# Properties

 Label 931.2.x.b Level $931$ Weight $2$ Character orbit 931.x Analytic conductor $7.434$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$931 = 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 931.x (of order $$9$$, degree $$6$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.43407242818$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ Defining polynomial: $$x^{6} - x^{3} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 19) Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{18}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{2} + ( \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{3} + ( 1 + \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{4} + ( \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{5} + ( 2 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{6} + ( -\zeta_{18} + 3 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{8} + ( -3 + 2 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{9} +O(q^{10})$$ $$q + ( \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{2} + ( \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{3} + ( 1 + \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{4} + ( \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{5} + ( 2 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{6} + ( -\zeta_{18} + 3 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{8} + ( -3 + 2 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{9} + ( 2 + 2 \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{10} + ( -\zeta_{18} - \zeta_{18}^{2} + 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{11} + ( 1 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{12} + ( 2 + 2 \zeta_{18} - 3 \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{13} + ( 1 - \zeta_{18}^{3} - \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{15} + ( 3 \zeta_{18}^{3} + \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{16} + ( -\zeta_{18}^{3} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{17} + ( 1 - 4 \zeta_{18} - \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 4 \zeta_{18}^{5} ) q^{18} + ( -2 \zeta_{18} - \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{19} + ( 1 + 3 \zeta_{18} + 3 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{20} -3 \zeta_{18} q^{22} + ( 2 + 2 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{23} + ( 4 - 2 \zeta_{18} + 3 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{24} + ( 1 - 2 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{25} + ( 5 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{5} ) q^{26} + ( 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} ) q^{27} + ( -1 + \zeta_{18} - 5 \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{29} + ( 2 \zeta_{18} - \zeta_{18}^{2} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{30} + ( -3 \zeta_{18} + 2 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{31} + ( -3 \zeta_{18} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{4} ) q^{32} + ( 1 - 3 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{33} + ( 2 + 2 \zeta_{18} - 4 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{34} + ( -5 - 3 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{36} + ( -\zeta_{18} + 3 \zeta_{18}^{2} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{37} + ( -2 - 5 \zeta_{18} - 6 \zeta_{18}^{2} + 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{38} + ( 4 - 2 \zeta_{18} + \zeta_{18}^{2} - 4 \zeta_{18}^{3} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{39} + ( 2 + 6 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{40} + ( -4 - 4 \zeta_{18} - 3 \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{41} + ( 2 - 2 \zeta_{18}^{2} - 5 \zeta_{18}^{3} - 3 \zeta_{18}^{5} ) q^{43} + ( 1 - 2 \zeta_{18} - 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{44} + ( -\zeta_{18} + 5 \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{45} + ( 6 + 4 \zeta_{18} + 4 \zeta_{18}^{2} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{46} + ( -3 + 2 \zeta_{18} + \zeta_{18}^{3} + \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{47} + ( -2 + 5 \zeta_{18} - 2 \zeta_{18}^{2} + 5 \zeta_{18}^{3} - 2 \zeta_{18}^{4} ) q^{48} + ( -5 - 2 \zeta_{18}^{2} + 5 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{50} + ( -1 - \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{51} + ( 4 + 6 \zeta_{18} + 3 \zeta_{18}^{2} - \zeta_{18}^{3} + \zeta_{18}^{5} ) q^{52} + ( 2 + \zeta_{18} - 2 \zeta_{18}^{2} + \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{53} + ( 2 - 2 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{54} + ( -3 + 3 \zeta_{18} - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{55} + ( 5 - 4 \zeta_{18} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{57} + ( -5 \zeta_{18} + \zeta_{18}^{2} - 6 \zeta_{18}^{3} + \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{58} + ( 2 - 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 7 \zeta_{18}^{4} ) q^{59} + ( 1 + 2 \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{3} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{60} + ( -4 - 4 \zeta_{18} + 3 \zeta_{18}^{2} + 4 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{61} + ( 3 - 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 7 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{62} + ( -4 + 3 \zeta_{18} + 4 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{64} + ( -4 + 5 \zeta_{18}^{2} + 4 \zeta_{18}^{3} - 5 \zeta_{18}^{4} - 5 \zeta_{18}^{5} ) q^{65} + ( -3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{66} + ( 6 + 6 \zeta_{18} - 6 \zeta_{18}^{2} - 4 \zeta_{18}^{3} - 2 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{67} + ( 5 + 4 \zeta_{18} + 3 \zeta_{18}^{2} - 5 \zeta_{18}^{3} - 7 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{68} + ( 4 - 2 \zeta_{18} + 2 \zeta_{18}^{2} - 4 \zeta_{18}^{3} ) q^{69} + ( -2 + 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 10 \zeta_{18}^{4} ) q^{71} + ( -2 - 2 \zeta_{18} - 13 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - \zeta_{18}^{4} + 13 \zeta_{18}^{5} ) q^{72} + ( -4 + 4 \zeta_{18}^{5} ) q^{73} + ( 5 \zeta_{18}^{3} + \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{74} + ( 3 \zeta_{18} - 4 \zeta_{18}^{2} + 5 \zeta_{18}^{3} - 4 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{75} + ( -5 - 6 \zeta_{18} - 9 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 7 \zeta_{18}^{5} ) q^{76} + ( 1 + 4 \zeta_{18} - 3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 4 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{78} + ( -1 + \zeta_{18}^{2} + 7 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{79} + ( 2 + \zeta_{18} + 4 \zeta_{18}^{2} + \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{80} + ( -1 - 5 \zeta_{18} + \zeta_{18}^{3} - \zeta_{18}^{5} ) q^{81} + ( -4 - 7 \zeta_{18} - 6 \zeta_{18}^{2} - 7 \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{82} + ( 9 \zeta_{18} - 3 \zeta_{18}^{2} - 6 \zeta_{18}^{4} - 6 \zeta_{18}^{5} ) q^{83} + ( 1 - 2 \zeta_{18} - 3 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + \zeta_{18}^{4} ) q^{85} + ( 8 - 8 \zeta_{18}^{3} - 8 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{86} + ( -7 + \zeta_{18} + \zeta_{18}^{2} + 6 \zeta_{18}^{4} - 7 \zeta_{18}^{5} ) q^{87} + ( -3 \zeta_{18} - 3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{88} + ( 2 - 3 \zeta_{18} + 5 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{89} + ( -5 + 5 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 3 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{90} + ( 6 + 8 \zeta_{18} + 8 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{92} + ( 7 - 8 \zeta_{18} + 2 \zeta_{18}^{2} - 5 \zeta_{18}^{3} + 5 \zeta_{18}^{5} ) q^{93} + ( 3 - 4 \zeta_{18} + 2 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{94} + ( -7 + 4 \zeta_{18}^{2} + 6 \zeta_{18}^{3} - \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{95} + 3 \zeta_{18}^{3} q^{96} + ( -2 - 5 \zeta_{18} + 2 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 5 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{97} + ( 4 + \zeta_{18} - 5 \zeta_{18}^{3} - 5 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 3 q^{2} + 3 q^{3} + 9 q^{4} - 3 q^{5} - 3 q^{6} + 6 q^{8} - 15 q^{9} + O(q^{10})$$ $$6 q + 3 q^{2} + 3 q^{3} + 9 q^{4} - 3 q^{5} - 3 q^{6} + 6 q^{8} - 15 q^{9} + 9 q^{10} + 6 q^{12} + 3 q^{13} + 3 q^{15} + 9 q^{16} - 3 q^{17} + 3 q^{18} - 6 q^{19} + 6 q^{20} + 6 q^{23} + 21 q^{24} + 9 q^{25} + 30 q^{26} - 6 q^{27} - 3 q^{29} - 9 q^{31} + 9 q^{32} - 24 q^{36} - 3 q^{38} + 12 q^{39} + 9 q^{40} - 21 q^{41} - 3 q^{43} + 15 q^{45} + 36 q^{46} - 15 q^{47} + 3 q^{48} - 15 q^{50} - 6 q^{51} + 21 q^{52} + 15 q^{53} + 24 q^{54} - 18 q^{55} + 24 q^{57} - 18 q^{58} + 6 q^{59} + 3 q^{60} - 24 q^{61} + 12 q^{62} - 12 q^{64} - 12 q^{65} + 9 q^{66} + 24 q^{67} + 15 q^{68} + 12 q^{69} - 6 q^{71} - 3 q^{72} - 24 q^{73} + 15 q^{74} + 15 q^{75} - 36 q^{76} + 15 q^{78} + 15 q^{79} + 15 q^{80} - 3 q^{81} - 45 q^{82} + 24 q^{86} - 42 q^{87} + 9 q^{88} + 3 q^{89} - 18 q^{90} + 42 q^{92} + 27 q^{93} + 9 q^{94} - 24 q^{95} + 9 q^{96} - 18 q^{97} + 9 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/931\mathbb{Z}\right)^\times$$.

