Properties

Label 931.4.a.a.1.1
Level $931$
Weight $4$
Character 931.1
Self dual yes
Analytic conductor $54.931$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [931,4,Mod(1,931)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(931, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("931.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 931.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.9307782153\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 931.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +5.00000 q^{3} +1.00000 q^{4} +12.0000 q^{5} -15.0000 q^{6} +21.0000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{2} +5.00000 q^{3} +1.00000 q^{4} +12.0000 q^{5} -15.0000 q^{6} +21.0000 q^{8} -2.00000 q^{9} -36.0000 q^{10} -54.0000 q^{11} +5.00000 q^{12} -11.0000 q^{13} +60.0000 q^{15} -71.0000 q^{16} +93.0000 q^{17} +6.00000 q^{18} -19.0000 q^{19} +12.0000 q^{20} +162.000 q^{22} +183.000 q^{23} +105.000 q^{24} +19.0000 q^{25} +33.0000 q^{26} -145.000 q^{27} -249.000 q^{29} -180.000 q^{30} -56.0000 q^{31} +45.0000 q^{32} -270.000 q^{33} -279.000 q^{34} -2.00000 q^{36} -250.000 q^{37} +57.0000 q^{38} -55.0000 q^{39} +252.000 q^{40} -240.000 q^{41} -196.000 q^{43} -54.0000 q^{44} -24.0000 q^{45} -549.000 q^{46} +168.000 q^{47} -355.000 q^{48} -57.0000 q^{50} +465.000 q^{51} -11.0000 q^{52} +435.000 q^{53} +435.000 q^{54} -648.000 q^{55} -95.0000 q^{57} +747.000 q^{58} -195.000 q^{59} +60.0000 q^{60} +358.000 q^{61} +168.000 q^{62} +433.000 q^{64} -132.000 q^{65} +810.000 q^{66} -961.000 q^{67} +93.0000 q^{68} +915.000 q^{69} -246.000 q^{71} -42.0000 q^{72} -353.000 q^{73} +750.000 q^{74} +95.0000 q^{75} -19.0000 q^{76} +165.000 q^{78} -34.0000 q^{79} -852.000 q^{80} -671.000 q^{81} +720.000 q^{82} -234.000 q^{83} +1116.00 q^{85} +588.000 q^{86} -1245.00 q^{87} -1134.00 q^{88} +168.000 q^{89} +72.0000 q^{90} +183.000 q^{92} -280.000 q^{93} -504.000 q^{94} -228.000 q^{95} +225.000 q^{96} -758.000 q^{97} +108.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 5.00000 0.962250 0.481125 0.876652i \(-0.340228\pi\)
0.481125 + 0.876652i \(0.340228\pi\)
\(4\) 1.00000 0.125000
\(5\) 12.0000 1.07331 0.536656 0.843801i \(-0.319687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(6\) −15.0000 −1.02062
\(7\) 0 0
\(8\) 21.0000 0.928078
\(9\) −2.00000 −0.0740741
\(10\) −36.0000 −1.13842
\(11\) −54.0000 −1.48015 −0.740073 0.672526i \(-0.765209\pi\)
−0.740073 + 0.672526i \(0.765209\pi\)
\(12\) 5.00000 0.120281
\(13\) −11.0000 −0.234681 −0.117340 0.993092i \(-0.537437\pi\)
−0.117340 + 0.993092i \(0.537437\pi\)
\(14\) 0 0
\(15\) 60.0000 1.03280
\(16\) −71.0000 −1.10938
\(17\) 93.0000 1.32681 0.663406 0.748259i \(-0.269110\pi\)
0.663406 + 0.748259i \(0.269110\pi\)
\(18\) 6.00000 0.0785674
\(19\) −19.0000 −0.229416
\(20\) 12.0000 0.134164
\(21\) 0 0
\(22\) 162.000 1.56993
\(23\) 183.000 1.65905 0.829525 0.558470i \(-0.188611\pi\)
0.829525 + 0.558470i \(0.188611\pi\)
\(24\) 105.000 0.893043
\(25\) 19.0000 0.152000
\(26\) 33.0000 0.248917
\(27\) −145.000 −1.03353
\(28\) 0 0
\(29\) −249.000 −1.59442 −0.797209 0.603703i \(-0.793691\pi\)
−0.797209 + 0.603703i \(0.793691\pi\)
\(30\) −180.000 −1.09545
\(31\) −56.0000 −0.324448 −0.162224 0.986754i \(-0.551867\pi\)
−0.162224 + 0.986754i \(0.551867\pi\)
\(32\) 45.0000 0.248592
\(33\) −270.000 −1.42427
\(34\) −279.000 −1.40730
\(35\) 0 0
\(36\) −2.00000 −0.00925926
\(37\) −250.000 −1.11080 −0.555402 0.831582i \(-0.687436\pi\)
−0.555402 + 0.831582i \(0.687436\pi\)
\(38\) 57.0000 0.243332
\(39\) −55.0000 −0.225822
\(40\) 252.000 0.996117
\(41\) −240.000 −0.914188 −0.457094 0.889418i \(-0.651110\pi\)
−0.457094 + 0.889418i \(0.651110\pi\)
\(42\) 0 0
\(43\) −196.000 −0.695110 −0.347555 0.937660i \(-0.612988\pi\)
−0.347555 + 0.937660i \(0.612988\pi\)
\(44\) −54.0000 −0.185018
\(45\) −24.0000 −0.0795046
\(46\) −549.000 −1.75969
\(47\) 168.000 0.521390 0.260695 0.965421i \(-0.416048\pi\)
0.260695 + 0.965421i \(0.416048\pi\)
\(48\) −355.000 −1.06750
\(49\) 0 0
\(50\) −57.0000 −0.161220
\(51\) 465.000 1.27673
\(52\) −11.0000 −0.0293351
\(53\) 435.000 1.12739 0.563697 0.825982i \(-0.309379\pi\)
0.563697 + 0.825982i \(0.309379\pi\)
\(54\) 435.000 1.09622
\(55\) −648.000 −1.58866
\(56\) 0 0
\(57\) −95.0000 −0.220755
\(58\) 747.000 1.69114
\(59\) −195.000 −0.430285 −0.215143 0.976583i \(-0.569022\pi\)
−0.215143 + 0.976583i \(0.569022\pi\)
\(60\) 60.0000 0.129099
\(61\) 358.000 0.751430 0.375715 0.926735i \(-0.377397\pi\)
0.375715 + 0.926735i \(0.377397\pi\)
\(62\) 168.000 0.344129
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) −132.000 −0.251886
\(66\) 810.000 1.51067
\(67\) −961.000 −1.75231 −0.876155 0.482029i \(-0.839900\pi\)
−0.876155 + 0.482029i \(0.839900\pi\)
\(68\) 93.0000 0.165852
\(69\) 915.000 1.59642
\(70\) 0 0
\(71\) −246.000 −0.411195 −0.205597 0.978637i \(-0.565914\pi\)
