Properties

Label 931.2.x.a.226.1
Level $931$
Weight $2$
Character 931.226
Analytic conductor $7.434$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.x (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 226.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 931.226
Dual form 931.2.x.a.655.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.03209 - 0.866025i) q^{2} +(-0.500000 + 2.83564i) q^{3} +(-0.0320889 - 0.181985i) q^{4} +(0.152704 - 0.866025i) q^{5} +(2.97178 - 2.49362i) q^{6} +(-1.47178 + 2.54920i) q^{8} +(-4.97178 - 1.80958i) q^{9} +O(q^{10})\) \(q+(-1.03209 - 0.866025i) q^{2} +(-0.500000 + 2.83564i) q^{3} +(-0.0320889 - 0.181985i) q^{4} +(0.152704 - 0.866025i) q^{5} +(2.97178 - 2.49362i) q^{6} +(-1.47178 + 2.54920i) q^{8} +(-4.97178 - 1.80958i) q^{9} +(-0.907604 + 0.761570i) q^{10} -2.22668 q^{11} +0.532089 q^{12} +(1.97178 - 1.65452i) q^{13} +(2.37939 + 0.866025i) q^{15} +(3.37939 - 1.23000i) q^{16} +(-0.439693 + 0.160035i) q^{17} +(3.56418 + 6.17334i) q^{18} +(1.52094 - 4.08494i) q^{19} -0.162504 q^{20} +(2.29813 + 1.92836i) q^{22} +(-2.06418 + 1.73205i) q^{23} +(-6.49273 - 5.44804i) q^{24} +(3.97178 + 1.44561i) q^{25} -3.46791 q^{26} +(3.29813 - 5.71253i) q^{27} +(-1.19459 - 6.77487i) q^{29} +(-1.70574 - 2.95442i) q^{30} +(3.55303 - 6.15403i) q^{31} +(0.979055 + 0.356347i) q^{32} +(1.11334 - 6.31407i) q^{33} +(0.592396 + 0.215615i) q^{34} +(-0.169778 + 0.962858i) q^{36} +(-2.47178 + 4.28125i) q^{37} +(-5.10741 + 2.89884i) q^{38} +(3.70574 + 6.41852i) q^{39} +(1.98293 + 1.66387i) q^{40} +(1.89646 + 1.59132i) q^{41} +(-3.66637 + 1.33445i) q^{43} +(0.0714517 + 0.405223i) q^{44} +(-2.32635 + 4.02936i) q^{45} +3.63041 q^{46} +(6.85117 + 2.49362i) q^{47} +(1.79813 + 10.1977i) q^{48} +(-2.84730 - 4.93166i) q^{50} +(-0.233956 - 1.32683i) q^{51} +(-0.364370 - 0.305743i) q^{52} +(-0.492726 - 2.79439i) q^{53} +(-8.35117 + 3.03958i) q^{54} +(-0.340022 + 1.92836i) q^{55} +(10.8229 + 6.35532i) q^{57} +(-4.63429 + 8.02682i) q^{58} +(5.92514 - 2.15658i) q^{59} +(0.0812519 - 0.460802i) q^{60} +(6.99273 - 5.86759i) q^{61} +(-8.99660 + 3.27449i) q^{62} +(-4.29813 - 7.44459i) q^{64} +(-1.13176 - 1.96026i) q^{65} +(-6.61721 + 5.55250i) q^{66} +(5.87939 - 4.93339i) q^{67} +(0.0432332 + 0.0748822i) q^{68} +(-3.87939 - 6.71929i) q^{69} +(8.74422 - 3.18264i) q^{71} +(11.9304 - 10.0108i) q^{72} +(0.241230 - 1.36808i) q^{73} +(6.25877 - 2.27801i) q^{74} +(-6.08512 + 10.5397i) q^{75} +(-0.792204 - 0.145708i) q^{76} +(1.73396 - 9.83375i) q^{78} +(11.1309 - 4.05131i) q^{79} +(-0.549163 - 3.11446i) q^{80} +(2.39053 + 2.00589i) q^{81} +(-0.579193 - 3.28476i) q^{82} +(7.41534 + 12.8438i) q^{83} +(0.0714517 + 0.405223i) q^{85} +(4.93969 + 1.79790i) q^{86} +19.8084 q^{87} +(3.27719 - 5.67626i) q^{88} +(-1.78699 - 10.1345i) q^{89} +(5.89053 - 2.14398i) q^{90} +(0.381445 + 0.320070i) q^{92} +(15.6741 + 13.1521i) q^{93} +(-4.91147 - 8.50692i) q^{94} +(-3.30541 - 1.94096i) q^{95} +(-1.50000 + 2.59808i) q^{96} +(1.64156 - 9.30975i) q^{97} +(11.0706 + 4.02936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} + 9 q^{4} + 3 q^{5} + 3 q^{6} + 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 3 q^{3} + 9 q^{4} + 3 q^{5} + 3 q^{6} + 6 q^{8} - 15 q^{9} - 9 q^{10} - 6 q^{12} - 3 q^{13} + 3 q^{15} + 9 q^{16} + 3 q^{17} + 3 q^{18} + 6 q^{19} - 6 q^{20} + 6 q^{23} - 21 q^{24} + 9 q^{25} - 30 q^{26} + 6 q^{27} - 3 q^{29} + 9 q^{31} + 9 q^{32} - 24 q^{36} + 3 q^{38} + 12 q^{39} - 9 q^{40} + 21 q^{41} - 3 q^{43} - 15 q^{45} + 36 q^{46} + 15 q^{47} - 3 q^{48} - 15 q^{50} - 6 q^{51} - 21 q^{52} + 15 q^{53} - 24 q^{54} + 18 q^{55} + 24 q^{57} - 18 q^{58} - 6 q^{59} + 3 q^{60} + 24 q^{61} - 12 q^{62} - 12 q^{64} - 12 q^{65} - 9 q^{66} + 24 q^{67} - 15 q^{68} - 12 q^{69} - 6 q^{71} - 3 q^{72} + 24 q^{73} + 15 q^{74} - 15 q^{75} + 36 q^{76} + 15 q^{78} + 15 q^{79} - 15 q^{80} - 3 q^{81} + 45 q^{82} + 24 q^{86} + 42 q^{87} + 9 q^{88} - 3 q^{89} + 18 q^{90} + 42 q^{92} + 27 q^{93} - 9 q^{94} - 24 q^{95} - 9 q^{96} + 18 q^{97} + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03209 0.866025i −0.729797 0.612372i 0.200279 0.979739i \(-0.435815\pi\)
−0.930076 + 0.367366i \(0.880260\pi\)
\(3\) −0.500000 + 2.83564i −0.288675 + 1.63716i 0.403179 + 0.915121i \(0.367905\pi\)
−0.691854 + 0.722037i \(0.743206\pi\)
\(4\) −0.0320889 0.181985i −0.0160444 0.0909926i
\(5\) 0.152704 0.866025i 0.0682911 0.387298i −0.931435 0.363907i \(-0.881443\pi\)
0.999726 0.0233912i \(-0.00744633\pi\)
\(6\) 2.97178 2.49362i 1.21322 1.01802i
\(7\) 0 0
\(8\) −1.47178 + 2.54920i −0.520353 + 0.901278i
\(9\) −4.97178 1.80958i −1.65726 0.603193i
\(10\) −0.907604 + 0.761570i −0.287010 + 0.240830i
\(11\) −2.22668 −0.671370 −0.335685 0.941974i \(-0.608968\pi\)
−0.335685 + 0.941974i \(0.608968\pi\)
\(12\) 0.532089 0.153601
\(13\) 1.97178 1.65452i 0.546874 0.458882i −0.327007 0.945022i \(-0.606040\pi\)
0.873881 + 0.486140i \(0.161596\pi\)
\(14\) 0 0
\(15\) 2.37939 + 0.866025i 0.614355 + 0.223607i
\(16\) 3.37939 1.23000i 0.844846 0.307499i
\(17\) −0.439693 + 0.160035i −0.106641 + 0.0388142i −0.394790 0.918772i \(-0.629183\pi\)
0.288149 + 0.957586i \(0.406960\pi\)
\(18\) 3.56418 + 6.17334i 0.840085 + 1.45507i
\(19\) 1.52094 4.08494i 0.348929 0.937149i
\(20\) −0.162504 −0.0363370
\(21\) 0 0
\(22\) 2.29813 + 1.92836i 0.489964 + 0.411128i
\(23\) −2.06418 + 1.73205i −0.430411 + 0.361158i −0.832107 0.554616i \(-0.812865\pi\)
0.401696 + 0.915773i \(0.368421\pi\)
\(24\) −6.49273 5.44804i −1.32532 1.11208i
\(25\) 3.97178 + 1.44561i 0.794356 + 0.289122i
\(26\) −3.46791 −0.680113
\(27\) 3.29813 5.71253i 0.634726 1.09938i
\(28\) 0 0
\(29\) −1.19459 6.77487i −0.221830 1.25806i −0.868653 0.495421i \(-0.835014\pi\)
0.646822 0.762641i \(-0.276097\pi\)