 $$n$$ $$248$$ $$344$$ $$\chi(n)$$ $$-\zeta_{18}^{3}$$ $$-\zeta_{18}^{5}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
226.1
 −0.766044 − 0.642788i 0.939693 + 0.342020i −0.766044 + 0.642788i −0.173648 + 0.984808i −0.173648 − 0.984808i 0.939693 − 0.342020i
−1.03209 0.866025i 0.500000 2.83564i −0.0320889 0.181985i −0.152704 + 0.866025i −2.97178 + 2.49362i 0 −1.47178 + 2.54920i −4.97178 1.80958i 0.907604 0.761570i
557.1 2.37939 + 0.866025i 0.500000 0.419550i 3.37939 + 2.83564i 1.03209 0.866025i 1.55303 0.565258i 0 3.05303 + 5.28801i −0.446967 + 2.53487i 3.20574 1.16679i
655.1 −1.03209 + 0.866025i 0.500000 + 2.83564i −0.0320889 + 0.181985i −0.152704 0.866025i −2.97178 2.49362i 0 −1.47178 2.54920i −4.97178 + 1.80958i 0.907604 + 0.761570i
765.1 0.152704 0.866025i 0.500000 0.181985i 1.15270 + 0.419550i −2.37939 + 0.866025i −0.0812519 0.460802i 0 1.41875 2.45734i −2.08125 + 1.74638i 0.386659 + 2.19285i
802.1 0.152704 + 0.866025i 0.500000 + 0.181985i 1.15270 0.419550i −2.37939 0.866025i −0.0812519 + 0.460802i 0 1.41875 + 2.45734i −2.08125 1.74638i 0.386659 2.19285i
814.1 2.37939 0.866025i 0.500000 + 0.419550i 3.37939 2.83564i 1.03209 + 0.866025i 1.55303 + 0.565258i 0 3.05303 5.28801i −0.446967 2.53487i 3.20574 + 1.16679i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 814.1 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.w even 9 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 931.2.x.b 6
7.b odd 2 1 931.2.x.a 6
7.c even 3 1 931.2.v.a 6
7.c even 3 1 931.2.w.a 6
7.d odd 6 1 19.2.e.a 6
7.d odd 6 1 931.2.v.b 6
19.e even 9 1 931.2.v.a 6
21.g even 6 1 171.2.u.c 6
28.f even 6 1 304.2.u.b 6
35.i odd 6 1 475.2.l.a 6
35.k even 12 2 475.2.u.a 12
133.i even 6 1 361.2.e.a 6
133.k odd 6 1 361.2.e.f 6
133.o even 6 1 361.2.e.h 6
133.s even 6 1 361.2.e.b 6
133.t odd 6 1 361.2.e.g 6
133.u even 9 1 931.2.w.a 6
133.w even 9 1 inner 931.2.x.b 6
133.x odd 18 1 19.2.e.a 6
133.x odd 18 1 361.2.e.f 6
133.x odd 18 1 361.2.e.g 6
133.y odd 18 1 931.2.v.b 6
133.z odd 18 1 361.2.a.g 3
133.z odd 18 2 361.2.c.i 6
133.z odd 18 1 931.2.x.a 6
133.bb even 18 1 361.2.e.a 6
133.bb even 18 1 361.2.e.b 6
133.bb even 18 1 361.2.e.h 6
133.bf even 18 1 361.2.a.h 3
133.bf even 18 2 361.2.c.h 6
399.bs odd 18 1 3249.2.a.s 3
399.cb even 18 1 3249.2.a.z 3
399.ci even 18 1 171.2.u.c 6
532.br even 18 1 5776.2.a.br 3
532.bu odd 18 1 5776.2.a.bi 3
532.cd even 18 1 304.2.u.b 6
665.cr even 18 1 9025.2.a.x 3
665.cw odd 18 1 475.2.l.a 6
665.df odd 18 1 9025.2.a.bd 3
665.dk even 36 2 475.2.u.a 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.e.a 6 7.d odd 6 1
19.2.e.a 6 133.x odd 18 1
171.2.u.c 6 21.g even 6 1
171.2.u.c 6 399.ci even 18 1
304.2.u.b 6 28.f even 6 1
304.2.u.b 6 532.cd even 18 1
361.2.a.g 3 133.z odd 18 1
361.2.a.h 3 133.bf even 18 1
361.2.c.h 6 133.bf even 18 2
361.2.c.i 6 133.z odd 18 2