−0.205597 + 0.978637i \(0.565914\pi\)
\(72\) −42.0000 −0.0687465
\(73\) −353.000 −0.565966 −0.282983 0.959125i \(-0.591324\pi\)
−0.282983 + 0.959125i \(0.591324\pi\)
\(74\) 750.000 1.17819
\(75\) 95.0000 0.146262
\(76\) −19.0000 −0.0286770
\(77\) 0 0
\(78\) 165.000 0.239520
\(79\) −34.0000 −0.0484215 −0.0242108 0.999707i \(-0.507707\pi\)
−0.0242108 + 0.999707i \(0.507707\pi\)
\(80\) −852.000 −1.19071
\(81\) −671.000 −0.920439
\(82\) 720.000 0.969643
\(83\) −234.000 −0.309456 −0.154728 0.987957i \(-0.549450\pi\)
−0.154728 + 0.987957i \(0.549450\pi\)
\(84\) 0 0
\(85\) 1116.00 1.42408
\(86\) 588.000 0.737275
\(87\) −1245.00 −1.53423
\(88\) −1134.00 −1.37369
\(89\) 168.000 0.200089 0.100045 0.994983i \(-0.468101\pi\)
0.100045 + 0.994983i \(0.468101\pi\)
\(90\) 72.0000 0.0843274
\(91\) 0 0
\(92\) 183.000 0.207381
\(93\) −280.000 −0.312201
\(94\) −504.000 −0.553017
\(95\) −228.000 −0.246235
\(96\) 225.000 0.239208
\(97\) −758.000 −0.793435 −0.396718 0.917941i \(-0.629851\pi\)
−0.396718 + 0.917941i \(0.629851\pi\)
\(98\) 0 0
\(99\) 108.000 0.109640
\(100\) 19.0000 0.0190000
\(101\) 726.000 0.715245 0.357622 0.933866i \(-0.383588\pi\)
0.357622 + 0.933866i \(0.383588\pi\)
\(102\) −1395.00 −1.35417
\(103\) −2.00000 −0.00191326 −0.000956630 1.00000i \(-0.500305\pi\)
−0.000956630 1.00000i \(0.500305\pi\)
\(104\) −231.000 −0.217802
\(105\) 0 0
\(106\) −1305.00 −1.19578
\(107\) 1413.00 1.27663 0.638317 0.769773i \(-0.279631\pi\)
0.638317 + 0.769773i \(0.279631\pi\)
\(108\) −145.000 −0.129191
\(109\) 389.000 0.341830 0.170915 0.985286i \(-0.445328\pi\)
0.170915 + 0.985286i \(0.445328\pi\)
\(110\) 1944.00 1.68503
\(111\) −1250.00 −1.06887
\(112\) 0 0
\(113\) 342.000 0.284714 0.142357 0.989815i \(-0.454532\pi\)
0.142357 + 0.989815i \(0.454532\pi\)
\(114\) 285.000 0.234146
\(115\) 2196.00 1.78068
\(116\) −249.000 −0.199302
\(117\) 22.0000 0.0173838
\(118\) 585.000 0.456387
\(119\) 0 0
\(120\) 1260.00 0.958514
\(121\) 1585.00 1.19083
\(122\) −1074.00 −0.797011
\(123\) −1200.00 −0.879678
\(124\) −56.0000 −0.0405560
\(125\) −1272.00 −0.910169
\(126\) 0 0
\(127\) −1150.00 −0.803512 −0.401756 0.915747i \(-0.631600\pi\)
−0.401756 + 0.915747i \(0.631600\pi\)
\(128\) −1659.00 −1.14560
\(129\) −980.000 −0.668870
\(130\) 396.000 0.267165
\(131\) 1452.00 0.968411 0.484205 0.874954i \(-0.339109\pi\)
0.484205 + 0.874954i \(0.339109\pi\)
\(132\) −270.000 −0.178034
\(133\) 0 0
\(134\) 2883.00 1.85861
\(135\) −1740.00 −1.10930
\(136\) 1953.00 1.23139
\(137\) −1689.00 −1.05329 −0.526646 0.850085i \(-0.676551\pi\)
−0.526646 + 0.850085i \(0.676551\pi\)
\(138\) −2745.00 −1.69326
\(139\) −2144.00 −1.30829 −0.654143 0.756371i \(-0.726970\pi\)
−0.654143 + 0.756371i \(0.726970\pi\)
\(140\) 0 0
\(141\) 840.000 0.501708
\(142\) 738.000 0.436138
\(143\) 594.000 0.347362
\(144\) 142.000 0.0821759
\(145\) −2988.00 −1.71131
\(146\) 1059.00 0.600298
\(147\) 0 0
\(148\) −250.000 −0.138850
\(149\) −3000.00 −1.64946 −0.824730 0.565527i \(-0.808673\pi\)
−0.824730 + 0.565527i \(0.808673\pi\)
\(150\) −285.000 −0.155134
\(151\) −1006.00 −0.542166 −0.271083 0.962556i \(-0.587382\pi\)
−0.271083 + 0.962556i \(0.587382\pi\)
\(152\) −399.000 −0.212916
\(153\) −186.000 −0.0982824
\(154\) 0 0
\(155\) −672.000 −0.348234
\(156\) −55.0000 −0.0282277
\(157\) −2846.00 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(158\) 102.000 0.0513588
\(159\) 2175.00 1.08483
\(160\) 540.000 0.266817
\(161\) 0 0
\(162\) 2013.00 0.976273
\(163\) −1600.00 −0.768845 −0.384422 0.923157i \(-0.625599\pi\)
−0.384422 + 0.923157i \(0.625599\pi\)
\(164\) −240.000 −0.114273
\(165\) −3240.00 −1.52869
\(166\) 702.000 0.328228
\(167\) 2004.00 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −2076.00 −0.944925
\(170\) −3348.00 −1.51047
\(171\) 38.0000 0.0169938
\(172\) −196.000 −0.0868887
\(173\) 462.000 0.203036 0.101518 0.994834i \(-0.467630\pi\)
0.101518 + 0.994834i \(0.467630\pi\)
\(174\) 3735.00 1.62730
\(175\) 0 0
\(176\) 3834.00 1.64204
\(177\) −975.000 −0.414042
\(178\) −504.000 −0.212227
\(179\) 720.000 0.300644 0.150322 0.988637i \(-0.451969\pi\)
0.150322 + 0.988637i \(0.451969\pi\)
\(180\) −24.0000 −0.00993808
\(181\) 2338.00 0.960122 0.480061 0.877235i \(-0.340614\pi\)
0.480061 + 0.877235i \(0.340614\pi\)
\(182\) 0 0
\(183\) 1790.00 0.723063
\(184\) 3843.00 1.53973
\(185\) −3000.00 −1.19224
\(186\) 840.000 0.331139
\(187\) −5022.00 −1.96388
\(188\) 168.000 0.0651737
\(189\) 0 0
\(190\) 684.000 0.261171
\(191\) 2871.00 1.08763 0.543817 0.839204i \(-0.316978\pi\)
0.543817 + 0.839204i \(0.316978\pi\)
\(192\) 2165.00 0.813778
\(193\) 1658.00 0.618370 0.309185 0.951002i \(-0.399944\pi\)
0.309185 + 0.951002i \(0.399944\pi\)
\(194\) 2274.00 0.841565
\(195\) −660.000 −0.242377
\(196\) 0 0
\(197\) −4176.00 −1.51029 −0.755146 0.655556i \(-0.772434\pi\)
−0.755146 + 0.655556i \(0.772434\pi\)
\(198\) −324.000 −0.116291
