Properties

Label 931.2.f.o.324.2
Level $931$
Weight $2$
Character 931.324
Analytic conductor $7.434$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(324,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.2672476416.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} - 4x^{5} + 24x^{4} - 10x^{3} + 9x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 324.2
Root \(-0.145683 + 0.252331i\) of defining polynomial
Character \(\chi\) \(=\) 931.324
Dual form 931.2.f.o.704.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.145683 + 0.252331i) q^{2} +(-1.21605 - 2.10626i) q^{3} +(0.957553 + 1.65853i) q^{4} +(1.03287 - 1.78898i) q^{5} +0.708633 q^{6} -1.14073 q^{8} +(-1.45755 + 2.52456i) q^{9} +(0.300944 + 0.521251i) q^{10} +(2.47455 + 4.28604i) q^{11} +(2.32886 - 4.03371i) q^{12} +1.62374 q^{13} -5.02408 q^{15} +(-1.74892 + 3.02922i) q^{16} +(3.49505 + 6.05360i) q^{17} +(-0.424683 - 0.735572i) q^{18} +(-0.500000 + 0.866025i) q^{19} +3.95611 q^{20} -1.44200 q^{22} +(3.70647 - 6.41980i) q^{23} +(1.38719 + 2.40268i) q^{24} +(0.366359 + 0.634552i) q^{25} +(-0.236552 + 0.409720i) q^{26} -0.206472 q^{27} +3.88335 q^{29} +(0.731926 - 1.26773i) q^{30} +(-0.404180 - 0.700061i) q^{31} +(-1.65031 - 2.85842i) q^{32} +(6.01834 - 10.4241i) q^{33} -2.03668 q^{34} -5.58273 q^{36} +(-2.05337 + 3.55655i) q^{37} +(-0.145683 - 0.252331i) q^{38} +(-1.97455 - 3.42001i) q^{39} +(-1.17823 + 2.04075i) q^{40} -8.50709 q^{41} +7.31545 q^{43} +(-4.73902 + 8.20822i) q^{44} +(3.01093 + 5.21508i) q^{45} +(1.07994 + 1.87052i) q^{46} +(2.70975 - 4.69343i) q^{47} +8.50709 q^{48} -0.213490 q^{50} +(8.50030 - 14.7230i) q^{51} +(1.55482 + 2.69302i) q^{52} +(0.995049 + 1.72347i) q^{53} +(0.0300796 - 0.0520994i) q^{54} +10.2235 q^{55} +2.43210 q^{57} +(-0.565740 + 0.979891i) q^{58} +(2.87761 + 4.98417i) q^{59} +(-4.81083 - 8.33259i) q^{60} +(5.69060 - 9.85640i) q^{61} +0.235529 q^{62} -6.03399 q^{64} +(1.67711 - 2.90484i) q^{65} +(1.75355 + 3.03723i) q^{66} +(-6.99751 - 12.1200i) q^{67} +(-6.69339 + 11.5933i) q^{68} -18.0290 q^{69} +6.51969 q^{71} +(1.66268 - 2.87984i) q^{72} +(1.04491 + 1.80984i) q^{73} +(-0.598285 - 1.03626i) q^{74} +(0.891021 - 1.54329i) q^{75} -1.91511 q^{76} +1.15063 q^{78} +(1.15989 - 2.00898i) q^{79} +(3.61281 + 6.25758i) q^{80} +(4.62374 + 8.00855i) q^{81} +(1.23934 - 2.14660i) q^{82} +5.01753 q^{83} +14.4397 q^{85} +(-1.06574 + 1.84592i) q^{86} +(-4.72235 - 8.17935i) q^{87} +(-2.82279 - 4.88922i) q^{88} +(-3.34720 + 5.79753i) q^{89} -1.75457 q^{90} +14.1966 q^{92} +(-0.983006 + 1.70262i) q^{93} +(0.789532 + 1.36751i) q^{94} +(1.03287 + 1.78898i) q^{95} +(-4.01372 + 6.95196i) q^{96} +14.0663 q^{97} -14.4271 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 2 q^{4} + 8 q^{5} + 8 q^{6} + 12 q^{8} - 2 q^{9} + 10 q^{10} + 6 q^{11} + 6 q^{12} - 4 q^{13} + 8 q^{15} - 2 q^{16} + 8 q^{17} + 6 q^{18} - 4 q^{19} - 28 q^{22} + 8 q^{23} + 12 q^{24} - 20 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.145683 + 0.252331i −0.103014 + 0.178425i −0.912925 0.408127i \(-0.866182\pi\)