\(30\) −1.70574 2.95442i −0.311424 0.539401i
\(31\) 3.55303 6.15403i 0.638144 1.10530i −0.347696 0.937607i \(-0.613036\pi\)
0.985840 0.167690i \(-0.0536307\pi\)
\(32\) 0.979055 + 0.356347i 0.173074 + 0.0629939i
\(33\) 1.11334 6.31407i 0.193808 1.09914i
\(34\) 0.592396 + 0.215615i 0.101595 + 0.0369776i
\(35\) 0 0
\(36\) −0.169778 + 0.962858i −0.0282963 + 0.160476i
\(37\) −2.47178 + 4.28125i −0.406358 + 0.703833i −0.994479 0.104940i \(-0.966535\pi\)
0.588120 + 0.808774i \(0.299868\pi\)
\(38\) −5.10741 + 2.89884i −0.828531 + 0.470255i
\(39\) 3.70574 + 6.41852i 0.593393 + 1.02779i
\(40\) 1.98293 + 1.66387i 0.313528 + 0.263081i
\(41\) 1.89646 + 1.59132i 0.296177 + 0.248522i 0.778751 0.627333i \(-0.215854\pi\)
−0.482574 + 0.875855i \(0.660298\pi\)
\(42\) 0 0
\(43\) −3.66637 + 1.33445i −0.559117 + 0.203502i −0.606093 0.795394i \(-0.707264\pi\)
0.0469757 + 0.998896i \(0.485042\pi\)
\(44\) 0.0714517 + 0.405223i 0.0107718 + 0.0610897i
\(45\) −2.32635 + 4.02936i −0.346792 + 0.600661i
\(46\) 3.63041 0.535275
\(47\) 6.85117 + 2.49362i 0.999345 + 0.363732i 0.789332 0.613967i \(-0.210427\pi\)
0.210013 + 0.977699i \(0.432649\pi\)
\(48\) 1.79813 + 10.1977i 0.259538 + 1.47191i
\(49\) 0 0
\(50\) −2.84730 4.93166i −0.402669 0.697442i
\(51\) −0.233956 1.32683i −0.0327603 0.185793i
\(52\) −0.364370 0.305743i −0.0505291 0.0423989i
\(53\) −0.492726 2.79439i −0.0676811 0.383839i −0.999767 0.0216005i \(-0.993124\pi\)
0.932086 0.362238i \(-0.117987\pi\)
\(54\) −8.35117 + 3.03958i −1.13645 + 0.413634i
\(55\) −0.340022 + 1.92836i −0.0458486 + 0.260020i
\(56\) 0 0
\(57\) 10.8229 + 6.35532i 1.43353 + 0.841783i
\(58\) −4.63429 + 8.02682i −0.608511 + 1.05397i
\(59\) 5.92514 2.15658i 0.771388 0.280762i 0.0738112 0.997272i \(-0.476484\pi\)
0.697577 + 0.716510i \(0.254262\pi\)
\(60\) 0.0812519 0.460802i 0.0104896 0.0594893i
\(61\) 6.99273 5.86759i 0.895327 0.751268i −0.0739445 0.997262i \(-0.523559\pi\)
0.969271 + 0.245994i \(0.0791143\pi\)
\(62\) −8.99660 + 3.27449i −1.14257 + 0.415861i
\(63\) 0 0
\(64\) −4.29813 7.44459i −0.537267 0.930573i
\(65\) −1.13176 1.96026i −0.140377 0.243141i
\(66\) −6.61721 + 5.55250i −0.814522 + 0.683465i
\(67\) 5.87939 4.93339i 0.718281 0.602710i −0.208628 0.977995i \(-0.566900\pi\)
0.926909 + 0.375286i \(0.122455\pi\)
\(68\) 0.0432332 + 0.0748822i 0.00524280 + 0.00908080i
\(69\) −3.87939 6.71929i −0.467023 0.808908i
\(70\) 0 0
\(71\) 8.74422 3.18264i 1.03775 0.377709i 0.233722 0.972303i \(-0.424909\pi\)
0.804026 + 0.594594i \(0.202687\pi\)
\(72\) 11.9304 10.0108i 1.40601 1.17978i
\(73\) 0.241230 1.36808i 0.0282338 0.160122i −0.967431 0.253134i \(-0.918539\pi\)
0.995665 + 0.0930125i \(0.0296497\pi\)
\(74\) 6.25877 2.27801i 0.727567 0.264813i
\(75\) −6.08512 + 10.5397i −0.702649 + 1.21702i
\(76\) −0.792204 0.145708i −0.0908720 0.0167139i
\(77\) 0 0
\(78\) 1.73396 9.83375i 0.196332 1.11345i
\(79\) 11.1309 4.05131i 1.25232 0.455808i 0.371136 0.928578i \(-0.378968\pi\)
0.881186 + 0.472770i \(0.156746\pi\)
\(80\) −0.549163 3.11446i −0.0613983 0.348207i
\(81\) 2.39053 + 2.00589i 0.265614 + 0.222877i
\(82\) −0.579193 3.28476i −0.0639611 0.362742i
\(83\) 7.41534 + 12.8438i 0.813940 + 1.40979i 0.910087 + 0.414418i \(0.136015\pi\)
−0.0961469 + 0.995367i \(0.530652\pi\)
\(84\) 0 0
\(85\) 0.0714517 + 0.405223i 0.00775003 + 0.0439526i
\(86\) 4.93969 + 1.79790i 0.532661 + 0.193873i
\(87\) 19.8084 2.12368
\(88\) 3.27719 5.67626i 0.349349 0.605091i
\(89\) −1.78699 10.1345i −0.189420 1.07426i −0.920143 0.391582i \(-0.871928\pi\)
0.730723 0.682674i \(-0.239183\pi\)
\(90\) 5.89053 2.14398i 0.620916 0.225995i
\(91\) 0 0
\(92\) 0.381445 + 0.320070i 0.0397684 + 0.0333696i
\(93\) 15.6741 + 13.1521i 1.62533 + 1.36381i
\(94\) −4.91147 8.50692i −0.506580 0.877422i
\(95\) −3.30541 1.94096i −0.339128 0.199138i
\(96\) −1.50000 + 2.59808i −0.153093 + 0.265165i
\(97\) 1.64156 9.30975i 0.166675 0.945261i −0.780645 0.624974i \(-0.785109\pi\)
0.947320 0.320287i \(-0.103779\pi\)
\(98\) 0 0
\(99\) 11.0706 + 4.02936i 1.11263 + 0.404966i
\(100\) 0.135630 0.769193i 0.0135630 0.0769193i
\(101\) 8.69119 + 3.16333i 0.864806 + 0.314764i 0.736062 0.676914i \(-0.236683\pi\)
0.128744 + 0.991678i \(0.458905\pi\)
\(102\) −0.907604 + 1.57202i −0.0898662 + 0.155653i
\(103\) 2.75490 + 4.77163i 0.271448 + 0.470162i 0.969233 0.246145i \(-0.0791640\pi\)
−0.697785 + 0.716308i \(0.745831\pi\)
\(104\) 1.31567 + 7.46156i 0.129012 + 0.731666i
\(105\) 0 0
\(106\) −1.91147 + 3.31077i −0.185659 + 0.321570i
\(107\) 10.2344 0.989399 0.494699 0.869064i \(-0.335278\pi\)
0.494699 + 0.869064i \(0.335278\pi\)
\(108\) −1.14543 0.416902i −0.110219 0.0401164i
\(109\) −1.39646 1.17177i −0.133757 0.112235i 0.573455 0.819237i \(-0.305603\pi\)
−0.707212 + 0.707002i \(0.750047\pi\)
\(110\) 2.02094 1.69577i 0.192690 0.161686i
\(111\) −10.9042 9.14971i −1.03498 0.868452i
\(112\) 0 0
\(113\) −17.6878 −1.66393 −0.831963 0.554830i \(-0.812783\pi\)
−0.831963 + 0.554830i \(0.812783\pi\)
\(114\) −5.66637 15.9322i −0.530705 1.49219i
\(115\) 1.18479 + 2.05212i 0.110482 + 0.191361i
\(116\) −1.19459 + 0.434796i −0.110915 + 0.0403698i
\(117\) −12.7973 + 4.65782i −1.18311 + 0.430616i
\(118\) −7.98293 2.90555i −0.734888 0.267477i
\(119\) 0 0
\(120\) −5.70961 + 4.79093i −0.521213 + 0.437350i
\(121\) −6.04189 −0.549263
\(122\) −12.2986 −1.11346
\(123\) −5.46064 + 4.58202i −0.492369 + 0.413147i
\(124\) −1.23396 0.449123i −0.110812 0.0403324i
\(125\) 4.05690 7.02676i 0.362861 0.628493i
\(126\) 0 0
\(127\) 8.88919 7.45891i 0.788788 0.661871i −0.156657 0.987653i \(-0.550072\pi\)
0.945445 + 0.325782i \(0.105627\pi\)
\(128\) −1.64930 + 9.35365i −0.145779 + 0.826753i
\(129\) −1.95084 11.0637i −0.171762 0.974109i
\(130\) −0.529563 + 3.00330i −0.0464457 + 0.263407i