\(199\) 241.000 0.0858494 0.0429247 0.999078i \(-0.486332\pi\)
0.0429247 + 0.999078i \(0.486332\pi\)
\(200\) 399.000 0.141068
\(201\) −4805.00 −1.68616
\(202\) −2178.00 −0.758631
\(203\) 0 0
\(204\) 465.000 0.159591
\(205\) −2880.00 −0.981209
\(206\) 6.00000 0.00202932
\(207\) −366.000 −0.122893
\(208\) 781.000 0.260349
\(209\) 1026.00 0.339569
\(210\) 0 0
\(211\) −745.000 −0.243071 −0.121535 0.992587i \(-0.538782\pi\)
−0.121535 + 0.992587i \(0.538782\pi\)
\(212\) 435.000 0.140924
\(213\) −1230.00 −0.395672
\(214\) −4239.00 −1.35408
\(215\) −2352.00 −0.746070
\(216\) −3045.00 −0.959194
\(217\) 0 0
\(218\) −1167.00 −0.362565
\(219\) −1765.00 −0.544601
\(220\) −648.000 −0.198583
\(221\) −1023.00 −0.311377
\(222\) 3750.00 1.13371
\(223\) 1978.00 0.593976 0.296988 0.954881i \(-0.404018\pi\)
0.296988 + 0.954881i \(0.404018\pi\)
\(224\) 0 0
\(225\) −38.0000 −0.0112593
\(226\) −1026.00 −0.301985
\(227\) −5355.00 −1.56574 −0.782872 0.622183i \(-0.786246\pi\)
−0.782872 + 0.622183i \(0.786246\pi\)
\(228\) −95.0000 −0.0275944
\(229\) 6370.00 1.83817 0.919086 0.394057i \(-0.128929\pi\)
0.919086 + 0.394057i \(0.128929\pi\)
\(230\) −6588.00 −1.88870
\(231\) 0 0
\(232\) −5229.00 −1.47974
\(233\) −2838.00 −0.797955 −0.398978 0.916961i \(-0.630635\pi\)
−0.398978 + 0.916961i \(0.630635\pi\)
\(234\) −66.0000 −0.0184383
\(235\) 2016.00 0.559614
\(236\) −195.000 −0.0537857
\(237\) −170.000 −0.0465936
\(238\) 0 0
\(239\) −369.000 −0.0998687 −0.0499344 0.998753i \(-0.515901\pi\)
−0.0499344 + 0.998753i \(0.515901\pi\)
\(240\) −4260.00 −1.14576
\(241\) −6608.00 −1.76622 −0.883109 0.469167i \(-0.844554\pi\)
−0.883109 + 0.469167i \(0.844554\pi\)
\(242\) −4755.00 −1.26307
\(243\) 560.000 0.147835
\(244\) 358.000 0.0939287
\(245\) 0 0
\(246\) 3600.00 0.933039
\(247\) 209.000 0.0538395
\(248\) −1176.00 −0.301113
\(249\) −1170.00 −0.297774
\(250\) 3816.00 0.965380
\(251\) −4674.00 −1.17538 −0.587690 0.809086i \(-0.699962\pi\)
−0.587690 + 0.809086i \(0.699962\pi\)
\(252\) 0 0
\(253\) −9882.00 −2.45564
\(254\) 3450.00 0.852253
\(255\) 5580.00 1.37033
\(256\) 1513.00 0.369385
\(257\) −4512.00 −1.09514 −0.547570 0.836760i \(-0.684447\pi\)
−0.547570 + 0.836760i \(0.684447\pi\)
\(258\) 2940.00 0.709443
\(259\) 0 0
\(260\) −132.000 −0.0314857
\(261\) 498.000 0.118105
\(262\) −4356.00 −1.02715
\(263\) 3768.00 0.883440 0.441720 0.897153i \(-0.354368\pi\)
0.441720 + 0.897153i \(0.354368\pi\)
\(264\) −5670.00 −1.32183
\(265\) 5220.00 1.21005
\(266\) 0 0
\(267\) 840.000 0.192536
\(268\) −961.000 −0.219039
\(269\) −4758.00 −1.07844 −0.539220 0.842165i \(-0.681281\pi\)
−0.539220 + 0.842165i \(0.681281\pi\)
\(270\) 5220.00 1.17659
\(271\) 2041.00 0.457498 0.228749 0.973485i \(-0.426537\pi\)
0.228749 + 0.973485i \(0.426537\pi\)
\(272\) −6603.00 −1.47193
\(273\) 0 0
\(274\) 5067.00 1.11718
\(275\) −1026.00 −0.224982
\(276\) 915.000 0.199553
\(277\) 1964.00 0.426012 0.213006 0.977051i \(-0.431675\pi\)
0.213006 + 0.977051i \(0.431675\pi\)
\(278\) 6432.00 1.38765
\(279\) 112.000 0.0240332
\(280\) 0 0
\(281\) −5496.00 −1.16678 −0.583388 0.812194i \(-0.698273\pi\)
−0.583388 + 0.812194i \(0.698273\pi\)
\(282\) −2520.00 −0.532141
\(283\) −3098.00 −0.650731 −0.325366 0.945588i \(-0.605487\pi\)
−0.325366 + 0.945588i \(0.605487\pi\)
\(284\) −246.000 −0.0513993
\(285\) −1140.00 −0.236940
\(286\) −1782.00 −0.368433
\(287\) 0 0
\(288\) −90.0000 −0.0184142
\(289\) 3736.00 0.760432
\(290\) 8964.00 1.81512
\(291\) −3790.00 −0.763484
\(292\) −353.000 −0.0707458
\(293\) −117.000 −0.0233284 −0.0116642 0.999932i \(-0.503713\pi\)
−0.0116642 + 0.999932i \(0.503713\pi\)
\(294\) 0 0
\(295\) −2340.00 −0.461831
\(296\) −5250.00 −1.03091
\(297\) 7830.00 1.52977
\(298\) 9000.00 1.74952
\(299\) −2013.00 −0.389347
\(300\) 95.0000 0.0182828
\(301\) 0 0
\(302\) 3018.00 0.575054
\(303\) 3630.00 0.688244
\(304\) 1349.00 0.254508
\(305\) 4296.00 0.806519
\(306\) 558.000 0.104244
\(307\) 1420.00 0.263986 0.131993 0.991251i \(-0.457862\pi\)
0.131993 + 0.991251i \(0.457862\pi\)
\(308\) 0 0
\(309\) −10.0000 −0.00184104
\(310\) 2016.00 0.369358
\(311\) 6561.00 1.19627 0.598135 0.801395i \(-0.295909\pi\)
0.598135 + 0.801395i \(0.295909\pi\)
\(312\) −1155.00 −0.209580
\(313\) 1483.00 0.267809 0.133904 0.990994i \(-0.457249\pi\)
0.133904 + 0.990994i \(0.457249\pi\)
\(314\) 8538.00 1.53448
\(315\) 0 0
\(316\) −34.0000 −0.00605269
\(317\) −1239.00 −0.219524 −0.109762 0.993958i \(-0.535009\pi\)
−0.109762 + 0.993958i \(0.535009\pi\)
\(318\) −6525.00 −1.15064
\(319\) 13446.0 2.35997
\(320\) 5196.00 0.907704
\(321\) 7065.00 1.22844
\(322\) 0 0
\(323\) −1767.00 −0.304392
\(324\) −671.000 −0.115055
\(325\) −209.000 −0.0356715
\(326\) 4800.00 0.815483
\(327\) 1945.00 0.328926
\(328\) −5040.00 −0.848437
\(329\) 0 0
\(330\) 9720.00 1.62142
\(331\) −8899.00 −1.47774 −0.738872 0.673846i \(-0.764641\pi\)
−0.738872 + 0.673846i \(0.764641\pi\)
\(332\) −234.000 −0.0386820
