Properties

Label 935.2.e
Level 935
Weight 2
Character orbit e
Rep. character \(\chi_{935}(254,\cdot)\)
Character field \(\Q\)
Dimension 88
Newform subspaces 1
Sturm bound 216
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 935 = 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 935.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 85 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(935, [\chi])\).

Total New Old
Modular forms 112 88 24
Cusp forms 104 88 16
Eisenstein series 8 0 8

Trace form

\( 88q - 76q^{4} + 80q^{9} + O(q^{10}) \) \( 88q - 76q^{4} + 80q^{9} + 12q^{15} + 60q^{16} - 16q^{19} - 24q^{21} + 4q^{25} + 48q^{26} - 36q^{30} - 48q^{34} + 4q^{35} + 12q^{36} + 80q^{49} + 80q^{50} + 28q^{51} - 72q^{59} - 120q^{60} + 4q^{64} + 16q^{66} - 72q^{69} + 24q^{70} - 8q^{76} + 40q^{81} + 32q^{84} + 18q^{85} - 48q^{86} + 48q^{89} + 144q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(935, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
935.2.e.a \(88\) \(7.466\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(935, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(935, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)