\(131\) 1.41353 + 1.18610i 0.123501 + 0.103630i 0.702446 0.711737i \(-0.252091\pi\)
−0.578945 + 0.815366i \(0.696536\pi\)
\(132\) −1.18479 −0.103123
\(133\) 0 0
\(134\) −10.3405 −0.893282
\(135\) −4.44356 3.72859i −0.382441 0.320906i
\(136\) 0.239170 1.35640i 0.0205087 0.116310i
\(137\) 0.0444153 + 0.251892i 0.00379465 + 0.0215206i 0.986646 0.162878i \(-0.0520775\pi\)
−0.982852 + 0.184398i \(0.940966\pi\)
\(138\) −1.81521 + 10.2946i −0.154521 + 0.876331i
\(139\) 3.26604 2.74054i 0.277022 0.232449i −0.493682 0.869643i \(-0.664349\pi\)
0.770704 + 0.637193i \(0.219905\pi\)
\(140\) 0 0
\(141\) −10.4966 + 18.1806i −0.883973 + 1.53109i
\(142\) −11.7811 4.28795i −0.988645 0.359837i
\(143\) −4.39053 + 3.68409i −0.367155 + 0.308079i
\(144\) −19.0273 −1.58561
\(145\) −6.04963 −0.502394
\(146\) −1.43376 + 1.20307i −0.118659 + 0.0995668i
\(147\) 0 0
\(148\) 0.858441 + 0.312447i 0.0705634 + 0.0256830i
\(149\) −15.5608 + 5.66366i −1.27479 + 0.463985i −0.888705 0.458479i \(-0.848394\pi\)
−0.386083 + 0.922464i \(0.626172\pi\)
\(150\) 15.4081 5.60808i 1.25806 0.457898i
\(151\) 2.18092 + 3.77747i 0.177481 + 0.307406i 0.941017 0.338359i \(-0.109872\pi\)
−0.763536 + 0.645765i \(0.776539\pi\)
\(152\) 8.17483 + 9.88933i 0.663066 + 0.802131i
\(153\) 2.47565 0.200145
\(154\) 0 0
\(155\) −4.78699 4.01676i −0.384500 0.322634i
\(156\) 1.04916 0.880352i 0.0840003 0.0704846i
\(157\) −7.36824 6.18269i −0.588050 0.493432i 0.299530 0.954087i \(-0.403170\pi\)
−0.887579 + 0.460655i \(0.847615\pi\)
\(158\) −14.9966 5.45831i −1.19307 0.434240i
\(159\) 8.17024 0.647943
\(160\) 0.458111 0.793471i 0.0362168 0.0627294i
\(161\) 0 0
\(162\) −0.730085 4.14052i −0.0573609 0.325310i
\(163\) −4.17752 7.23567i −0.327209 0.566742i 0.654748 0.755847i \(-0.272775\pi\)
−0.981957 + 0.189105i \(0.939441\pi\)
\(164\) 0.228741 0.396191i 0.0178617 0.0309373i
\(165\) −5.29813 1.92836i −0.412459 0.150123i
\(166\) 3.46972 19.6778i 0.269303 1.52729i
\(167\) −3.79174 1.38008i −0.293413 0.106794i 0.191120 0.981567i \(-0.438788\pi\)
−0.484533 + 0.874773i \(0.661010\pi\)
\(168\) 0 0
\(169\) −1.10694 + 6.27779i −0.0851496 + 0.482907i
\(170\) 0.277189 0.480105i 0.0212594 0.0368224i
\(171\) −14.9538 + 17.5572i −1.14355 + 1.34263i
\(172\) 0.360500 + 0.624404i 0.0274879 + 0.0476104i
\(173\) −15.4311 12.9482i −1.17320 0.984434i −0.173203 0.984886i \(-0.555412\pi\)
−1.00000 0.000452057i \(0.999856\pi\)
\(174\) −20.4440 17.1546i −1.54986 1.30049i
\(175\) 0 0
\(176\) −7.52481 + 2.73881i −0.567204 + 0.206445i
\(177\) 3.15270 + 17.8799i 0.236972 + 1.34393i
\(178\) −6.93242 + 12.0073i −0.519607 + 0.899985i
\(179\) −11.5125 −0.860484 −0.430242 0.902714i \(-0.641572\pi\)
−0.430242 + 0.902714i \(0.641572\pi\)
\(180\) 0.807934 + 0.294064i 0.0602198 + 0.0219182i
\(181\) 1.48246 + 8.40744i 0.110190 + 0.624920i 0.989020 + 0.147784i \(0.0472141\pi\)
−0.878829 + 0.477136i \(0.841675\pi\)
\(182\) 0 0
\(183\) 13.1420 + 22.7627i 0.971487 + 1.68266i
\(184\) −1.37733 7.81120i −0.101538 0.575850i
\(185\) 3.33022 + 2.79439i 0.244843 + 0.205448i
\(186\) −4.78699 27.1484i −0.350999 1.99061i
\(187\) 0.979055 0.356347i 0.0715956 0.0260587i
\(188\) 0.233956 1.32683i 0.0170630 0.0967689i
\(189\) 0 0
\(190\) 1.73055 + 4.86581i 0.125547 + 0.353003i
\(191\) −9.16772 + 15.8790i −0.663353 + 1.14896i 0.316376 + 0.948634i \(0.397534\pi\)
−0.979729 + 0.200327i \(0.935800\pi\)
\(192\) 23.2592 8.46567i 1.67859 0.610957i
\(193\) 0.0516892 0.293144i 0.00372067 0.0211010i −0.982891 0.184189i \(-0.941034\pi\)
0.986612 + 0.163088i \(0.0521454\pi\)
\(194\) −9.75671 + 8.18685i −0.700491 + 0.587782i
\(195\) 6.12449 2.22913i 0.438583 0.159631i
\(196\) 0 0
\(197\) −6.57057 11.3806i −0.468134 0.810832i 0.531203 0.847245i \(-0.321740\pi\)
−0.999337 + 0.0364128i \(0.988407\pi\)
\(198\) −7.93629 13.7461i −0.564008 0.976890i
\(199\) −0.196652 + 0.165011i −0.0139403 + 0.0116973i −0.649731 0.760164i \(-0.725119\pi\)
0.635791 + 0.771861i \(0.280674\pi\)
\(200\) −9.53074 + 7.99724i −0.673925 + 0.565491i
\(201\) 11.0496 + 19.1385i 0.779381 + 1.34993i
\(202\) −6.23055 10.7916i −0.438380 0.759297i
\(203\) 0 0
\(204\) −0.233956 + 0.0851529i −0.0163802 + 0.00596189i
\(205\) 1.66772 1.39938i 0.116479 0.0977371i
\(206\) 1.28905 7.31056i 0.0898123 0.509351i
\(207\) 13.3969 4.87608i 0.931151 0.338911i
\(208\) 4.62836 8.01655i 0.320919 0.555848i
\(209\) −3.38666 + 9.09586i −0.234260 + 0.629174i
\(210\) 0 0
\(211\) 0.425145 2.41112i 0.0292682 0.165988i −0.966670 0.256024i \(-0.917587\pi\)
0.995938 + 0.0900364i \(0.0286983\pi\)
\(212\) −0.492726 + 0.179338i −0.0338406 + 0.0123170i
\(213\) 4.65270 + 26.3868i 0.318798 + 1.80799i
\(214\) −10.5628 8.86327i −0.722060 0.605881i
\(215\) 0.595800 + 3.37895i 0.0406332 + 0.230442i
\(216\) 9.70826 + 16.8152i 0.660564 + 1.14413i
\(217\) 0 0
\(218\) 0.426489 + 2.41874i 0.0288855 + 0.163818i
\(219\) 3.75877 + 1.36808i 0.253994 + 0.0924463i
\(220\) 0.361844 0.0243955
\(221\) −0.602196 + 1.04303i −0.0405081 + 0.0701621i
\(222\) 3.33022 + 18.8866i 0.223510 + 1.26759i
\(223\) 7.99660 2.91052i 0.535492 0.194903i −0.0600971 0.998193i \(-0.519141\pi\)
0.595589 + 0.803289i \(0.296919\pi\)
\(224\) 0 0
\(225\) −17.1309 14.3745i −1.14206 0.958301i
\(226\) 18.2554 + 15.3181i 1.21433 + 1.01894i
\(227\) 7.07532 + 12.2548i 0.469606 + 0.813381i 0.999396 0.0347477i \(-0.0110628\pi\)
−0.529790 + 0.848129i \(0.677729\pi\)
\(228\) 0.809278 2.17355i 0.0535957 0.143947i
\(229\) 10.2665 17.7821i 0.678430 1.17508i −0.297023 0.954870i \(-0.595994\pi\)
0.975454 0.220205i \(-0.0706727\pi\)
\(230\) 0.554378 3.14403i 0.0365546 0.207311i
\(231\) 0 0
\(232\) 19.0287 + 6.92588i 1.24929 + 0.454706i
\(233\) 3.06506 17.3828i 0.200798 1.13878i −0.703117 0.711074i \(-0.748209\pi\)