\(333\) 500.000 0.0822818
\(334\) −6012.00 −0.984916
\(335\) −11532.0 −1.88078
\(336\) 0 0
\(337\) 5816.00 0.940112 0.470056 0.882637i \(-0.344234\pi\)
0.470056 + 0.882637i \(0.344234\pi\)
\(338\) 6228.00 1.00224
\(339\) 1710.00 0.273966
\(340\) 1116.00 0.178011
\(341\) 3024.00 0.480231
\(342\) −114.000 −0.0180246
\(343\) 0 0
\(344\) −4116.00 −0.645116
\(345\) 10980.0 1.71346
\(346\) −1386.00 −0.215352
\(347\) −1578.00 −0.244125 −0.122063 0.992522i \(-0.538951\pi\)
−0.122063 + 0.992522i \(0.538951\pi\)
\(348\) −1245.00 −0.191779
\(349\) −1658.00 −0.254300 −0.127150 0.991883i \(-0.540583\pi\)
−0.127150 + 0.991883i \(0.540583\pi\)
\(350\) 0 0
\(351\) 1595.00 0.242549
\(352\) −2430.00 −0.367953
\(353\) 11367.0 1.71389 0.856947 0.515405i \(-0.172359\pi\)
0.856947 + 0.515405i \(0.172359\pi\)
\(354\) 2925.00 0.439158
\(355\) −2952.00 −0.441341
\(356\) 168.000 0.0250112
\(357\) 0 0
\(358\) −2160.00 −0.318881
\(359\) 2553.00 0.375326 0.187663 0.982233i \(-0.439909\pi\)
0.187663 + 0.982233i \(0.439909\pi\)
\(360\) −504.000 −0.0737865
\(361\) 361.000 0.0526316
\(362\) −7014.00 −1.01836
\(363\) 7925.00 1.14588
\(364\) 0 0
\(365\) −4236.00 −0.607459
\(366\) −5370.00 −0.766925
\(367\) 196.000 0.0278777 0.0139389 0.999903i \(-0.495563\pi\)
0.0139389 + 0.999903i \(0.495563\pi\)
\(368\) −12993.0 −1.84051
\(369\) 480.000 0.0677176
\(370\) 9000.00 1.26456
\(371\) 0 0
\(372\) −280.000 −0.0390251
\(373\) 9353.00 1.29834 0.649169 0.760644i \(-0.275117\pi\)
0.649169 + 0.760644i \(0.275117\pi\)
\(374\) 15066.0 2.08301
\(375\) −6360.00 −0.875811
\(376\) 3528.00 0.483890
\(377\) 2739.00 0.374180
\(378\) 0 0
\(379\) 3827.00 0.518680 0.259340 0.965786i \(-0.416495\pi\)
0.259340 + 0.965786i \(0.416495\pi\)
\(380\) −228.000 −0.0307794
\(381\) −5750.00 −0.773180
\(382\) −8613.00 −1.15361
\(383\) −5694.00 −0.759660 −0.379830 0.925056i \(-0.624018\pi\)
−0.379830 + 0.925056i \(0.624018\pi\)
\(384\) −8295.00 −1.10235
\(385\) 0 0
\(386\) −4974.00 −0.655881
\(387\) 392.000 0.0514896
\(388\) −758.000 −0.0991794
\(389\) 1290.00 0.168138 0.0840689 0.996460i \(-0.473208\pi\)
0.0840689 + 0.996460i \(0.473208\pi\)
\(390\) 1980.00 0.257080
\(391\) 17019.0 2.20125
\(392\) 0 0
\(393\) 7260.00 0.931854
\(394\) 12528.0 1.60191
\(395\) −408.000 −0.0519714
\(396\) 108.000 0.0137051
\(397\) −6536.00 −0.826278 −0.413139 0.910668i \(-0.635568\pi\)
−0.413139 + 0.910668i \(0.635568\pi\)
\(398\) −723.000 −0.0910571
\(399\) 0 0
\(400\) −1349.00 −0.168625
\(401\) 2328.00 0.289912 0.144956 0.989438i \(-0.453696\pi\)
0.144956 + 0.989438i \(0.453696\pi\)
\(402\) 14415.0 1.78844
\(403\) 616.000 0.0761418
\(404\) 726.000 0.0894056
\(405\) −8052.00 −0.987919
\(406\) 0 0
\(407\) 13500.0 1.64415
\(408\) 9765.00 1.18490
\(409\) 6676.00 0.807107 0.403554 0.914956i \(-0.367775\pi\)
0.403554 + 0.914956i \(0.367775\pi\)
\(410\) 8640.00 1.04073
\(411\) −8445.00 −1.01353
\(412\) −2.00000 −0.000239158 0
\(413\) 0 0
\(414\) 1098.00 0.130347
\(415\) −2808.00 −0.332143
\(416\) −495.000 −0.0583398
\(417\) −10720.0 −1.25890
\(418\) −3078.00 −0.360167
\(419\) 8136.00 0.948615 0.474307 0.880359i \(-0.342699\pi\)
0.474307 + 0.880359i \(0.342699\pi\)
\(420\) 0 0
\(421\) −8665.00 −1.00310 −0.501551 0.865128i \(-0.667237\pi\)
−0.501551 + 0.865128i \(0.667237\pi\)
\(422\) 2235.00 0.257815
\(423\) −336.000 −0.0386215
\(424\) 9135.00 1.04631
\(425\) 1767.00 0.201676
\(426\) 3690.00 0.419674
\(427\) 0 0
\(428\) 1413.00 0.159579
\(429\) 2970.00 0.334249
\(430\) 7056.00 0.791327
\(431\) 750.000 0.0838196 0.0419098 0.999121i \(-0.486656\pi\)
0.0419098 + 0.999121i \(0.486656\pi\)
\(432\) 10295.0 1.14657
\(433\) 4858.00 0.539170 0.269585 0.962977i \(-0.413113\pi\)
0.269585 + 0.962977i \(0.413113\pi\)
\(434\) 0 0
\(435\) −14940.0 −1.64671
\(436\) 389.000 0.0427287
\(437\) −3477.00 −0.380612
\(438\) 5295.00 0.577637
\(439\) −6500.00 −0.706670 −0.353335 0.935497i \(-0.614952\pi\)
−0.353335 + 0.935497i \(0.614952\pi\)
\(440\) −13608.0 −1.47440
\(441\) 0 0
\(442\) 3069.00 0.330266
\(443\) 3486.00 0.373871 0.186936 0.982372i \(-0.440144\pi\)
0.186936 + 0.982372i \(0.440144\pi\)
\(444\) −1250.00 −0.133609
\(445\) 2016.00 0.214759
\(446\) −5934.00 −0.630007
\(447\) −15000.0 −1.58719
\(448\) 0 0
\(449\) −15030.0 −1.57975 −0.789877 0.613265i \(-0.789856\pi\)
−0.789877 + 0.613265i \(0.789856\pi\)
\(450\) 114.000 0.0119422
\(451\) 12960.0 1.35313
\(452\) 342.000 0.0355892
\(453\) −5030.00 −0.521700
\(454\) 16065.0 1.66072
\(455\) 0 0
\(456\) −1995.00 −0.204878
\(457\) −2959.00 −0.302880 −0.151440 0.988466i \(-0.548391\pi\)
−0.151440 + 0.988466i \(0.548391\pi\)
\(458\) −19110.0 −1.94968
\(459\) −13485.0 −1.37130
\(460\) 2196.00 0.222585
\(461\) 156.000 0.0157606 0.00788031 0.999969i \(-0.497492\pi\)
0.00788031 + 0.999969i \(0.497492\pi\)
\(462\) 0 0
\(463\) 4484.00 0.450085 0.225042 0.974349i \(-0.427748\pi\)
0.225042 + 0.974349i \(0.427748\pi\)