0.809911 + 0.586552i \(0.199515\pi\)
\(3\) −1.21605 2.10626i −0.702086 1.21605i −0.967733 0.251979i \(-0.918919\pi\)
0.265646 0.964071i \(-0.414415\pi\)
\(4\) 0.957553 + 1.65853i 0.478776 + 0.829265i
\(5\) 1.03287 1.78898i 0.461914 0.800058i −0.537143 0.843491i \(-0.680496\pi\)
0.999056 + 0.0434336i \(0.0138297\pi\)
\(6\) 0.708633 0.289298
\(7\) 0 0
\(8\) −1.14073 −0.403310
\(9\) −1.45755 + 2.52456i −0.485851 + 0.841518i
\(10\) 0.300944 + 0.521251i 0.0951669 + 0.164834i
\(11\) 2.47455 + 4.28604i 0.746104 + 1.29229i 0.949677 + 0.313230i \(0.101411\pi\)
−0.203574 + 0.979060i \(0.565256\pi\)
\(12\) 2.32886 4.03371i 0.672285 1.16443i
\(13\) 1.62374 0.450344 0.225172 0.974319i \(-0.427706\pi\)
0.225172 + 0.974319i \(0.427706\pi\)
\(14\) 0 0
\(15\) −5.02408 −1.29721
\(16\) −1.74892 + 3.02922i −0.437230 + 0.757304i
\(17\) 3.49505 + 6.05360i 0.847674 + 1.46821i 0.883279 + 0.468848i \(0.155331\pi\)
−0.0356050 + 0.999366i \(0.511336\pi\)
\(18\) −0.424683 0.735572i −0.100099 0.173376i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) 3.95611 0.884613
\(21\) 0 0
\(22\) −1.44200 −0.307436
\(23\) 3.70647 6.41980i 0.772853 1.33862i −0.163140 0.986603i \(-0.552162\pi\)
0.935993 0.352018i \(-0.114504\pi\)
\(24\) 1.38719 + 2.40268i 0.283158 + 0.490445i
\(25\) 0.366359 + 0.634552i 0.0732718 + 0.126910i
\(26\) −0.236552 + 0.409720i −0.0463916 + 0.0803527i
\(27\) −0.206472 −0.0397356
\(28\) 0 0
\(29\) 3.88335 0.721120 0.360560 0.932736i \(-0.382586\pi\)
0.360560 + 0.932736i \(0.382586\pi\)
\(30\) 0.731926 1.26773i 0.133631 0.231455i
\(31\) −0.404180 0.700061i −0.0725929 0.125735i 0.827444 0.561548i \(-0.189794\pi\)
−0.900037 + 0.435814i \(0.856461\pi\)
\(32\) −1.65031 2.85842i −0.291736 0.505302i
\(33\) 6.01834 10.4241i 1.04766 1.81460i
\(34\) −2.03668 −0.349288
\(35\) 0 0
\(36\) −5.58273 −0.930456
\(37\) −2.05337 + 3.55655i −0.337572 + 0.584692i −0.983976 0.178304i \(-0.942939\pi\)
0.646403 + 0.762996i \(0.276272\pi\)
\(38\) −0.145683 0.252331i −0.0236330 0.0409335i
\(39\) −1.97455 3.42001i −0.316180 0.547641i
\(40\) −1.17823 + 2.04075i −0.186294 + 0.322671i
\(41\) −8.50709 −1.32858 −0.664292 0.747473i \(-0.731267\pi\)
−0.664292 + 0.747473i \(0.731267\pi\)
\(42\) 0 0
\(43\) 7.31545 1.11560 0.557798 0.829977i \(-0.311646\pi\)
0.557798 + 0.829977i \(0.311646\pi\)
\(44\) −4.73902 + 8.20822i −0.714434 + 1.23744i
\(45\) 3.01093 + 5.21508i 0.448842 + 0.777418i
\(46\) 1.07994 + 1.87052i 0.159229 + 0.275793i
\(47\) 2.70975 4.69343i 0.395258 0.684606i −0.597876 0.801588i \(-0.703989\pi\)
0.993134 + 0.116982i \(0.0373220\pi\)
\(48\) 8.50709 1.22789