0.903916 0.427711i \(-0.140680\pi\)
\(234\) 17.2417 + 6.27546i 1.12712 + 0.410240i
\(235\) 3.20574 5.55250i 0.209119 0.362205i
\(236\) −0.582596 1.00909i −0.0379238 0.0656859i
\(237\) 5.92262 + 33.5888i 0.384715 + 2.18183i
\(238\) 0 0
\(239\) −1.17617 + 2.03719i −0.0760804 + 0.131775i −0.901556 0.432663i \(-0.857574\pi\)
0.825475 + 0.564438i \(0.190907\pi\)
\(240\) 9.10607 0.587794
\(241\) −12.9684 4.72010i −0.835367 0.304049i −0.111307 0.993786i \(-0.535504\pi\)
−0.724060 + 0.689737i \(0.757726\pi\)
\(242\) 6.23577 + 5.23243i 0.400850 + 0.336353i
\(243\) 8.27584 6.94426i 0.530896 0.445474i
\(244\) −1.29220 1.08429i −0.0827249 0.0694144i
\(245\) 0 0
\(246\) 9.60401 0.612329
\(247\) −3.75965 10.5710i −0.239221 0.672619i
\(248\) 10.4586 + 18.1148i 0.664120 + 1.15029i
\(249\) −40.1279 + 14.6054i −2.54301 + 0.925578i
\(250\) −10.2724 + 3.73886i −0.649686 + 0.236466i
\(251\) 3.91400 + 1.42458i 0.247050 + 0.0899187i 0.462577 0.886579i \(-0.346925\pi\)
−0.215528 + 0.976498i \(0.569147\pi\)
\(252\) 0 0
\(253\) 4.59627 3.85673i 0.288965 0.242470i
\(254\) −15.6340 −0.980967
\(255\) −1.18479 −0.0741946
\(256\) −3.36753 + 2.82569i −0.210470 + 0.176606i
\(257\) −0.627011 0.228213i −0.0391119 0.0142356i 0.322390 0.946607i \(-0.395514\pi\)
−0.361502 + 0.932371i \(0.617736\pi\)
\(258\) −7.56805 + 13.1082i −0.471166 + 0.816084i
\(259\) 0 0
\(260\) −0.320422 + 0.268866i −0.0198717 + 0.0166744i
\(261\) −6.32042 + 35.8449i −0.391224 + 2.21874i
\(262\) −0.431703 2.44831i −0.0266707 0.151257i
\(263\) 1.97952 11.2264i 0.122063 0.692251i −0.860947 0.508695i \(-0.830128\pi\)
0.983009 0.183556i \(-0.0587609\pi\)
\(264\) 14.4572 + 12.1311i 0.889781 + 0.746615i
\(265\) −2.49525 −0.153282
\(266\) 0 0
\(267\) 29.6313 1.81341
\(268\) −1.08647 0.911654i −0.0663665 0.0556881i
\(269\) 3.36706 19.0955i 0.205293 1.16428i −0.691684 0.722200i \(-0.743131\pi\)
0.896978 0.442076i \(-0.145758\pi\)
\(270\) 1.35710 + 7.69648i 0.0825903 + 0.468393i
\(271\) −2.32588 + 13.1907i −0.141287 + 0.801281i 0.828986 + 0.559269i \(0.188918\pi\)
−0.970273 + 0.242011i \(0.922193\pi\)
\(272\) −1.28905 + 1.08164i −0.0781600 + 0.0655841i
\(273\) 0 0
\(274\) 0.172304 0.298439i 0.0104093 0.0180294i
\(275\) −8.84389 3.21891i −0.533307 0.194108i
\(276\) −1.09833 + 0.921605i −0.0661115 + 0.0554741i
\(277\) 17.7469 1.06631 0.533154 0.846018i \(-0.321007\pi\)
0.533154 + 0.846018i \(0.321007\pi\)
\(278\) −5.74422 −0.344516
\(279\) −28.8011 + 24.1670i −1.72428 + 1.44684i
\(280\) 0 0
\(281\) −17.1766 6.25179i −1.02467 0.372950i −0.225622 0.974215i \(-0.572442\pi\)
−0.799050 + 0.601265i \(0.794664\pi\)
\(282\) 26.5783 9.67372i 1.58272 0.576061i
\(283\) −7.22416 + 2.62938i −0.429431 + 0.156300i −0.547688 0.836683i \(-0.684492\pi\)
0.118256 + 0.992983i \(0.462270\pi\)
\(284\) −0.859785 1.48919i −0.0510188 0.0883672i
\(285\) 7.15657 8.40247i 0.423919 0.497719i
\(286\) 7.72193 0.456608
\(287\) 0 0
\(288\) −4.22281 3.54336i −0.248832 0.208794i
\(289\) −12.8550 + 10.7867i −0.756179 + 0.634509i
\(290\) 6.24376 + 5.23913i 0.366646 + 0.307652i
\(291\) 25.5783 + 9.30975i 1.49943 + 0.545747i
\(292\) −0.256711 −0.0150229
\(293\) 5.25150 9.09586i 0.306796 0.531386i −0.670864 0.741581i \(-0.734076\pi\)
0.977660 + 0.210195i \(0.0674098\pi\)
\(294\) 0 0
\(295\) −0.962859 5.46064i −0.0560598 0.317931i
\(296\) −7.27584 12.6021i −0.422900 0.732484i
\(297\) −7.34389 + 12.7200i −0.426136 + 0.738089i
\(298\) 20.9650 + 7.63063i 1.21447 + 0.442030i
\(299\) −1.20439 + 6.83045i −0.0696518 + 0.395015i
\(300\) 2.11334 + 0.769193i 0.122014 + 0.0444094i
\(301\) 0 0
\(302\) 1.02048 5.78742i 0.0587219 0.333028i
\(303\) −13.3157 + 23.0634i −0.764966 + 1.32496i
\(304\) 0.115400 15.6753i 0.00661865 0.899042i
\(305\) −4.01367 6.95188i −0.229822 0.398064i
\(306\) −2.55509 2.14398i −0.146065 0.122563i
\(307\) −8.95929 7.51774i −0.511334 0.429060i 0.350264 0.936651i \(-0.386092\pi\)
−0.861598 + 0.507591i \(0.830536\pi\)
\(308\) 0 0
\(309\) −14.9081 + 5.42609i −0.848091 + 0.308680i
\(310\) 1.46198 + 8.29131i 0.0830350 + 0.470915i
\(311\) −7.98293 + 13.8268i −0.452670 + 0.784048i −0.998551 0.0538151i \(-0.982862\pi\)
0.545881 + 0.837863i \(0.316195\pi\)
\(312\) −21.8161 −1.23510
\(313\) 25.0228 + 9.10754i 1.41437 + 0.514788i 0.932409 0.361404i \(-0.117703\pi\)
0.481961 + 0.876193i \(0.339925\pi\)
\(314\) 2.25031 + 12.7622i 0.126993 + 0.720211i
\(315\) 0 0
\(316\) −1.09446 1.89565i −0.0615679 0.106639i
\(317\) 5.12819 + 29.0834i 0.288028 + 1.63349i 0.694264 + 0.719720i \(0.255730\pi\)
−0.406236 + 0.913768i \(0.633159\pi\)
\(318\) −8.43242 7.07564i −0.472867 0.396782i
\(319\) 2.65998 + 15.0855i 0.148930 + 0.844625i
\(320\) −7.10354 + 2.58548i −0.397100 + 0.144533i
\(321\) −5.11721 + 29.0211i −0.285615 + 1.61980i
\(322\) 0 0
\(323\) −0.0150147 + 2.03952i −0.000835443 + 0.113482i
\(324\) 0.288333 0.499408i 0.0160185 0.0277449i
\(325\) 10.2233 3.72097i 0.567085 0.206402i
\(326\) −1.95471 + 11.0857i −0.108261 + 0.613980i
\(327\) 4.02094 3.37397i 0.222359 0.186581i
\(328\) −6.84776 + 2.49238i −0.378104 + 0.137619i
\(329\) 0 0
\(330\) 3.79813 + 6.57856i 0.209080 + 0.362138i
\(331\) −13.8327 23.9590i −0.760317 1.31691i −0.942687 0.333677i \(-0.891710\pi\)
0.182371 0.983230i \(-0.441623\pi\)
\(332\) 2.09942 1.76162i 0.115221 0.0966817i
\(333\) 20.0364 16.8126i 1.09799 0.921322i
\(334\) 2.71823 + 4.70810i 0.148735 + 0.257616i
\(335\) −3.37464 5.84504i −0.184376 0.319349i
\(336\) 0 0
\(337\) −16.7827 + 6.10841i −0.914212 + 0.332746i −0.755934 0.654648i \(-0.772817\pi\)
−0.158279 + 0.987394i \(0.550594\pi\)
\(338\) 6.57919 5.52060i 0.357861 0.300281i
\(339\) 8.84389 50.1562i 0.480334 2.72411i
\(340\) 0.0714517 0.0260063i 0.00387501 0.00141039i
\(341\) −7.91147 + 13.7031i −0.428430 + 0.742063i