361.2.e.a 6 133.i even 6 1
361.2.e.a 6 133.bb even 18 1
361.2.e.b 6 133.s even 6 1
361.2.e.b 6 133.bb even 18 1
361.2.e.f 6 133.k odd 6 1
361.2.e.f 6 133.x odd 18 1
361.2.e.g 6 133.t odd 6 1
361.2.e.g 6 133.x odd 18 1
361.2.e.h 6 133.o even 6 1
361.2.e.h 6 133.bb even 18 1
475.2.l.a 6 35.i odd 6 1
475.2.l.a 6 665.cw odd 18 1
475.2.u.a 12 35.k even 12 2
475.2.u.a 12 665.dk even 36 2
931.2.v.a 6 7.c even 3 1
931.2.v.a 6 19.e even 9 1
931.2.v.b 6 7.d odd 6 1
931.2.v.b 6 133.y odd 18 1
931.2.w.a 6 7.c even 3 1
931.2.w.a 6 133.u even 9 1
931.2.x.a 6 7.b odd 2 1
931.2.x.a 6 133.z odd 18 1
931.2.x.b 6 1.a even 1 1 trivial
931.2.x.b 6 133.w even 9 1 inner
3249.2.a.s 3 399.bs odd 18 1
3249.2.a.z 3 399.cb even 18 1
5776.2.a.bi 3 532.bu odd 18 1
5776.2.a.br 3 532.br even 18 1
9025.2.a.x 3 665.cr even 18 1
9025.2.a.bd 3 665.df odd 18 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(931, [\chi])$$:

 $$T_{2}^{6} - 3 T_{2}^{5} + 3 T_{2}^{3} + 9 T_{2}^{2} + 9$$ $$T_{3}^{6} - 3 T_{3}^{5} + 12 T_{3}^{4} - 19 T_{3}^{3} + 15 T_{3}^{2} - 6 T_{3} + 1$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$9 + 9 T^{2} + 3 T^{3} - 3 T^{5} + T^{6}$$
$3$ $$1 - 6 T + 15 T^{2} - 19 T^{3} + 12 T^{4} - 3 T^{5} + T^{6}$$
$5$ $$9 + 9 T^{2} - 3 T^{3} + 3 T^{5} + T^{6}$$
$7$ $$T^{6}$$
$11$ $$( -9 - 9 T + T^{3} )^{2}$$
$13$ $$1369 - 222 T - 114 T^{2} - 26 T^{3} + 24 T^{4} - 3 T^{5} + T^{6}$$
$17$ $$9 - 27 T + 9 T^{2} + 24 T^{3} + 18 T^{4} + 3 T^{5} + T^{6}$$
$19$ $$6859 + 2166 T + 798 T^{2} + 155 T^{3} + 42 T^{4} + 6 T^{5} + T^{6}$$
$23$ $$576 + 144 T^{2} + 24 T^{3} - 6 T^{5} + T^{6}$$
$29$ $$12321 - 1998 T - 477 T^{2} - 57 T^{3} + 36 T^{4} + 3 T^{5} + T^{6}$$
$31$ $$2809 - 318 T + 513 T^{2} + 160 T^{3} + 75 T^{4} + 9 T^{5} + T^{6}$$
$37$ $$289 - 357 T + 441 T^{2} - 34 T^{3} + 21 T^{4} + T^{6}$$
$41$ $$12321 + 8991 T + 3411 T^{2} + 672 T^{3} + 162 T^{4} + 21 T^{5} + T^{6}$$
$43$ $$26569 + 5379 T - 663 T^{2} + 8 T^{3} + 60 T^{4} + 3 T^{5} + T^{6}$$
$47$ $$9 + 27 T + 63 T^{2} + 84 T^{3} + 72 T^{4} + 15 T^{5} + T^{6}$$
$53$ $$2601 - 1836 T + 846 T^{2} - 300 T^{3} + 90 T^{4} - 15 T^{5} + T^{6}$$
$59$ $$71289 + 4806 T + 3006 T^{2} + 699 T^{3} - 18 T^{4} - 6 T^{5} + T^{6}$$
$61$ $$32761 + 21720 T + 7500 T^{2} + 1765 T^{3} + 276 T^{4} + 24 T^{5} + T^{6}$$
$67$ $$179776 - 127200 T + 36192 T^{2} - 5248 T^{3} + 456 T^{4} - 24 T^{5} + T^{6}$$
$71$ $$788544 - 31968 T + 8352 T^{2} - 1536 T^{3} - 36 T^{4} + 6 T^{5} + T^{6}$$
$73$ $$4096 + 3072 T + 3072 T^{2} + 1216 T^{3} + 240 T^{4} + 24 T^{5} + T^{6}$$
$79$ $$654481 + 16989 T + 696 T^{2} - 532 T^{3} + 87 T^{4} - 15 T^{5} + T^{6}$$
$83$ $$210681 - 86751 T + 35721 T^{2} - 918 T^{3} + 189 T^{4} + T^{6}$$
$89$ $$3249 + 513 T - 504 T^{2} + 84 T^{3} + 99 T^{4} - 3 T^{5} + T^{6}$$
$97$ $$16129 + 20574 T + 9522 T^{2} + 1855 T^{3} + 234 T^{4} + 18 T^{5} + T^{6}$$