 0.298366 0.116674i
\(837\) 0 0
\(838\) −11.1338 + 31.7554i −0.384610 + 1.09697i
\(839\) −24.4177 42.2926i −0.842991 1.46010i −0.887354 0.461088i \(-0.847459\pi\)
0.0443634 0.999015i \(-0.485874\pi\)
\(840\) 0 0
\(841\) −14.4216 24.9789i −0.497296 0.861342i
\(842\) −27.5471 + 5.19452i −0.949336 + 0.179015i
\(843\) 0 0
\(844\) −29.8400 4.53547i −1.02714 0.156117i
\(845\) 3.93283 + 5.12743i 0.135294 + 0.176389i
\(846\) 0 0
\(847\) 2.92834 5.07203i 0.100619 0.174277i
\(848\) 15.4246 + 16.7066i 0.529684 + 0.573708i
\(849\) 0 0
\(850\) −17.3298 + 14.8948i −0.594408 + 0.510889i
\(851\) 75.6424 43.6722i 2.59299 1.49706i
\(852\) 0 0
\(853\) 47.8014i 1.63669i −0.574728 0.818345i \(-0.694892\pi\)
0.574728 0.818345i \(-0.305108\pi\)
\(854\) 3.23175 9.21748i 0.110588 0.315416i
\(855\) 0 0
\(856\) 0.886286 + 24.9260i 0.0302926 + 0.851955i
\(857\) 34.4402 1.17646 0.588228 0.808695i \(-0.299826\pi\)
0.588228 + 0.808695i \(0.299826\pi\)
\(858\) 0 0
\(859\) 18.3183i 0.625012i 0.949916 + 0.312506i \(0.101168\pi\)
−0.949916 + 0.312506i \(0.898832\pi\)
\(860\) −2.40304 1.92123i −0.0819429 0.0655135i
\(861\) 0 0
\(862\) −0.508673 0.178346i −0.0173255 0.00607449i
\(863\) 24.5989 0.837356 0.418678 0.908135i \(-0.362494\pi\)
0.418678 + 0.908135i \(0.362494\pi\)
\(864\) 0 0
\(865\) 1.04981 + 1.81832i 0.0356945 + 0.0618247i
\(866\) 3.78334 3.25175i 0.128563 0.110499i
\(867\) 0 0
\(868\) 5.50732 + 4.40311i 0.186931 + 0.149451i
\(869\) −30.8469 17.8094i −1.04641 0.604144i
\(870\) 0 0
\(871\) −5.42084 + 27.2386i −0.183678 + 0.922945i
\(872\) 8.76548 5.48502i 0.296837 0.185746i
\(873\) 0 0
\(874\) −15.0017 + 2.82885i −0.507440 + 0.0956873i
\(875\) −7.10161 + 4.10012i −0.240078 + 0.138609i
\(876\) 0 0
\(877\) −28.4988 + 16.4538i −0.962337 + 0.555605i −0.896891 0.442251i \(-0.854180\pi\)
−0.0654453 + 0.997856i \(0.520847\pi\)
\(878\) 8.56061 + 3.00144i 0.288907 + 0.101294i
\(879\) 0 0
\(880\) −1.66431 7.37603i −0.0561040 0.248646i
\(881\) −18.9830 + 32.8795i −0.639553 + 1.10774i 0.345978 + 0.938243i \(0.387547\pi\)
−0.985531 + 0.169495i \(0.945786\pi\)
\(882\) 0 0
\(883\) 57.4770i 1.93425i −0.254295 0.967127i \(-0.581843\pi\)
0.254295 0.967127i \(-0.418157\pi\)
\(884\) −8.34367 + 23.0517i −0.280628 + 0.775312i
\(885\) 0 0
\(886\) −24.4246 + 4.60572i −0.820562 + 0.154732i
\(887\) −8.29035 + 14.3593i −0.278363 + 0.482138i −0.970978 0.239169i \(-0.923125\pi\)
0.692615 + 0.721307i \(0.256458\pi\)
\(888\) 0 0
\(889\) −21.5842 −0.723910
\(890\) 2.93677 8.37616i 0.0984407 0.280769i
\(891\) 0 0
\(892\) −2.99273 + 19.6899i −0.100204 + 0.659268i
\(893\) −4.19209 + 2.42031i −0.140283 + 0.0809924i
\(894\) 0 0
\(895\) 0.111433 0.193007i 0.00372479 0.00645152i
\(896\) 4.87280 + 18.5061i 0.162789 + 0.618246i