\(49\) 0 0
\(50\) −0.213490 −0.0301920
\(51\) 8.50030 14.7230i 1.19028 2.06163i
\(52\) 1.55482 + 2.69302i 0.215614 + 0.373455i
\(53\) 0.995049 + 1.72347i 0.136680 + 0.236737i 0.926238 0.376939i \(-0.123023\pi\)
−0.789558 + 0.613676i \(0.789690\pi\)
\(54\) 0.0300796 0.0520994i 0.00409331 0.00708983i
\(55\) 10.2235 1.37854
\(56\) 0 0
\(57\) 2.43210 0.322139
\(58\) −0.565740 + 0.979891i −0.0742853 + 0.128666i
\(59\) 2.87761 + 4.98417i 0.374633 + 0.648883i 0.990272 0.139145i \(-0.0444354\pi\)
−0.615639 + 0.788028i \(0.711102\pi\)
\(60\) −4.81083 8.33259i −0.621075 1.07573i
\(61\) 5.69060 9.85640i 0.728606 1.26198i −0.228866 0.973458i \(-0.573502\pi\)
0.957472 0.288525i \(-0.0931648\pi\)
\(62\) 0.235529 0.0299123
\(63\) 0 0
\(64\) −6.03399 −0.754248
\(65\) 1.67711 2.90484i 0.208020 0.360301i
\(66\) 1.75355 + 3.03723i 0.215847 + 0.373857i
\(67\) −6.99751 12.1200i −0.854882 1.48070i −0.876754 0.480939i \(-0.840296\pi\)
0.0218718 0.999761i \(-0.493037\pi\)
\(68\) −6.69339 + 11.5933i −0.811692 + 1.40589i
\(69\) −18.0290 −2.17044
\(70\) 0 0
\(71\) 6.51969 0.773745 0.386872 0.922133i \(-0.373555\pi\)
0.386872 + 0.922133i \(0.373555\pi\)
\(72\) 1.66268 2.87984i 0.195948 0.339393i
\(73\) 1.04491 + 1.80984i 0.122298 + 0.211826i 0.920673 0.390334i \(-0.127640\pi\)
−0.798376 + 0.602160i \(0.794307\pi\)
\(74\) −0.598285 1.03626i −0.0695492 0.120463i
\(75\) 0.891021 1.54329i 0.102886 0.178204i
\(76\) −1.91511 −0.219678
\(77\) 0 0
\(78\) 1.15063 0.130284
\(79\) 1.15989 2.00898i 0.130497 0.226028i −0.793371 0.608738i \(-0.791676\pi\)
0.923868 + 0.382710i \(0.125009\pi\)
\(80\) 3.61281 + 6.25758i 0.403925 + 0.699618i
\(81\) 4.62374 + 8.00855i 0.513749 + 0.889839i
\(82\) 1.23934 2.14660i 0.136862 0.237053i
\(83\) 5.01753 0.550745 0.275373 0.961338i \(-0.411199\pi\)
0.275373 + 0.961338i \(0.411199\pi\)
\(84\) 0 0
\(85\) 14.4397 1.56621
\(86\) −1.06574 + 1.84592i −0.114922 + 0.199050i
\(87\) −4.72235 8.17935i −0.506289 0.876918i
\(88\) −2.82279 4.88922i −0.300911 0.521193i
\(89\) −3.34720 + 5.79753i −0.354803 + 0.614537i −0.987084 0.160202i \(-0.948785\pi\)
0.632281 + 0.774739i \(0.282119\pi\)
\(90\) −1.75457 −0.184948
\(91\) 0 0
\(92\) 14.1966 1.48009
\(93\) −0.983006 + 1.70262i −0.101933 + 0.176553i
\(94\) 0.789532 + 1.36751i 0.0814340 + 0.141048i
\(95\) 1.03287 + 1.78898i 0.105970 + 0.183546i
\(96\) −4.01372 + 6.95196i −0.409648 + 0.709531i
\(97\) 14.0663 1.42822 0.714111 0.700033i \(-0.246831\pi\)
0.714111 + 0.700033i \(0.246831\pi\)
\(98\) 0 0
\(99\) −14.4271 −1.44998
\(100\) −0.701616 + 1.21523i −0.0701616 + 0.121523i
\(101\) −0.897068 1.55377i −0.0892616 0.154606i 0.817938 0.575307i \(-0.195117\pi\)
−0.907199 + 0.420701i \(0.861784\pi\)
\(102\) 2.47671 + 4.28978i 0.245231 + 0.424752i
\(103\) 8.45044 14.6366i 0.832647 1.44219i −0.0632856 0.997995i \(-0.520158\pi\)