\(464\) 17679.0 1.76881
\(465\) −3360.00 −0.335089
\(466\) 8514.00 0.846359
\(467\) −8766.00 −0.868613 −0.434306 0.900765i \(-0.643006\pi\)
−0.434306 + 0.900765i \(0.643006\pi\)
\(468\) 22.0000 0.00217297
\(469\) 0 0
\(470\) −6048.00 −0.593561
\(471\) −14230.0 −1.39211
\(472\) −4095.00 −0.399338
\(473\) 10584.0 1.02886
\(474\) 510.000 0.0494200
\(475\) −361.000 −0.0348712
\(476\) 0 0
\(477\) −870.000 −0.0835106
\(478\) 1107.00 0.105927
\(479\) 18996.0 1.81200 0.906001 0.423275i \(-0.139119\pi\)
0.906001 + 0.423275i \(0.139119\pi\)
\(480\) 2700.00 0.256745
\(481\) 2750.00 0.260684
\(482\) 19824.0 1.87336
\(483\) 0 0
\(484\) 1585.00 0.148854
\(485\) −9096.00 −0.851604
\(486\) −1680.00 −0.156803
\(487\) −7450.00 −0.693207 −0.346603 0.938012i \(-0.612665\pi\)
−0.346603 + 0.938012i \(0.612665\pi\)
\(488\) 7518.00 0.697385
\(489\) −8000.00 −0.739821
\(490\) 0 0
\(491\) 6180.00 0.568023 0.284012 0.958821i \(-0.408335\pi\)
0.284012 + 0.958821i \(0.408335\pi\)
\(492\) −1200.00 −0.109960
\(493\) −23157.0 −2.11549
\(494\) −627.000 −0.0571054
\(495\) 1296.00 0.117679
\(496\) 3976.00 0.359935
\(497\) 0 0
\(498\) 3510.00 0.315837
\(499\) 2576.00 0.231097 0.115549 0.993302i \(-0.463137\pi\)
0.115549 + 0.993302i \(0.463137\pi\)
\(500\) −1272.00 −0.113771
\(501\) 10020.0 0.893534
\(502\) 14022.0 1.24668
\(503\) 10545.0 0.934748 0.467374 0.884060i \(-0.345200\pi\)
0.467374 + 0.884060i \(0.345200\pi\)
\(504\) 0 0
\(505\) 8712.00 0.767681
\(506\) 29646.0 2.60460
\(507\) −10380.0 −0.909254
\(508\) −1150.00 −0.100439
\(509\) 14694.0 1.27957 0.639784 0.768555i \(-0.279024\pi\)
0.639784 + 0.768555i \(0.279024\pi\)
\(510\) −16740.0 −1.45345
\(511\) 0 0
\(512\) 8733.00 0.753804
\(513\) 2755.00 0.237108
\(514\) 13536.0 1.16157
\(515\) −24.0000 −0.00205353
\(516\) −980.000 −0.0836087
\(517\) −9072.00 −0.771733
\(518\) 0 0
\(519\) 2310.00 0.195371
\(520\) −2772.00 −0.233770
\(521\) −10332.0 −0.868816 −0.434408 0.900716i \(-0.643042\pi\)
−0.434408 + 0.900716i \(0.643042\pi\)
\(522\) −1494.00 −0.125269
\(523\) −10937.0 −0.914420 −0.457210 0.889359i \(-0.651151\pi\)
−0.457210 + 0.889359i \(0.651151\pi\)
\(524\) 1452.00 0.121051
\(525\) 0 0
\(526\) −11304.0 −0.937030
\(527\) −5208.00 −0.430482
\(528\) 19170.0 1.58005
\(529\) 21322.0 1.75245
\(530\) −15660.0 −1.28345
\(531\) 390.000 0.0318730
\(532\) 0 0
\(533\) 2640.00 0.214542
\(534\) −2520.00 −0.204215
\(535\) 16956.0 1.37023
\(536\) −20181.0 −1.62628
\(537\) 3600.00 0.289295
\(538\) 14274.0 1.14386
\(539\) 0 0
\(540\) −1740.00 −0.138662
\(541\) 18578.0 1.47640 0.738198 0.674584i \(-0.235677\pi\)
0.738198 + 0.674584i \(0.235677\pi\)
\(542\) −6123.00 −0.485250
\(543\) 11690.0 0.923878
\(544\) 4185.00 0.329835
\(545\) 4668.00 0.366890
\(546\) 0 0
\(547\) 21404.0 1.67307 0.836535 0.547914i \(-0.184578\pi\)
0.836535 + 0.547914i \(0.184578\pi\)
\(548\) −1689.00 −0.131662
\(549\) −716.000 −0.0556614
\(550\) 3078.00 0.238630
\(551\) 4731.00 0.365785
\(552\) 19215.0 1.48160
\(553\) 0 0
\(554\) −5892.00 −0.451854
\(555\) −15000.0 −1.14723
\(556\) −2144.00 −0.163536
\(557\) −3948.00 −0.300327 −0.150163 0.988661i \(-0.547980\pi\)
−0.150163 + 0.988661i \(0.547980\pi\)
\(558\) −336.000 −0.0254911
\(559\) 2156.00 0.163129
\(560\) 0 0
\(561\) −25110.0 −1.88974
\(562\) 16488.0 1.23755
\(563\) −5724.00 −0.428486 −0.214243 0.976780i \(-0.568729\pi\)
−0.214243 + 0.976780i \(0.568729\pi\)
\(564\) 840.000 0.0627134
\(565\) 4104.00 0.305587
\(566\) 9294.00 0.690205
\(567\) 0 0
\(568\) −5166.00 −0.381621
\(569\) −20592.0 −1.51716 −0.758578 0.651582i \(-0.774105\pi\)
−0.758578 + 0.651582i \(0.774105\pi\)
\(570\) 3420.00 0.251312
\(571\) 20684.0 1.51593 0.757967 0.652293i \(-0.226193\pi\)
0.757967 + 0.652293i \(0.226193\pi\)
\(572\) 594.000 0.0434203
\(573\) 14355.0 1.04658
\(574\) 0 0
\(575\) 3477.00 0.252176
\(576\) −866.000 −0.0626447
\(577\) 19573.0 1.41219 0.706096 0.708116i \(-0.250455\pi\)
0.706096 + 0.708116i \(0.250455\pi\)
\(578\) −11208.0 −0.806559
\(579\) 8290.00 0.595027
\(580\) −2988.00 −0.213914
\(581\) 0 0
\(582\) 11370.0 0.809797
\(583\) −23490.0 −1.66871
\(584\) −7413.00 −0.525260
\(585\) 264.000 0.0186582
\(586\) 351.000 0.0247435
\(587\) −13524.0 −0.950929 −0.475464 0.879735i \(-0.657720\pi\)
−0.475464 + 0.879735i \(0.657720\pi\)
\(588\) 0 0
\(589\) 1064.00 0.0744335
\(590\) 7020.00 0.489845
\(591\) −20880.0 −1.45328
\(592\) 17750.0 1.23230
\(593\) −8994.00 −0.622832 −0.311416 0.950274i \(-0.600803\pi\)
−0.311416 + 0.950274i \(0.600803\pi\)
\(594\) −23490.0 −1.62257
\(595\) 0 0
\(596\) −3000.00 −0.206183
\(597\) 1205.00 0.0826087
\(598\) 6039.00 0.412965
\(599\) 10128.0 0.690850 0.345425 0.938446i \(-0.387735\pi\)
0.345425 + 0.938446i \(0.387735\pi\)
\(600\) 1995.00 0.135743
\(601\) 22696.0 1.54041 0.770207 0.637794i \(-0.220153\pi\)
0.770207 + 0.637794i \(0.220153\pi\)
\(602\) 0 0
\(603\) 1922.00 0.129801
\(604\) −1006.00 −0.0677708