\(897\) 0 0
\(898\) −38.9749 + 33.4987i −1.30061 + 1.11786i
\(899\) −0.714834 0.412710i −0.0238410 0.0137646i
\(900\) 0 0
\(901\) −16.7365 + 9.66280i −0.557573 + 0.321915i
\(902\) 16.1320 + 18.7693i 0.537138 + 0.624948i
\(903\) 0 0
\(904\) 15.1469 28.5309i 0.503779 0.948924i
\(905\) 0.727055 0.0241681
\(906\) 0 0
\(907\) 13.4171 + 7.74635i 0.445507 + 0.257213i 0.705931 0.708281i \(-0.250529\pi\)
−0.260424 + 0.965494i \(0.583862\pi\)
\(908\) 1.73016 2.16405i 0.0574175 0.0718166i
\(909\) 0 0
\(910\) −2.18089 + 3.69110i −0.0722958 + 0.122359i
\(911\) 3.26320 0.108115 0.0540574 0.998538i \(-0.482785\pi\)
0.0540574 + 0.998538i \(0.482785\pi\)
\(912\) 0 0
\(913\) −13.6381 + 23.6218i −0.451354 + 0.781768i
\(914\) −17.5717 6.16083i −0.581221 0.203782i
\(915\) 0 0
\(916\) 16.6208 + 42.5039i 0.549168 + 1.40437i
\(917\) −16.5234 + 9.53979i −0.545651 + 0.315032i
\(918\) 0 0
\(919\) −12.7268 22.0434i −0.419817 0.727144i 0.576104 0.817377i \(-0.304572\pi\)
−0.995921 + 0.0902323i \(0.971239\pi\)
\(920\) 0.442822 + 12.4540i 0.0145994 + 0.410596i
\(921\) 0 0
\(922\) −13.5813 15.8016i −0.447277 0.520397i
\(923\) −18.2268 + 20.7796i −0.599942 + 0.683969i
\(924\) 0 0
\(925\) 40.5613 + 23.4181i 1.33365 + 0.769982i
\(926\) −1.48102 7.85403i −0.0486695 0.258099i
\(927\) 0 0
\(928\) −0.889480 2.05606i −0.0291986 0.0674935i
\(929\) −19.1596 33.1853i −0.628605 1.08878i −0.987832 0.155525i \(-0.950293\pi\)
0.359227 0.933250i \(-0.383040\pi\)
\(930\) 0 0
\(931\) 5.04062i 0.165200i
\(932\) 8.33623 3.25982i 0.273062 0.106779i
\(933\) 0 0
\(934\) 41.1195 7.75386i 1.34547 0.253714i
\(935\) 6.42659 0.210172
\(936\) 0 0
\(937\) −33.4565 −1.09298 −0.546488 0.837467i \(-0.684035\pi\)
−0.546488 + 0.837467i \(0.684035\pi\)
\(938\) −18.1068 + 3.41438i −0.591208 + 0.111483i
\(939\) 0 0
\(940\) 1.43907 + 3.68008i 0.0469372 + 0.120031i
\(941\) 3.09842i 0.101006i −0.998724 0.0505028i \(-0.983918\pi\)
0.998724 0.0505028i \(-0.0160824\pi\)
\(942\) 0 0
\(943\) −20.3944 35.3241i −0.664132 1.15031i
\(944\) −7.35665 + 23.6415i −0.239438 + 0.769466i
\(945\) 0 0
\(946\) −3.08418 16.3558i −0.100275 0.531772i
\(947\) 1.23979 + 0.715796i 0.0402879 + 0.0232602i 0.520009 0.854161i \(-0.325929\pi\)
−0.479721 + 0.877421i \(0.659262\pi\)
\(948\) 0 0
\(949\) −6.98036 20.5700i −0.226592 0.667732i
\(950\) −5.33581 6.20810i −0.173117 0.201417i
\(951\) 0 0
\(952\) −16.2544 + 0.577953i −0.526809 + 0.0187316i
\(953\) 14.0065 + 24.2600i 0.453716 + 0.785859i 0.998613 0.0526434i \(-0.0167647\pi\)
−0.544897 + 0.838503i \(0.683431\pi\)
\(954\) 0 0
\(955\) 3.55003 2.04961i 0.114876 0.0663238i
\(956\) 34.4465 13.4700i 1.11408 0.435651i
\(957\) 0 0
\(958\) −20.2181 7.08867i −0.653216 0.229024i