\(342\) 30.6386 5.17015i 1.65675 0.279569i
\(343\) 0 0
\(344\) 1.99432 11.3103i 0.107526 0.609813i
\(345\) −6.41147 + 2.33359i −0.345182 + 0.125636i
\(346\) 4.71276 + 26.7274i 0.253360 + 1.43687i
\(347\) −4.44356 3.72859i −0.238543 0.200161i 0.515677 0.856783i \(-0.327540\pi\)
−0.754220 + 0.656622i \(0.771985\pi\)
\(348\) −0.635630 3.60483i −0.0340733 0.193239i
\(349\) −2.68614 4.65253i −0.143786 0.249044i 0.785134 0.619326i \(-0.212594\pi\)
−0.928919 + 0.370282i \(0.879261\pi\)
\(350\) 0 0
\(351\) −2.94831 16.7207i −0.157369 0.892485i
\(352\) −2.18004 0.793471i −0.116197 0.0422922i
\(353\) −25.2344 −1.34309 −0.671546 0.740963i \(-0.734370\pi\)
−0.671546 + 0.740963i \(0.734370\pi\)
\(354\) 12.2306 21.1839i 0.650047 1.12591i
\(355\) −1.42097 8.05872i −0.0754172 0.427712i
\(356\) −1.78699 + 0.650411i −0.0947102 + 0.0344717i
\(357\) 0 0
\(358\) 11.8819 + 9.97011i 0.627979 + 0.526937i
\(359\) 5.12243 + 4.29823i 0.270351 + 0.226852i 0.767877 0.640598i \(-0.221313\pi\)
−0.497525 + 0.867449i \(0.665758\pi\)
\(360\) −6.84776 11.8607i −0.360909 0.625112i
\(361\) −14.3735 12.4259i −0.756498 0.653996i
\(362\) 5.75103 9.96108i 0.302267 0.523543i
\(363\) 3.02094 17.1326i 0.158558 0.899230i
\(364\) 0 0
\(365\) −1.14796 0.417822i −0.0600868 0.0218698i
\(366\) 6.14930 34.8744i 0.321429 1.82291i
\(367\) −7.62923 2.77681i −0.398243 0.144948i 0.135132 0.990828i \(-0.456854\pi\)
−0.533375 + 0.845879i \(0.679076\pi\)
\(368\) −4.84524 + 8.39220i −0.252575 + 0.437473i
\(369\) −6.54916 11.3435i −0.340936 0.590518i
\(370\) −1.01707 5.76811i −0.0528752 0.299870i
\(371\) 0 0
\(372\) 1.89053 3.27449i 0.0980194 0.169775i
\(373\) 34.8976 1.80693 0.903463 0.428665i \(-0.141016\pi\)
0.903463 + 0.428665i \(0.141016\pi\)
\(374\) −1.31908 0.480105i −0.0682079 0.0248256i
\(375\) 17.8969 + 15.0173i 0.924193 + 0.775490i
\(376\) −16.4402 + 13.7949i −0.847836 + 0.711419i
\(377\) −13.5646 11.3821i −0.698615 0.586207i
\(378\) 0 0
\(379\) 1.70140 0.0873950 0.0436975 0.999045i \(-0.486086\pi\)
0.0436975 + 0.999045i \(0.486086\pi\)
\(380\) −0.247159 + 0.663818i −0.0126790 + 0.0340532i
\(381\) 16.7062 + 28.9360i 0.855885 + 1.48244i
\(382\) 23.2135 8.44901i 1.18770 0.432289i
\(383\) −2.75965 + 1.00443i −0.141011 + 0.0513240i −0.411562 0.911382i \(-0.635017\pi\)
0.270550 + 0.962706i \(0.412794\pi\)
\(384\) −25.6989 9.35365i −1.31144 0.477326i
\(385\) 0 0
\(386\) −0.307218 + 0.257787i −0.0156370 + 0.0131210i
\(387\) 20.6432 1.04935
\(388\) −1.74691 −0.0886860
\(389\) −18.8195 + 15.7915i −0.954189 + 0.800659i −0.979998 0.199007i \(-0.936228\pi\)
0.0258092 + 0.999667i \(0.491784\pi\)
\(390\) −8.25150 3.00330i −0.417831 0.152078i
\(391\) 0.630415 1.09191i 0.0318815 0.0552203i
\(392\) 0 0
\(393\) −4.07011 + 3.41523i −0.205310 + 0.172275i
\(394\) −3.07444 + 17.4360i −0.154888 + 0.878415i
\(395\) −1.80881 10.2583i −0.0910112 0.516150i
\(396\) 0.378041 2.14398i 0.0189973 0.107739i
\(397\) −24.3876 20.4636i −1.22398 1.02704i −0.998607 0.0527667i \(-0.983196\pi\)
−0.225371 0.974273i \(-0.572360\pi\)
\(398\) 0.345866 0.0173367
\(399\) 0 0
\(400\) 15.2003 0.760014
\(401\) −0.0662372 0.0555796i −0.00330773 0.00277551i 0.641132 0.767430i \(-0.278465\pi\)
−0.644440 + 0.764655i \(0.722909\pi\)
\(402\) 5.17024 29.3219i 0.257868 1.46244i
\(403\) −3.17617 18.0130i −0.158217 0.897290i
\(404\) 0.296789 1.68317i 0.0147658 0.0837411i
\(405\) 2.10220 1.76395i 0.104459 0.0876515i
\(406\) 0 0
\(407\) 5.50387 9.53298i 0.272817 0.472532i
\(408\) 3.72668 + 1.35640i 0.184498 + 0.0671519i
\(409\) 15.3255 12.8596i 0.757796 0.635866i −0.179756 0.983711i \(-0.557531\pi\)
0.937552 + 0.347845i \(0.113086\pi\)
\(410\) −2.93313 −0.144857
\(411\) −0.736482 −0.0363280
\(412\) 0.779963 0.654467i 0.0384260 0.0322433i
\(413\) 0 0
\(414\) −18.0496 6.56953i −0.887091 0.322875i
\(415\) 12.2554 4.46059i 0.601592 0.218962i
\(416\) 2.52007 0.917229i 0.123556 0.0449709i
\(417\) 6.13816 + 10.6316i 0.300587 + 0.520632i
\(418\) 11.3726 6.45480i 0.556251 0.315715i
\(419\) 25.4097 1.24135 0.620673 0.784070i \(-0.286859\pi\)
0.620673 + 0.784070i \(0.286859\pi\)
\(420\) 0 0
\(421\) 3.34730 + 2.80872i 0.163137 + 0.136888i 0.720702 0.693245i \(-0.243820\pi\)
−0.557565 + 0.830134i \(0.688264\pi\)
\(422\) −2.52687 + 2.12030i −0.123006 + 0.103215i
\(423\) −29.5501 24.7955i −1.43677 1.20560i
\(424\) 7.84864 + 2.85667i 0.381164 + 0.138732i
\(425\) −1.97771 −0.0959331
\(426\) 18.0496 31.2629i 0.874507 1.51469i
\(427\) 0 0
\(428\) −0.328411 1.86251i −0.0158744 0.0900279i
\(429\) −8.25150 14.2920i −0.398386 0.690025i
\(430\) 2.31134 4.00335i 0.111463 0.193059i
\(431\) 35.9962 + 13.1015i 1.73388 + 0.631079i 0.998894 0.0470089i \(-0.0149689\pi\)
0.734981 + 0.678088i \(0.237191\pi\)
\(432\) 4.11927 23.3615i 0.198188 1.12398i
\(433\) 17.0376 + 6.20118i 0.818775 + 0.298010i 0.717244 0.696823i \(-0.245403\pi\)
0.101532 + 0.994832i \(0.467626\pi\)
\(434\) 0 0
\(435\) 3.02481 17.1546i 0.145029 0.822499i
\(436\) −0.168434 + 0.291736i −0.00806651 + 0.0139716i
\(437\) 3.93582 + 11.0664i 0.188276 + 0.529377i
\(438\) −2.69459 4.66717i −0.128753 0.223006i
\(439\) −4.66566 3.91495i −0.222680 0.186850i 0.524622 0.851335i \(-0.324207\pi\)
−0.747302 + 0.664485i \(0.768651\pi\)
\(440\) −4.41534 3.70491i −0.210493 0.176625i
\(441\) 0 0
\(442\) 1.52481 0.554987i 0.0725280 0.0263981i
\(443\) −5.19088 29.4390i −0.246626 1.39869i −0.816685 0.577084i \(-0.804191\pi\)
0.570059 0.821604i \(-0.306920\pi\)
\(444\) −1.31521 + 2.27801i −0.0624170 + 0.108109i
\(445\) −9.04963 −0.428994
\(446\) −10.7738 3.92134i −0.510154 0.185681i
\(447\) −8.27972 46.9566i −0.391617 2.22097i
\(448\) 0 0
\(449\) 5.62495 + 9.74270i 0.265458 + 0.459787i 0.967683 0.252168i \(-0.0811435\pi\)
−0.702226 + 0.711955i \(0.747810\pi\)