\(605\) 19020.0 1.27814
\(606\) −10890.0 −0.729993
\(607\) 5182.00 0.346509 0.173254 0.984877i \(-0.444572\pi\)
0.173254 + 0.984877i \(0.444572\pi\)
\(608\) −855.000 −0.0570310
\(609\) 0 0
\(610\) −12888.0 −0.855442
\(611\) −1848.00 −0.122360
\(612\) −186.000 −0.0122853
\(613\) 10082.0 0.664287 0.332144 0.943229i \(-0.392228\pi\)
0.332144 + 0.943229i \(0.392228\pi\)
\(614\) −4260.00 −0.279999
\(615\) −14400.0 −0.944169
\(616\) 0 0
\(617\) −12174.0 −0.794338 −0.397169 0.917745i \(-0.630007\pi\)
−0.397169 + 0.917745i \(0.630007\pi\)
\(618\) 30.0000 0.00195271
\(619\) −7490.00 −0.486347 −0.243173 0.969983i \(-0.578188\pi\)
−0.243173 + 0.969983i \(0.578188\pi\)
\(620\) −672.000 −0.0435293
\(621\) −26535.0 −1.71467
\(622\) −19683.0 −1.26884
\(623\) 0 0
\(624\) 3905.00 0.250521
\(625\) −17639.0 −1.12890
\(626\) −4449.00 −0.284054
\(627\) 5130.00 0.326750
\(628\) −2846.00 −0.180840
\(629\) −23250.0 −1.47383
\(630\) 0 0
\(631\) 11072.0 0.698525 0.349263 0.937025i \(-0.386432\pi\)
0.349263 + 0.937025i \(0.386432\pi\)
\(632\) −714.000 −0.0449389
\(633\) −3725.00 −0.233895
\(634\) 3717.00 0.232841
\(635\) −13800.0 −0.862419
\(636\) 2175.00 0.135604
\(637\) 0 0
\(638\) −40338.0 −2.50313
\(639\) 492.000 0.0304589
\(640\) −19908.0 −1.22958
\(641\) −18894.0 −1.16422 −0.582112 0.813108i \(-0.697774\pi\)
−0.582112 + 0.813108i \(0.697774\pi\)
\(642\) −21195.0 −1.30296
\(643\) 19834.0 1.21645 0.608224 0.793765i \(-0.291882\pi\)
0.608224 + 0.793765i \(0.291882\pi\)
\(644\) 0 0
\(645\) −11760.0 −0.717906
\(646\) 5301.00 0.322856
\(647\) −3375.00 −0.205077 −0.102539 0.994729i \(-0.532697\pi\)
−0.102539 + 0.994729i \(0.532697\pi\)
\(648\) −14091.0 −0.854239
\(649\) 10530.0 0.636885
\(650\) 627.000 0.0378353
\(651\) 0 0
\(652\) −1600.00 −0.0961056
\(653\) −24948.0 −1.49509 −0.747543 0.664214i \(-0.768766\pi\)
−0.747543 + 0.664214i \(0.768766\pi\)
\(654\) −5835.00 −0.348879
\(655\) 17424.0 1.03941
\(656\) 17040.0 1.01418
\(657\) 706.000 0.0419234
\(658\) 0 0
\(659\) −9879.00 −0.583962 −0.291981 0.956424i \(-0.594314\pi\)
−0.291981 + 0.956424i \(0.594314\pi\)
\(660\) −3240.00 −0.191086
\(661\) 14155.0 0.832928 0.416464 0.909152i \(-0.363269\pi\)
0.416464 + 0.909152i \(0.363269\pi\)
\(662\) 26697.0 1.56738
\(663\) −5115.00 −0.299623
\(664\) −4914.00 −0.287199
\(665\) 0 0
\(666\) −1500.00 −0.0872730
\(667\) −45567.0 −2.64522
\(668\) 2004.00 0.116073
\(669\) 9890.00 0.571554
\(670\) 34596.0 1.99487
\(671\) −19332.0 −1.11223
\(672\) 0 0
\(673\) 8948.00 0.512511 0.256256 0.966609i \(-0.417511\pi\)
0.256256 + 0.966609i \(0.417511\pi\)
\(674\) −17448.0 −0.997139
\(675\) −2755.00 −0.157096
\(676\) −2076.00 −0.118116
\(677\) 11511.0 0.653477 0.326738 0.945115i \(-0.394050\pi\)
0.326738 + 0.945115i \(0.394050\pi\)
\(678\) −5130.00 −0.290585
\(679\) 0 0
\(680\) 23436.0 1.32166
\(681\) −26775.0 −1.50664
\(682\) −9072.00 −0.509362
\(683\) −10476.0 −0.586900 −0.293450 0.955974i \(-0.594803\pi\)
−0.293450 + 0.955974i \(0.594803\pi\)
\(684\) 38.0000 0.00212422
\(685\) −20268.0 −1.13051
\(686\) 0 0
\(687\) 31850.0 1.76878
\(688\) 13916.0 0.771137
\(689\) −4785.00 −0.264578
\(690\) −32940.0 −1.81740
\(691\) −30098.0 −1.65699 −0.828496 0.559995i \(-0.810803\pi\)
−0.828496 + 0.559995i \(0.810803\pi\)
\(692\) 462.000 0.0253795
\(693\) 0 0
\(694\) 4734.00 0.258934
\(695\) −25728.0 −1.40420
\(696\) −26145.0 −1.42388
\(697\) −22320.0 −1.21296
\(698\) 4974.00 0.269726
\(699\) −14190.0 −0.767833
\(700\) 0 0
\(701\) −14700.0 −0.792028 −0.396014 0.918245i \(-0.629607\pi\)
−0.396014 + 0.918245i \(0.629607\pi\)
\(702\) −4785.00 −0.257262
\(703\) 4750.00 0.254836
\(704\) −23382.0 −1.25176
\(705\) 10080.0 0.538489
\(706\) −34101.0 −1.81786
\(707\) 0 0
\(708\) −975.000 −0.0517553
\(709\) 31178.0 1.65150 0.825751 0.564035i \(-0.190752\pi\)
0.825751 + 0.564035i \(0.190752\pi\)
\(710\) 8856.00 0.468112
\(711\) 68.0000 0.00358678
\(712\) 3528.00 0.185699
\(713\) −10248.0 −0.538276
\(714\) 0 0
\(715\) 7128.00 0.372828
\(716\) 720.000 0.0375805
\(717\) −1845.00 −0.0960987
\(718\) −7659.00 −0.398094
\(719\) 33285.0 1.72645 0.863227 0.504815i \(-0.168439\pi\)
0.863227 + 0.504815i \(0.168439\pi\)
\(720\) 1704.00 0.0882005
\(721\) 0 0
\(722\) −1083.00 −0.0558242
\(723\) −33040.0 −1.69954
\(724\) 2338.00 0.120015
\(725\) −4731.00 −0.242352
\(726\) −23775.0 −1.21539
\(727\) 34729.0 1.77170 0.885851 0.463970i \(-0.153575\pi\)
0.885851 + 0.463970i \(0.153575\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 12708.0 0.644307
\(731\) −18228.0 −0.922280
\(732\) 1790.00 0.0903829
\(733\) −4196.00 −0.211436 −0.105718 0.994396i \(-0.533714\pi\)
−0.105718 + 0.994396i \(0.533714\pi\)
\(734\) −588.000 −0.0295688
\(735\) 0 0
\(736\) 8235.00 0.412427
\(737\) 51894.0 2.59368
\(738\) −1440.00 −0.0718254
\(739\) −10744.0 −0.534810 −0.267405 0.963584i \(-0.586166\pi\)
−0.267405 + 0.963584i \(0.586166\pi\)
\(740\) −3000.00 −0.149030