\(959\) 6.25781 10.8388i 0.202075 0.350005i
\(960\) 0 0
\(961\) −26.6557 −0.859861
\(962\) 50.2443 + 0.505798i 1.61994 + 0.0163076i
\(963\) 0 0
\(964\) −21.4777 17.1714i −0.691749 0.553055i
\(965\) 5.43387 + 3.13725i 0.174923 + 0.100992i
\(966\) 0 0
\(967\) 36.4058 1.17073 0.585366 0.810769i \(-0.300951\pi\)
0.585366 + 0.810769i \(0.300951\pi\)
\(968\) 4.59219 8.64990i 0.147599 0.278018i
\(969\) 0 0
\(970\) 0.762936 + 0.887659i 0.0244964 + 0.0285010i
\(971\) −40.8856 + 23.6053i −1.31208 + 0.757531i −0.982441 0.186575i \(-0.940261\pi\)
−0.329642 + 0.944106i \(0.606928\pi\)
\(972\) 0 0
\(973\) 17.3090 + 9.99335i 0.554901 + 0.320372i
\(974\) −32.2891 + 27.7522i −1.03461 + 0.889239i
\(975\) 0 0
\(976\) 4.85290 15.5954i 0.155337 0.499197i
\(977\) 29.7141 51.4663i 0.950638 1.64655i 0.206589 0.978428i \(-0.433764\pi\)
0.744049 0.668125i \(-0.232903\pi\)
\(978\) 0 0
\(979\) 41.5846 24.0089i 1.32905 0.767327i
\(980\) 4.06799 + 0.618307i 0.129947 + 0.0197511i
\(981\) 0 0
\(982\) −12.5519 + 35.8002i −0.400548 + 1.14243i
\(983\) 30.8865 0.985126 0.492563 0.870277i \(-0.336060\pi\)
0.492563 + 0.870277i \(0.336060\pi\)
\(984\) 0 0
\(985\) 4.38945 7.60275i 0.139860 0.242244i
\(986\) 1.87101 0.352815i 0.0595852 0.0112359i
\(987\) 0 0
\(988\) −8.25787 2.98897i −0.262718 0.0950920i
\(989\) 27.4306i 0.872242i
\(990\) 0 0
\(991\) −22.5422 + 39.0441i −0.716075 + 1.24028i 0.246468 + 0.969151i \(0.420730\pi\)
−0.962543 + 0.271127i \(0.912604\pi\)
\(992\) 9.46494 + 7.03083i 0.300512 + 0.223229i
\(993\) 0 0
\(994\) −17.3054 6.06747i −0.548895 0.192449i
\(995\) −8.54160 + 4.93149i −0.270787 + 0.156339i
\(996\) 0 0
\(997\) −45.6473 + 26.3545i −1.44566 + 0.834655i −0.998219 0.0596564i \(-0.981000\pi\)
−0.447446 + 0.894311i \(0.647666\pi\)
\(998\) −25.7249 + 4.85092i −0.814309 + 0.153553i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.be.a.685.7 24
3.2 odd 2 104.2.r.a.61.6 yes 24
8.5 even 2 inner 936.2.be.a.685.1 24
12.11 even 2 416.2.z.a.113.1 24
13.3 even 3 inner 936.2.be.a.757.1 24
24.5 odd 2 104.2.r.a.61.12 yes 24
24.11 even 2 416.2.z.a.113.12 24
39.29 odd 6 104.2.r.a.29.12 yes 24
104.29 even 6 inner 936.2.be.a.757.7 24
156.107 even 6 416.2.z.a.81.12 24
312.29 odd 6 104.2.r.a.29.6 24
312.107 even 6 416.2.z.a.81.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.r.a.29.6 24 312.29 odd 6
104.2.r.a.29.12 yes 24 39.29 odd 6
104.2.r.a.61.6 yes 24 3.2 odd 2
104.2.r.a.61.12 yes 24 24.5 odd 2
416.2.z.a.81.1 24 312.107 even 6
416.2.z.a.81.12 24 156.107 even 6
416.2.z.a.113.1 24 12.11 even 2
416.2.z.a.113.12 24 24.11 even 2
936.2.be.a.685.1 24 8.5 even 2 inner
936.2.be.a.685.7 24 1.1 even 1 trivial
936.2.be.a.757.1 24 13.3 even 3 inner
936.2.be.a.757.7 24 104.29 even 6 inner