0.895932 0.444191i \(-0.146509\pi\)
\(104\) −1.85225 −0.181628
\(105\) 0 0
\(106\) −0.579848 −0.0563199
\(107\) −4.50463 + 7.80224i −0.435479 + 0.754271i −0.997335 0.0729640i \(-0.976754\pi\)
0.561856 + 0.827235i \(0.310088\pi\)
\(108\) −0.197708 0.342440i −0.0190245 0.0329513i
\(109\) −3.50463 6.07019i −0.335682 0.581419i 0.647933 0.761697i \(-0.275634\pi\)
−0.983616 + 0.180278i \(0.942300\pi\)
\(110\) −1.48940 + 2.57972i −0.142009 + 0.245966i
\(111\) 9.98801 0.948020
\(112\) 0 0
\(113\) −0.261701 −0.0246188 −0.0123094 0.999924i \(-0.503918\pi\)
−0.0123094 + 0.999924i \(0.503918\pi\)
\(114\) −0.354317 + 0.613694i −0.0331848 + 0.0574777i
\(115\) −7.65661 13.2616i −0.713982 1.23665i
\(116\) 3.71851 + 6.44066i 0.345255 + 0.598000i
\(117\) −2.36668 + 4.09922i −0.218800 + 0.378973i
\(118\) −1.67688 −0.154369
\(119\) 0 0
\(120\) 5.73113 0.523179
\(121\) −6.74676 + 11.6857i −0.613342 + 1.06234i
\(122\) 1.65805 + 2.87183i 0.150113 + 0.260003i
\(123\) 10.3450 + 17.9181i 0.932781 + 1.61562i
\(124\) 0.774048 1.34069i 0.0695115 0.120398i
\(125\) 11.8423 1.05921
\(126\) 0 0
\(127\) −8.07337 −0.716395 −0.358198 0.933646i \(-0.616609\pi\)
−0.358198 + 0.933646i \(0.616609\pi\)
\(128\) 4.17967 7.23940i 0.369434 0.639879i
\(129\) −8.89595 15.4082i −0.783245 1.35662i
\(130\) 0.488655 + 0.846375i 0.0428578 + 0.0742320i
\(131\) −9.71635 + 16.8292i −0.848922 + 1.47038i 0.0332496 + 0.999447i \(0.489414\pi\)
−0.882171 + 0.470929i \(0.843919\pi\)
\(132\) 23.0515 2.00638
\(133\) 0 0
\(134\) 4.07769 0.352259
\(135\) −0.213259 + 0.369375i −0.0183544 + 0.0317908i
\(136\) −3.98691 6.90554i −0.341875 0.592145i
\(137\) 3.14073 + 5.43991i 0.268331 + 0.464763i 0.968431 0.249282i \(-0.0801946\pi\)
−0.700100 + 0.714045i \(0.746861\pi\)
\(138\) 2.62653 4.54928i 0.223585 0.387261i
\(139\) −18.1959 −1.54336 −0.771679 0.636012i \(-0.780583\pi\)
−0.771679 + 0.636012i \(0.780583\pi\)
\(140\) 0 0
\(141\) −13.1808 −1.11002
\(142\) −0.949811 + 1.64512i −0.0797064 + 0.138055i
\(143\) 4.01802 + 6.95941i 0.336003 + 0.581975i
\(144\) −5.09828 8.83049i −0.424857 0.735874i
\(145\) 4.01100 6.94725i 0.333095 0.576938i
\(146\) −0.608906 −0.0503934
\(147\) 0 0
\(148\) −7.86485 −0.646487
\(149\) −4.37903 + 7.58470i −0.358744 + 0.621363i −0.987751 0.156036i \(-0.950128\pi\)
0.629007 + 0.777400i \(0.283462\pi\)
\(150\) 0.259614 + 0.449665i 0.0211974 + 0.0367150i
\(151\) 6.02225 + 10.4308i 0.490084 + 0.848850i 0.999935 0.0114128i \(-0.00363288\pi\)
−0.509851 + 0.860263i \(0.670300\pi\)
\(152\) 0.570366 0.987903i 0.0462628 0.0801295i
\(153\) −20.3769 −1.64737
\(154\) 0 0
\(155\) −1.66986 −0.134127
\(156\) 3.78146 6.54969i 0.302759 0.524395i
\(157\) −2.13794 3.70302i −0.170626 0.295533i 0.768013 0.640435i \(-0.221246\pi\)
−0.938639 + 0.344901i \(0.887912\pi\)
\(158\) 0.337953 + 0.585351i 0.0268861 + 0.0465680i