\(450\) 5.23190 + 29.6716i 0.246634 + 1.39873i
\(451\) −4.22281 3.54336i −0.198844 0.166850i
\(452\) 0.567581 + 3.21891i 0.0266968 + 0.151405i
\(453\) −11.8020 + 4.29558i −0.554507 + 0.201824i
\(454\) 3.31062 18.7755i 0.155375 0.881176i
\(455\) 0 0
\(456\) −32.1300 + 18.2362i −1.50463 + 0.853989i
\(457\) 11.6951 20.2564i 0.547072 0.947556i −0.451402 0.892321i \(-0.649076\pi\)
0.998473 0.0552352i \(-0.0175909\pi\)
\(458\) −25.9957 + 9.46167i −1.21470 + 0.442115i
\(459\) −0.535959 + 3.03958i −0.0250164 + 0.141875i
\(460\) 0.335437 0.281465i 0.0156398 0.0131234i
\(461\) 34.4149 12.5260i 1.60286 0.583395i 0.622853 0.782339i \(-0.285974\pi\)
0.980011 + 0.198945i \(0.0637514\pi\)
\(462\) 0 0
\(463\) 21.4932 + 37.2273i 0.998873 + 1.73010i 0.540534 + 0.841322i \(0.318222\pi\)
0.458340 + 0.888777i \(0.348444\pi\)
\(464\) −12.3701 21.4256i −0.574265 0.994657i
\(465\) 13.7836 11.5658i 0.639198 0.536351i
\(466\) −18.2173 + 15.2862i −0.843902 + 0.708118i
\(467\) −12.7981 22.1670i −0.592227 1.02577i −0.993932 0.109998i \(-0.964916\pi\)
0.401705 0.915769i \(-0.368418\pi\)
\(468\) 1.25830 + 2.17945i 0.0581651 + 0.100745i
\(469\) 0 0
\(470\) −8.11721 + 2.95442i −0.374419 + 0.136277i
\(471\) 21.2160 17.8023i 0.977582 0.820289i
\(472\) −3.22297 + 18.2784i −0.148349 + 0.841331i
\(473\) 8.16385 2.97140i 0.375374 0.136625i
\(474\) 22.9761 39.7958i 1.05533 1.82788i
\(475\) 11.9461 14.0258i 0.548124 0.643548i
\(476\) 0 0
\(477\) −2.60694 + 14.7847i −0.119364 + 0.676946i
\(478\) 2.97818 1.08397i 0.136219 0.0495796i
\(479\) 6.62923 + 37.5962i 0.302897 + 1.71782i 0.633240 + 0.773955i \(0.281725\pi\)
−0.330343 + 0.943861i \(0.607164\pi\)
\(480\) 2.02094 + 1.69577i 0.0922431 + 0.0774011i
\(481\) 2.20961 + 12.5313i 0.100749 + 0.571378i
\(482\) 9.29679 + 16.1025i 0.423457 + 0.733449i
\(483\) 0 0
\(484\) 0.193877 + 1.09953i 0.00881261 + 0.0499788i
\(485\) −7.81180 2.84326i −0.354716 0.129106i
\(486\) −14.5553 −0.660242
\(487\) −3.88191 + 6.72367i −0.175906 + 0.304678i −0.940475 0.339864i \(-0.889619\pi\)
0.764568 + 0.644543i \(0.222952\pi\)
\(488\) 4.66591 + 26.4617i 0.211216 + 1.19786i
\(489\) 22.6065 8.22811i 1.02230 0.372088i
\(490\) 0 0
\(491\) −28.1313 23.6050i −1.26955 1.06528i −0.994596 0.103822i \(-0.966893\pi\)
−0.274954 0.961457i \(-0.588663\pi\)
\(492\) 1.00908 + 0.846723i 0.0454931 + 0.0381732i
\(493\) 1.60947 + 2.78768i 0.0724869 + 0.125551i
\(494\) −5.27450 + 14.1662i −0.237311 + 0.637368i
\(495\) 5.18004 8.97210i 0.232826 0.403266i
\(496\) 4.43763 25.1671i 0.199256 1.13003i
\(497\) 0 0
\(498\) 54.0642 + 19.6778i 2.42268 + 0.881782i
\(499\) 0.855448 4.85148i 0.0382951 0.217182i −0.959655 0.281180i \(-0.909274\pi\)
0.997950 + 0.0639981i \(0.0203852\pi\)
\(500\) −1.40895 0.512815i −0.0630101 0.0229338i
\(501\) 5.80928 10.0620i 0.259539 0.449535i
\(502\) −2.80587 4.85992i −0.125232 0.216909i
\(503\) 5.72163 + 32.4490i 0.255115 + 1.44683i 0.795778 + 0.605589i \(0.207062\pi\)
−0.540663 + 0.841239i \(0.681827\pi\)
\(504\) 0 0
\(505\) 4.06670 7.04374i 0.180966 0.313442i
\(506\) −8.08378 −0.359368
\(507\) −17.2481 6.27779i −0.766015 0.278807i
\(508\) −1.64266 1.37835i −0.0728810 0.0611544i
\(509\) −28.2939 + 23.7414i −1.25410 + 1.05232i −0.257819 + 0.966193i \(0.583004\pi\)
−0.996284 + 0.0861240i \(0.972552\pi\)
\(510\) 1.22281 + 1.02606i 0.0541470 + 0.0454347i
\(511\) 0 0
\(512\) 24.9186 1.10126
\(513\) −18.3191 22.1611i −0.808807 0.978437i
\(514\) 0.449493 + 0.778544i 0.0198263 + 0.0343401i
\(515\) 4.55303 1.65717i 0.200631 0.0730236i
\(516\) −1.95084 + 0.710047i −0.0858808 + 0.0312581i
\(517\) −15.2554 5.55250i −0.670930 0.244199i
\(518\) 0 0
\(519\) 44.4320 37.2829i 1.95035 1.63654i
\(520\) 6.66281 0.292183
\(521\) 9.29179 0.407081 0.203540 0.979067i \(-0.434755\pi\)
0.203540 + 0.979067i \(0.434755\pi\)
\(522\) 37.5658 31.5215i 1.64421 1.37966i
\(523\) 26.7015 + 9.71854i 1.16757 + 0.424962i 0.851797 0.523872i \(-0.175513\pi\)
0.315776 + 0.948834i \(0.397735\pi\)
\(524\) 0.170493 0.295303i 0.00744802 0.0129004i
\(525\) 0 0
\(526\) −11.7654 + 9.87236i −0.512996 + 0.430455i
\(527\) −0.577382 + 3.27449i −0.0251511 + 0.142639i
\(528\) −4.00387 22.7071i −0.174246 0.988199i
\(529\) −2.73308 + 15.5001i −0.118829 + 0.673916i
\(530\) 2.57532 + 2.16095i 0.111865 + 0.0938657i
\(531\) −33.3610 −1.44775
\(532\) 0 0
\(533\) 6.37227 0.276014
\(534\) −30.5822 25.6615i −1.32342 1.11048i
\(535\) 1.56283 8.86327i 0.0675672 0.383193i
\(536\) 3.92303 + 22.2486i 0.169449 + 0.960993i
\(537\) 5.75624 32.6453i 0.248400 1.40875i
\(538\) −20.0123 + 16.7923i −0.862793 + 0.723969i
\(539\) 0 0
\(540\) −0.535959 + 0.928309i −0.0230640 + 0.0399480i
\(541\) −14.0817 5.12533i −0.605420 0.220355i 0.0210779 0.999778i \(-0.493290\pi\)
−0.626498 + 0.779423i \(0.715512\pi\)
\(542\) 13.8240 11.5998i 0.593794 0.498252i
\(543\) −24.5817 −1.05490
\(544\) −0.487511 −0.0209019
\(545\) −1.22803 + 1.03044i −0.0526028 + 0.0441390i
\(546\) 0 0
\(547\) 3.65270 + 1.32948i 0.156178 + 0.0568443i 0.418926 0.908020i \(-0.362407\pi\)
−0.262748 + 0.964864i \(0.584629\pi\)
\(548\) 0.0444153 0.0161658i 0.00189733 0.000690571i
\(549\) −45.3842 + 16.5185i −1.93695 + 0.704992i
\(550\) 6.34002 + 10.9812i 0.270339 + 0.468242i
\(551\) −29.4918 5.42437i −1.25639 0.231086i
\(552\) 22.8384 0.972068
\(553\) 0 0
\(554\) −18.3164 15.3693i −0.778189 0.652978i
\(555\) −9.58899 + 8.04612i −0.407030 + 0.341539i
\(556\) −0.603541 0.506431i −0.0255958 0.0214774i
\(557\) −12.4081 4.51617i −0.525747 0.191356i 0.0654914 0.997853i \(-0.479138\pi\)
−0.591238 + 0.806497i \(0.701361\pi\)
\(558\) 50.6546 2.14438
\(559\) −5.02141 + 8.69734i −0.212383 + 0.367858i
\(560\) 0 0
\(561\) 0.520945 + 2.95442i 0.0219943 + 0.124736i
\(562\) 12.3136 + 21.3278i 0.519418 + 0.899659i