\(741\) 1045.00 0.0518071
\(742\) 0 0
\(743\) −2208.00 −0.109022 −0.0545112 0.998513i \(-0.517360\pi\)
−0.0545112 + 0.998513i \(0.517360\pi\)
\(744\) −5880.00 −0.289746
\(745\) −36000.0 −1.77039
\(746\) −28059.0 −1.37710
\(747\) 468.000 0.0229227
\(748\) −5022.00 −0.245485
\(749\) 0 0
\(750\) 19080.0 0.928937
\(751\) 13160.0 0.639434 0.319717 0.947513i \(-0.396412\pi\)
0.319717 + 0.947513i \(0.396412\pi\)
\(752\) −11928.0 −0.578417
\(753\) −23370.0 −1.13101
\(754\) −8217.00 −0.396877
\(755\) −12072.0 −0.581914
\(756\) 0 0
\(757\) 758.000 0.0363936 0.0181968 0.999834i \(-0.494207\pi\)
0.0181968 + 0.999834i \(0.494207\pi\)
\(758\) −11481.0 −0.550143
\(759\) −49410.0 −2.36294
\(760\) −4788.00 −0.228525
\(761\) −4851.00 −0.231076 −0.115538 0.993303i \(-0.536859\pi\)
−0.115538 + 0.993303i \(0.536859\pi\)
\(762\) 17250.0 0.820081
\(763\) 0 0
\(764\) 2871.00 0.135954
\(765\) −2232.00 −0.105488
\(766\) 17082.0 0.805741
\(767\) 2145.00 0.100980
\(768\) 7565.00 0.355441
\(769\) 33091.0 1.55175 0.775873 0.630890i \(-0.217310\pi\)
0.775873 + 0.630890i \(0.217310\pi\)
\(770\) 0 0
\(771\) −22560.0 −1.05380
\(772\) 1658.00 0.0772963
\(773\) −42357.0 −1.97086 −0.985430 0.170079i \(-0.945598\pi\)
−0.985430 + 0.170079i \(0.945598\pi\)
\(774\) −1176.00 −0.0546130
\(775\) −1064.00 −0.0493161
\(776\) −15918.0 −0.736370
\(777\) 0 0
\(778\) −3870.00 −0.178337
\(779\) 4560.00 0.209729
\(780\) −660.000 −0.0302972
\(781\) 13284.0 0.608629
\(782\) −51057.0 −2.33478
\(783\) 36105.0 1.64788
\(784\) 0 0
\(785\) −34152.0 −1.55279
\(786\) −21780.0 −0.988380
\(787\) 39877.0 1.80618 0.903089 0.429454i \(-0.141294\pi\)
0.903089 + 0.429454i \(0.141294\pi\)
\(788\) −4176.00 −0.188787
\(789\) 18840.0 0.850091
\(790\) 1224.00 0.0551240
\(791\) 0 0
\(792\) 2268.00 0.101755
\(793\) −3938.00 −0.176346
\(794\) 19608.0 0.876400
\(795\) 26100.0 1.16437
\(796\) 241.000 0.0107312
\(797\) 30033.0 1.33478 0.667392 0.744706i \(-0.267410\pi\)
0.667392 + 0.744706i \(0.267410\pi\)
\(798\) 0 0
\(799\) 15624.0 0.691786
\(800\) 855.000 0.0377860
\(801\) −336.000 −0.0148214
\(802\) −6984.00 −0.307498
\(803\) 19062.0 0.837713
\(804\) −4805.00 −0.210770
\(805\) 0 0
\(806\) −1848.00 −0.0807606
\(807\) −23790.0 −1.03773
\(808\) 15246.0 0.663802
\(809\) 585.000 0.0254234 0.0127117 0.999919i \(-0.495954\pi\)
0.0127117 + 0.999919i \(0.495954\pi\)
\(810\) 24156.0 1.04785
\(811\) −28361.0 −1.22798 −0.613989 0.789315i \(-0.710436\pi\)
−0.613989 + 0.789315i \(0.710436\pi\)
\(812\) 0 0
\(813\) 10205.0 0.440228
\(814\) −40500.0 −1.74389
\(815\) −19200.0 −0.825211
\(816\) −33015.0 −1.41637
\(817\) 3724.00 0.159469
\(818\) −20028.0 −0.856067
\(819\) 0 0
\(820\) −2880.00 −0.122651
\(821\) 25068.0 1.06563 0.532813 0.846233i \(-0.321135\pi\)
0.532813 + 0.846233i \(0.321135\pi\)
\(822\) 25335.0 1.07501
\(823\) 10901.0 0.461707 0.230854 0.972989i \(-0.425848\pi\)
0.230854 + 0.972989i \(0.425848\pi\)
\(824\) −42.0000 −0.00177565
\(825\) −5130.00 −0.216489
\(826\) 0 0
\(827\) 12027.0 0.505707 0.252854 0.967505i \(-0.418631\pi\)
0.252854 + 0.967505i \(0.418631\pi\)
\(828\) −366.000 −0.0153616
\(829\) 19339.0 0.810219 0.405109 0.914268i \(-0.367233\pi\)
0.405109 + 0.914268i \(0.367233\pi\)
\(830\) 8424.00 0.352291
\(831\) 9820.00 0.409930
\(832\) −4763.00 −0.198470
\(833\) 0 0
\(834\) 32160.0 1.33526
\(835\) 24048.0 0.996665
\(836\) 1026.00 0.0424461
\(837\) 8120.00 0.335326
\(838\) −24408.0 −1.00616
\(839\) 13188.0 0.542670 0.271335 0.962485i \(-0.412535\pi\)
0.271335 + 0.962485i \(0.412535\pi\)
\(840\) 0 0
\(841\) 37612.0 1.54217
\(842\) 25995.0 1.06395
\(843\) −27480.0 −1.12273
\(844\) −745.000 −0.0303838
\(845\) −24912.0 −1.01420
\(846\) 1008.00 0.0409642
\(847\) 0 0
\(848\) −30885.0 −1.25070
\(849\) −15490.0 −0.626167
\(850\) −5301.00 −0.213909
\(851\) −45750.0 −1.84288
\(852\) −1230.00 −0.0494590
\(853\) 4678.00 0.187775 0.0938873 0.995583i \(-0.470071\pi\)
0.0938873 + 0.995583i \(0.470071\pi\)
\(854\) 0 0
\(855\) 456.000 0.0182396
\(856\) 29673.0 1.18482
\(857\) −15252.0 −0.607933 −0.303966 0.952683i \(-0.598311\pi\)
−0.303966 + 0.952683i \(0.598311\pi\)
\(858\) −8910.00 −0.354525
\(859\) 610.000 0.0242293 0.0121146 0.999927i \(-0.496144\pi\)
0.0121146 + 0.999927i \(0.496144\pi\)
\(860\) −2352.00 −0.0932588
\(861\) 0 0
\(862\) −2250.00 −0.0889041
\(863\) 774.000 0.0305299 0.0152649 0.999883i \(-0.495141\pi\)
0.0152649 + 0.999883i \(0.495141\pi\)
\(864\) −6525.00 −0.256927
\(865\) 5544.00 0.217921
\(866\) −14574.0 −0.571876
\(867\) 18680.0 0.731726
\(868\) 0 0
\(869\) 1836.00 0.0716709
\(870\) 44820.0 1.74660
\(871\) 10571.0 0.411234
\(872\) 8169.00 0.317245
\(873\) 1516.00 0.0587730
\(874\) 10431.0 0.403700
\(875\) 0 0
\(876\) −1765.00 −0.0680751
\(877\) −31039.0 −1.19511 −0.597556 0.801827i \(-0.703861\pi\)
−0.597556 + 0.801827i \(0.703861\pi\)
\(878\) 19500.0 0.749537
\(879\) −585.000 −0.0224477
\(880\) 46008.0 1.76242