\(159\) 2.42006 4.19166i 0.191923 0.332420i
\(160\) −6.81822 −0.539028
\(161\) 0 0
\(162\) −2.69441 −0.211693
\(163\) 4.51339 7.81742i 0.353516 0.612308i −0.633347 0.773868i \(-0.718319\pi\)
0.986863 + 0.161560i \(0.0516527\pi\)
\(164\) −8.14599 14.1093i −0.636095 1.10175i
\(165\) −12.4323 21.5334i −0.967856 1.67637i
\(166\) −0.730971 + 1.26608i −0.0567343 + 0.0982668i
\(167\) −21.2318 −1.64297 −0.821484 0.570232i \(-0.806853\pi\)
−0.821484 + 0.570232i \(0.806853\pi\)
\(168\) 0 0
\(169\) −10.3635 −0.797190
\(170\) −2.10363 + 3.64359i −0.161341 + 0.279451i
\(171\) −1.45755 2.52456i −0.111462 0.193058i
\(172\) 7.00493 + 12.1329i 0.534121 + 0.925125i
\(173\) −3.40035 + 5.88957i −0.258524 + 0.447776i −0.965847 0.259115i \(-0.916569\pi\)
0.707323 + 0.706890i \(0.249903\pi\)
\(174\) 2.75187 0.208619
\(175\) 0 0
\(176\) −17.3111 −1.30488
\(177\) 6.99863 12.1220i 0.526049 0.911144i
\(178\) −0.975265 1.68921i −0.0730992 0.126611i
\(179\) −9.63608 16.6902i −0.720235 1.24748i −0.960906 0.276876i \(-0.910701\pi\)
0.240671 0.970607i \(-0.422633\pi\)
\(180\) −5.76624 + 9.98742i −0.429790 + 0.744418i
\(181\) −20.5508 −1.52753 −0.763764 0.645495i \(-0.776651\pi\)
−0.763764 + 0.645495i \(0.776651\pi\)
\(182\) 0 0
\(183\) −27.6802 −2.04618
\(184\) −4.22809 + 7.32327i −0.311699 + 0.539879i
\(185\) 4.24173 + 7.34690i 0.311858 + 0.540155i
\(186\) −0.286416 0.496086i −0.0210010 0.0363748i
\(187\) −17.2973 + 29.9598i −1.26491 + 2.19088i
\(188\) 10.3789 0.756960
\(189\) 0 0
\(190\) −0.601888 −0.0436656
\(191\) 2.24183 3.88296i 0.162213 0.280961i −0.773449 0.633858i \(-0.781470\pi\)
0.935662 + 0.352897i \(0.114803\pi\)
\(192\) 7.33763 + 12.7091i 0.529548 + 0.917203i
\(193\) 12.5145 + 21.6758i 0.900814 + 1.56026i 0.826440 + 0.563025i \(0.190363\pi\)
0.0743742 + 0.997230i \(0.476304\pi\)
\(194\) −2.04923 + 3.54938i −0.147126 + 0.254830i
\(195\) −8.15780 −0.584192
\(196\) 0 0
\(197\) −0.100378 −0.00715167 −0.00357583 0.999994i \(-0.501138\pi\)
−0.00357583 + 0.999994i \(0.501138\pi\)
\(198\) 2.10179 3.64041i 0.149368 0.258713i
\(199\) −13.4650 23.3220i −0.954506 1.65325i −0.735494 0.677531i \(-0.763050\pi\)
−0.219013 0.975722i \(-0.570284\pi\)
\(200\) −0.417917 0.723854i −0.0295512 0.0511842i
\(201\) −17.0186 + 29.4772i −1.20040 + 2.07916i
\(202\) 0.522752 0.0367807
\(203\) 0 0
\(204\) 32.5580 2.27951
\(205\) −8.78672 + 15.2190i −0.613691 + 1.06294i
\(206\) 2.46218 + 4.26462i 0.171548 + 0.297130i
\(207\) 10.8048 + 18.7144i 0.750983 + 1.30074i
\(208\) −2.83979 + 4.91866i −0.196904 + 0.341047i
\(209\) −4.94909 −0.342336
\(210\) 0 0
\(211\) 14.5345 1.00060 0.500299 0.865853i \(-0.333223\pi\)
0.500299 + 0.865853i \(0.333223\pi\)
\(212\) −1.90562 + 3.30064i −0.130879 + 0.226689i
\(213\) −7.92826 13.7322i −0.543236 0.940912i
\(214\) −1.31250 2.27331i −0.0897206 0.155401i