\(563\) −5.35638 + 9.27752i −0.225745 + 0.391001i −0.956543 0.291593i \(-0.905815\pi\)
0.730798 + 0.682594i \(0.239148\pi\)
\(564\) 3.64543 + 1.32683i 0.153500 + 0.0558695i
\(565\) −2.70099 + 15.3181i −0.113631 + 0.644436i
\(566\) 9.73308 + 3.54255i 0.409112 + 0.148905i
\(567\) 0 0
\(568\) −4.75641 + 26.9749i −0.199574 + 1.13184i
\(569\) 6.73530 11.6659i 0.282358 0.489059i −0.689607 0.724184i \(-0.742217\pi\)
0.971965 + 0.235125i \(0.0755499\pi\)
\(570\) −14.6630 + 2.47432i −0.614164 + 0.103638i
\(571\) −6.33275 10.9686i −0.265017 0.459023i 0.702551 0.711634i \(-0.252044\pi\)
−0.967568 + 0.252610i \(0.918711\pi\)
\(572\) 0.811337 + 0.680793i 0.0339237 + 0.0284654i
\(573\) −40.4432 33.9358i −1.68954 1.41769i
\(574\) 0 0
\(575\) −10.7023 + 3.89533i −0.446318 + 0.162447i
\(576\) 7.89780 + 44.7907i 0.329075 + 1.86628i
\(577\) 5.27719 9.14036i 0.219692 0.380518i −0.735022 0.678044i \(-0.762828\pi\)
0.954714 + 0.297526i \(0.0961613\pi\)
\(578\) 22.6091 0.940413
\(579\) 0.805407 + 0.293144i 0.0334716 + 0.0121827i
\(580\) 0.194126 + 1.10094i 0.00806064 + 0.0457142i
\(581\) 0 0
\(582\) −18.3366 31.7600i −0.760077 1.31649i
\(583\) 1.09714 + 6.22221i 0.0454391 + 0.257698i
\(584\) 3.13247 + 2.62846i 0.129623 + 0.108766i
\(585\) 2.07960 + 11.7940i 0.0859810 + 0.487623i
\(586\) −13.2973 + 4.83981i −0.549305 + 0.199931i
\(587\) −3.32619 + 18.8638i −0.137287 + 0.778591i 0.835954 + 0.548800i \(0.184915\pi\)
−0.973240 + 0.229791i \(0.926196\pi\)
\(588\) 0 0
\(589\) −19.7349 23.8739i −0.813162 0.983706i
\(590\) −3.73530 + 6.46973i −0.153780 + 0.266355i
\(591\) 35.5565 12.9415i 1.46260 0.532342i
\(592\) −3.08718 + 17.5083i −0.126882 + 0.719586i
\(593\) −6.66044 + 5.58878i −0.273512 + 0.229504i −0.769218 0.638987i \(-0.779354\pi\)
0.495706 + 0.868490i \(0.334909\pi\)
\(594\) 18.5954 6.76817i 0.762978 0.277701i
\(595\) 0 0
\(596\) 1.53003 + 2.65009i 0.0626724 + 0.108552i
\(597\) −0.369585 0.640140i −0.0151261 0.0261992i
\(598\) 7.15839 6.00660i 0.292728 0.245628i
\(599\) 15.1919 12.7475i 0.620724 0.520850i −0.277307 0.960781i \(-0.589442\pi\)
0.898031 + 0.439932i \(0.144997\pi\)
\(600\) −17.9119 31.0244i −0.731252 1.26657i
\(601\) 16.8807 + 29.2383i 0.688579 + 1.19265i 0.972298 + 0.233747i \(0.0750986\pi\)
−0.283718 + 0.958908i \(0.591568\pi\)
\(602\) 0 0
\(603\) −38.1584 + 13.8885i −1.55393 + 0.565584i
\(604\) 0.617460 0.518110i 0.0251241 0.0210816i
\(605\) −0.922618 + 5.23243i −0.0375098 + 0.212729i
\(606\) 33.7165 12.2718i 1.36964 0.498507i
\(607\) −17.6425 + 30.5577i −0.716087 + 1.24030i 0.246452 + 0.969155i \(0.420735\pi\)
−0.962539 + 0.271144i \(0.912598\pi\)
\(608\) 2.94475 3.45740i 0.119425 0.140216i
\(609\) 0 0
\(610\) −1.87804 + 10.6509i −0.0760397 + 0.431242i
\(611\) 17.6348 6.41852i 0.713426 0.259666i
\(612\) −0.0794409 0.450532i −0.00321121 0.0182117i
\(613\) 14.1361 + 11.8616i 0.570952 + 0.479085i 0.881962 0.471321i \(-0.156223\pi\)
−0.311010 + 0.950407i \(0.600667\pi\)
\(614\) 2.73623 + 15.5180i 0.110425 + 0.626254i
\(615\) 3.13429 + 5.42874i 0.126387 + 0.218908i
\(616\) 0 0
\(617\) −6.19671 35.1433i −0.249470 1.41482i −0.809878 0.586598i \(-0.800467\pi\)
0.560408 0.828217i \(-0.310644\pi\)
\(618\) 20.0856 + 7.31056i 0.807961 + 0.294074i
\(619\) 3.65951 0.147088 0.0735441 0.997292i \(-0.476569\pi\)
0.0735441 + 0.997292i \(0.476569\pi\)
\(620\) −0.577382 + 1.00005i −0.0231882 + 0.0401631i
\(621\) 3.08647 + 17.5042i 0.123856 + 0.702420i
\(622\) 20.2135 7.35710i 0.810487 0.294993i
\(623\) 0 0
\(624\) 20.4179 + 17.1326i 0.817369 + 0.685854i
\(625\) 10.7233 + 8.99790i 0.428931 + 0.359916i
\(626\) −17.9383 31.0701i −0.716961 1.24181i
\(627\) −24.0993 14.1513i −0.962432 0.565148i
\(628\) −0.888719 + 1.53931i −0.0354637 + 0.0614250i
\(629\) 0.401674 2.27801i 0.0160158 0.0908301i
\(630\) 0 0
\(631\) 0.745977 + 0.271514i 0.0296969 + 0.0108088i 0.356826 0.934171i \(-0.383859\pi\)
−0.327129 + 0.944980i \(0.606081\pi\)
\(632\) −6.05463 + 34.3375i −0.240840 + 1.36587i
\(633\) 6.62449 + 2.41112i 0.263300 + 0.0958332i
\(634\) 19.8942 34.4578i 0.790101 1.36850i
\(635\) −5.10220 8.83726i −0.202474 0.350696i
\(636\) −0.262174 1.48686i −0.0103959 0.0589579i
\(637\) 0 0
\(638\) 10.3191 17.8732i 0.408536 0.707605i
\(639\) −49.2336 −1.94765
\(640\) 7.84864 + 2.85667i 0.310245 + 0.112920i
\(641\) 22.5082 + 18.8866i 0.889021 + 0.745977i 0.968013 0.250898i \(-0.0807259\pi\)
−0.0789927 + 0.996875i \(0.525170\pi\)
\(642\) 30.4145 25.5208i 1.20036 1.00722i
\(643\) 17.0168 + 14.2788i 0.671078 + 0.563101i 0.913384 0.407098i \(-0.133459\pi\)
−0.242306 + 0.970200i \(0.577904\pi\)
\(644\) 0 0
\(645\) −9.87939 −0.389000
\(646\) 1.78177 2.09196i 0.0701030 0.0823073i
\(647\) −5.62954 9.75065i −0.221320 0.383337i 0.733889 0.679269i \(-0.237703\pi\)
−0.955209 + 0.295932i \(0.904370\pi\)
\(648\) −8.63176 + 3.14170i −0.339088 + 0.123418i
\(649\) −13.1934 + 4.80201i −0.517887 + 0.188495i
\(650\) −13.7738 5.01325i −0.540252 0.196636i
\(651\) 0 0
\(652\) −1.18273 + 0.992431i −0.0463194 + 0.0388666i
\(653\) 27.0000 1.05659 0.528296 0.849060i \(-0.322831\pi\)
0.528296 + 0.849060i \(0.322831\pi\)
\(654\) −7.07192 −0.276534
\(655\) 1.24304 1.04303i 0.0485696 0.0407547i
\(656\) 8.36618 + 3.04504i 0.326645 + 0.118889i
\(657\) −3.67499 + 6.36527i −0.143375 + 0.248333i
\(658\) 0 0
\(659\) 21.4691 18.0147i 0.836317 0.701753i −0.120415 0.992724i \(-0.538423\pi\)
0.956732 + 0.290970i \(0.0939781\pi\)
\(660\) −0.180922 + 1.02606i −0.00704238 + 0.0399393i
\(661\) 1.97400 + 11.1951i 0.0767798 + 0.435440i 0.998830 + 0.0483686i \(0.0154022\pi\)
−0.922050 + 0.387071i \(0.873487\pi\)
\(662\) −6.47250 + 36.7074i −0.251561 + 1.42667i
\(663\) −2.65657 2.22913i −0.103173 0.0865722i
\(664\) −43.6551 −1.69415