\(881\) −33678.0 −1.28790 −0.643950 0.765067i \(-0.722706\pi\)
−0.643950 + 0.765067i \(0.722706\pi\)
\(882\) 0 0
\(883\) −42982.0 −1.63812 −0.819060 0.573708i \(-0.805504\pi\)
−0.819060 + 0.573708i \(0.805504\pi\)
\(884\) −1023.00 −0.0389222
\(885\) −11700.0 −0.444397
\(886\) −10458.0 −0.396550
\(887\) −4494.00 −0.170117 −0.0850585 0.996376i \(-0.527108\pi\)
−0.0850585 + 0.996376i \(0.527108\pi\)
\(888\) −26250.0 −0.991996
\(889\) 0 0
\(890\) −6048.00 −0.227786
\(891\) 36234.0 1.36238
\(892\) 1978.00 0.0742470
\(893\) −3192.00 −0.119615
\(894\) 45000.0 1.68347
\(895\) 8640.00 0.322685
\(896\) 0 0
\(897\) −10065.0 −0.374649
\(898\) 45090.0 1.67558
\(899\) 13944.0 0.517306
\(900\) −38.0000 −0.00140741
\(901\) 40455.0 1.49584
\(902\) −38880.0 −1.43521
\(903\) 0 0
\(904\) 7182.00 0.264236
\(905\) 28056.0 1.03051
\(906\) 15090.0 0.553346
\(907\) −23839.0 −0.872724 −0.436362 0.899771i \(-0.643733\pi\)
−0.436362 + 0.899771i \(0.643733\pi\)
\(908\) −5355.00 −0.195718
\(909\) −1452.00 −0.0529811
\(910\) 0 0
\(911\) −10332.0 −0.375757 −0.187878 0.982192i \(-0.560161\pi\)
−0.187878 + 0.982192i \(0.560161\pi\)
\(912\) 6745.00 0.244901
\(913\) 12636.0 0.458040
\(914\) 8877.00 0.321253
\(915\) 21480.0 0.776073
\(916\) 6370.00 0.229772
\(917\) 0 0
\(918\) 40455.0 1.45448
\(919\) −14371.0 −0.515838 −0.257919 0.966166i \(-0.583037\pi\)
−0.257919 + 0.966166i \(0.583037\pi\)
\(920\) 46116.0 1.65261
\(921\) 7100.00 0.254021
\(922\) −468.000 −0.0167167
\(923\) 2706.00 0.0964995
\(924\) 0 0
\(925\) −4750.00 −0.168842
\(926\) −13452.0 −0.477387
\(927\) 4.00000 0.000141723 0
\(928\) −11205.0 −0.396360
\(929\) −26889.0 −0.949623 −0.474811 0.880088i \(-0.657484\pi\)
−0.474811 + 0.880088i \(0.657484\pi\)
\(930\) 10080.0 0.355415
\(931\) 0 0
\(932\) −2838.00 −0.0997444
\(933\) 32805.0 1.15111
\(934\) 26298.0 0.921303
\(935\) −60264.0 −2.10785
\(936\) 462.000 0.0161335
\(937\) −785.000 −0.0273691 −0.0136845 0.999906i \(-0.504356\pi\)
−0.0136845 + 0.999906i \(0.504356\pi\)
\(938\) 0 0
\(939\) 7415.00 0.257699
\(940\) 2016.00 0.0699518
\(941\) 18141.0 0.628459 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(942\) 42690.0 1.47656
\(943\) −43920.0 −1.51668
\(944\) 13845.0 0.477348
\(945\) 0 0
\(946\) −31752.0 −1.09128
\(947\) 23100.0 0.792660 0.396330 0.918108i \(-0.370284\pi\)
0.396330 + 0.918108i \(0.370284\pi\)
\(948\) −170.000 −0.00582420
\(949\) 3883.00 0.132821
\(950\) 1083.00 0.0369865
\(951\) −6195.00 −0.211237
\(952\) 0 0
\(953\) 45690.0 1.55304 0.776519 0.630094i \(-0.216984\pi\)
0.776519 + 0.630094i \(0.216984\pi\)
\(954\) 2610.00 0.0885764
\(955\) 34452.0 1.16737
\(956\) −369.000 −0.0124836
\(957\) 67230.0 2.27089
\(958\) −56988.0 −1.92192
\(959\) 0 0
\(960\) 25980.0 0.873438
\(961\) −26655.0 −0.894733
\(962\) −8250.00 −0.276498
\(963\) −2826.00 −0.0945655
\(964\) −6608.00 −0.220777
\(965\) 19896.0 0.663705
\(966\) 0 0
\(967\) 21584.0 0.717781 0.358891 0.933380i \(-0.383155\pi\)
0.358891 + 0.933380i \(0.383155\pi\)
\(968\) 33285.0 1.10519
\(969\) −8835.00 −0.292901
\(970\) 27288.0 0.903263
\(971\) 50556.0 1.67087 0.835437 0.549586i \(-0.185214\pi\)
0.835437 + 0.549586i \(0.185214\pi\)
\(972\) 560.000 0.0184794
\(973\) 0 0
\(974\) 22350.0 0.735257
\(975\) −1045.00 −0.0343249
\(976\) −25418.0 −0.833617
\(977\) 8568.00 0.280568 0.140284 0.990111i \(-0.455198\pi\)
0.140284 + 0.990111i \(0.455198\pi\)
\(978\) 24000.0 0.784699
\(979\) −9072.00 −0.296162
\(980\) 0 0
\(981\) −778.000 −0.0253207
\(982\) −18540.0 −0.602480
\(983\) −29706.0 −0.963860 −0.481930 0.876210i \(-0.660064\pi\)
−0.481930 + 0.876210i \(0.660064\pi\)
\(984\) −25200.0 −0.816409
\(985\) −50112.0 −1.62102
\(986\) 69471.0 2.24382
\(987\) 0 0
\(988\) 209.000 0.00672993
\(989\) −35868.0 −1.15322
\(990\) −3888.00 −0.124817
\(991\) 30512.0 0.978048 0.489024 0.872270i \(-0.337353\pi\)
0.489024 + 0.872270i \(0.337353\pi\)
\(992\) −2520.00 −0.0806553
\(993\) −44495.0 −1.42196
\(994\) 0 0
\(995\) 2892.00 0.0921433
\(996\) −1170.00 −0.0372218
\(997\) −47756.0 −1.51700 −0.758499 0.651674i \(-0.774067\pi\)
−0.758499 + 0.651674i \(0.774067\pi\)
\(998\) −7728.00 −0.245116
\(999\) 36250.0 1.14805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.4.a.a.1.1 1
7.6 odd 2 19.4.a.a.1.1 1
21.20 even 2 171.4.a.d.1.1 1
28.27 even 2 304.4.a.b.1.1 1
35.13 even 4 475.4.b.c.324.2 2
35.27 even 4 475.4.b.c.324.1 2
35.34 odd 2 475.4.a.e.1.1 1
56.13 odd 2 1216.4.a.f.1.1 1
56.27 even 2 1216.4.a.a.1.1 1
77.76 even 2 2299.4.a.b.1.1 1
133.132 even 2 361.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.4.a.a.1.1 1 7.6 odd 2
171.4.a.d.1.1 1 21.20 even 2
304.4.a.b.1.1 1 28.27 even 2
361.4.a.b.1.1 1 133.132 even 2
475.4.a.e.1.1 1 35.34 odd 2
475.4.b.c.324.1 2 35.27 even 4
475.4.b.c.324.2 2 35.13 even 4
931.4.a.a.1.1 1 1.1 even 1 trivial
1216.4.a.a.1.1 1 56.27 even 2
1216.4.a.f.1.1 1 56.13 odd 2
2299.4.a.b.1.1 1 77.76 even 2