\(665\) 0 0
\(666\) −35.2395 −1.36550
\(667\) 14.2003 + 11.9154i 0.549837 + 0.461368i
\(668\) −0.129481 + 0.734325i −0.00500978 + 0.0284119i
\(669\) 4.25490 + 24.1307i 0.164504 + 0.932948i
\(670\) −1.57903 + 8.95513i −0.0610033 + 0.345967i
\(671\) −15.5706 + 13.0653i −0.601095 + 0.504379i
\(672\) 0 0
\(673\) 8.28359 14.3476i 0.319309 0.553059i −0.661035 0.750355i \(-0.729883\pi\)
0.980344 + 0.197296i \(0.0632160\pi\)
\(674\) 22.6113 + 8.22983i 0.870954 + 0.317001i
\(675\) 21.3576 17.9211i 0.822053 0.689784i
\(676\) 1.17799 0.0453071
\(677\) −9.04963 −0.347806 −0.173903 0.984763i \(-0.555638\pi\)
−0.173903 + 0.984763i \(0.555638\pi\)
\(678\) −52.5642 + 44.1066i −2.01872 + 1.69390i
\(679\) 0 0
\(680\) −1.13816 0.414255i −0.0436463 0.0158859i
\(681\) −38.2879 + 13.9357i −1.46720 + 0.534016i
\(682\) 20.0326 7.29125i 0.767086 0.279197i
\(683\) −4.36571 7.56164i −0.167049 0.289338i 0.770332 0.637643i \(-0.220091\pi\)
−0.937381 + 0.348305i \(0.886757\pi\)
\(684\) 3.67499 + 2.15799i 0.140517 + 0.0825126i
\(685\) 0.224927 0.00859402
\(686\) 0 0
\(687\) 45.2904 + 38.0032i 1.72794 + 1.44991i
\(688\) −10.7487 + 9.01925i −0.409791 + 0.343856i
\(689\) −5.59492 4.69470i −0.213150 0.178854i
\(690\) 8.63816 + 3.14403i 0.328849 + 0.119691i
\(691\) 34.7202 1.32082 0.660409 0.750906i \(-0.270383\pi\)
0.660409 + 0.750906i \(0.270383\pi\)
\(692\) −1.86122 + 3.22372i −0.0707528 + 0.122547i
\(693\) 0 0
\(694\) 1.35710 + 7.69648i 0.0515147 + 0.292154i
\(695\) −1.87464 3.24697i −0.0711091 0.123164i
\(696\) −29.1536 + 50.4956i −1.10507 + 1.91403i
\(697\) −1.08853 0.396191i −0.0412309 0.0150068i
\(698\) −1.25687 + 7.12808i −0.0475734 + 0.269802i
\(699\) 47.7588 + 17.3828i 1.80640 + 0.657478i
\(700\) 0 0
\(701\) 6.84436 38.8163i 0.258508 1.46607i −0.528397 0.848997i \(-0.677207\pi\)
0.786905 0.617074i \(-0.211682\pi\)
\(702\) −11.4376 + 19.8106i −0.431686 + 0.747701i
\(703\) 13.7292 + 16.6086i 0.517807 + 0.626406i
\(704\) 9.57057 + 16.5767i 0.360705 + 0.624759i
\(705\) 14.1420 + 11.8666i 0.532620 + 0.446921i
\(706\) 26.0442 + 21.8537i 0.980185 + 0.822473i
\(707\) 0 0
\(708\) 3.15270 1.14749i 0.118486 0.0431253i
\(709\) −7.14068 40.4968i −0.268174 1.52089i −0.759842 0.650107i \(-0.774724\pi\)
0.491668 0.870783i \(-0.336387\pi\)
\(710\) −5.51249 + 9.54791i −0.206880 + 0.358327i
\(711\) −62.6715 −2.35036
\(712\) 28.4650 + 10.3604i 1.06677 + 0.388273i
\(713\) 3.32501 + 18.8571i 0.124523 + 0.706202i
\(714\) 0 0
\(715\) 2.52007 + 4.36488i 0.0942452 + 0.163237i
\(716\) 0.369423 + 2.09510i 0.0138060 + 0.0782976i
\(717\) −5.18866 4.35381i −0.193774 0.162596i
\(718\) −1.56443 8.87230i −0.0583839 0.331111i
\(719\) 39.8387 14.5001i 1.48573 0.540763i 0.533411 0.845856i \(-0.320910\pi\)
0.952323 + 0.305093i \(0.0986875\pi\)
\(720\) −2.90554 + 16.4782i −0.108283 + 0.614105i
\(721\) 0 0
\(722\) 4.07351 + 25.2724i 0.151600 + 0.940543i
\(723\) 19.8687 34.4136i 0.738925 1.27986i
\(724\) 1.48246 0.539571i 0.0550952 0.0200530i
\(725\) 5.04916 28.6352i 0.187521 1.06349i
\(726\) −17.9552 + 15.0662i −0.666379 + 0.559158i
\(727\) −48.5411 + 17.6675i −1.80029 + 0.655251i −0.801965 + 0.597371i \(0.796212\pi\)
−0.998324 + 0.0578805i \(0.981566\pi\)
\(728\) 0 0
\(729\) 20.2344 + 35.0470i 0.749423 + 1.29804i
\(730\) 0.822948 + 1.42539i 0.0304587 + 0.0527560i
\(731\) 1.39852 1.17350i 0.0517261 0.0434033i
\(732\) 3.72075 3.12208i 0.137523 0.115395i
\(733\) 11.4581 + 19.8460i 0.423215 + 0.733030i 0.996252 0.0864997i \(-0.0275682\pi\)
−0.573037 + 0.819530i \(0.694235\pi\)
\(734\) 5.46926 + 9.47303i 0.201874 + 0.349656i
\(735\) 0 0
\(736\) −2.63816 + 0.960210i −0.0972437 + 0.0353938i
\(737\) −13.0915 + 10.9851i −0.482232 + 0.404641i
\(738\) −3.06443 + 17.3792i −0.112803 + 0.639738i
\(739\) −26.4304 + 9.61986i −0.972256 + 0.353872i −0.778825 0.627241i \(-0.784184\pi\)
−0.193432 + 0.981114i \(0.561962\pi\)
\(740\) 0.401674 0.695720i 0.0147658 0.0255752i
\(741\) 31.8555 5.37549i 1.17024 0.197474i
\(742\) 0 0
\(743\) 1.06489 6.03931i 0.0390671 0.221561i −0.959024 0.283326i \(-0.908562\pi\)
0.998091 + 0.0617657i \(0.0196731\pi\)
\(744\) −56.5963 + 20.5994i −2.07492 + 0.755210i
\(745\) 2.52869 + 14.3409i 0.0926439 + 0.525409i
\(746\) −36.0174 30.2222i −1.31869 1.10651i
\(747\) −13.6257 77.2750i −0.498537 2.82734i
\(748\) −0.0962667 0.166739i −0.00351986 0.00609657i
\(749\) 0 0
\(750\) −5.46585 30.9984i −0.199585 1.13190i
\(751\) −5.30066 1.92928i −0.193424 0.0704005i 0.243492 0.969903i \(-0.421707\pi\)
−0.436916 + 0.899502i \(0.643929\pi\)
\(752\) 26.2199 0.956140
\(753\) −5.99660 + 10.3864i −0.218528 + 0.378502i
\(754\) 4.14274 + 23.4947i 0.150870 + 0.855625i
\(755\) 3.60442 1.31190i 0.131178 0.0477450i
\(756\) 0 0
\(757\) 12.0207 + 10.0866i 0.436900 + 0.366602i 0.834548 0.550936i \(-0.185729\pi\)
−0.397648 + 0.917538i \(0.630173\pi\)
\(758\) −1.75600 1.47346i −0.0637806 0.0535183i
\(759\) 8.63816 + 14.9617i 0.313545 + 0.543076i
\(760\) 9.81274 5.56947i 0.355945 0.202026i
\(761\) −2.43242 + 4.21307i −0.0881751 + 0.152724i −0.906740 0.421691i \(-0.861437\pi\)
0.818565 + 0.574414i \(0.194770\pi\)
\(762\) 7.81702 44.3325i 0.283181 1.60600i
\(763\) 0 0
\(764\) 3.18392 + 1.15885i 0.115190 + 0.0419257i
\(765\) 0.378041 2.14398i 0.0136681 0.0775157i
\(766\) 3.71806 + 1.35326i 0.134339 + 0.0488954i
\(767\) 8.11499 14.0556i 0.293015 0.507517i
\(768\) −6.32888 10.9619i −0.228374 0.395555i
\(769\) 3.91266 + 22.1898i 0.141094 + 0.800184i 0.970421 + 0.241420i \(0.0776131\pi\)
−0.829327 + 0.558764i \(0.811276\pi\)
\(770\) 0 0
\(771\) 0.960637 1.66387i 0.0345965 0.0599229i
\(772\) −0.0550065 −0.00197973
\(773\) 24.8380 + 9.04028i 0.893359 + 0.325156i 0.747589 0.664162i \(-0.231212\pi\)
0.145771 + 0.989318i \(0.453434\pi\)
\(774\) −21.3056 17.8775i