\(215\) 7.55591 13.0872i 0.515309 0.892541i
\(216\) 0.235529 0.0160258
\(217\) 0 0
\(218\) 2.04226 0.138320
\(219\) 2.54133 4.40171i 0.171727 0.297440i
\(220\) 9.78958 + 16.9560i 0.660013 + 1.14318i
\(221\) 5.67504 + 9.82947i 0.381745 + 0.661201i
\(222\) −1.45509 + 2.52029i −0.0976591 + 0.169151i
\(223\) 2.30829 0.154574 0.0772872 0.997009i \(-0.475374\pi\)
0.0772872 + 0.997009i \(0.475374\pi\)
\(224\) 0 0
\(225\) −2.13595 −0.142397
\(226\) 0.0381256 0.0660354i 0.00253607 0.00439261i
\(227\) 9.92610 + 17.1925i 0.658819 + 1.14111i 0.980922 + 0.194403i \(0.0622769\pi\)
−0.322103 + 0.946705i \(0.604390\pi\)
\(228\) 2.32886 + 4.03371i 0.154233 + 0.267139i
\(229\) 8.71356 15.0923i 0.575808 0.997330i −0.420145 0.907457i \(-0.638021\pi\)
0.995953 0.0898724i \(-0.0286459\pi\)
\(230\) 4.46176 0.294200
\(231\) 0 0
\(232\) −4.42986 −0.290835
\(233\) −4.44614 + 7.70094i −0.291276 + 0.504505i −0.974112 0.226067i \(-0.927413\pi\)
0.682835 + 0.730572i \(0.260747\pi\)
\(234\) −0.689573 1.19438i −0.0450788 0.0780788i
\(235\) −5.59764 9.69540i −0.365150 0.632458i
\(236\) −5.51093 + 9.54520i −0.358731 + 0.621340i
\(237\) −5.64192 −0.366482
\(238\) 0 0
\(239\) −10.9234 −0.706575 −0.353287 0.935515i \(-0.614936\pi\)
−0.353287 + 0.935515i \(0.614936\pi\)
\(240\) 8.78672 15.2190i 0.567180 0.982385i
\(241\) 2.59199 + 4.48945i 0.166964 + 0.289191i 0.937351 0.348386i \(-0.113270\pi\)
−0.770387 + 0.637577i \(0.779937\pi\)
\(242\) −1.96578 3.40483i −0.126365 0.218871i
\(243\) 10.9357 18.9412i 0.701524 1.21508i
\(244\) 21.7962 1.39536
\(245\) 0 0
\(246\) −6.02841 −0.384357
\(247\) −0.811869 + 1.40620i −0.0516580 + 0.0894743i
\(248\) 0.461061 + 0.798582i 0.0292774 + 0.0507100i
\(249\) −6.10156 10.5682i −0.386671 0.669734i
\(250\) −1.72523 + 2.98818i −0.109113 + 0.188989i
\(251\) −12.2672 −0.774301 −0.387151 0.922016i \(-0.626541\pi\)
−0.387151 + 0.922016i \(0.626541\pi\)
\(252\) 0 0
\(253\) 36.6873 2.30651
\(254\) 1.17616 2.03716i 0.0737986 0.127823i
\(255\) −17.5594 30.4138i −1.09961 1.90459i
\(256\) −4.81617 8.34185i −0.301011 0.521366i
\(257\) −11.1870 + 19.3764i −0.697825 + 1.20867i 0.271393 + 0.962468i \(0.412516\pi\)
−0.969219 + 0.246201i \(0.920818\pi\)
\(258\) 5.18397 0.322740
\(259\) 0 0
\(260\) 6.42369 0.398380
\(261\) −5.66019 + 9.80374i −0.350357 + 0.606836i
\(262\) −2.83102 4.90348i −0.174901 0.302938i
\(263\) −4.53813 7.86026i −0.279833 0.484685i 0.691510 0.722367i \(-0.256946\pi\)
−0.971343 + 0.237682i \(0.923612\pi\)
\(264\) −6.86532 + 11.8911i −0.422531 + 0.731845i
\(265\) 4.11102 0.252538
\(266\) 0 0
\(267\) 16.2815 0.996409
\(268\) 13.4010 23.2112i 0.818595 1.41785i
\(269\) 9.40992 + 16.2985i 0.573733 + 0.993735i 0.996178 + 0.0873463i \(0.0278387\pi\)
−0.422445 + 0.906389i \(0.638828\pi\)
\(270\) −0.0621366 0.107624i −0.00378151 0.00654977i
\(271\) 12.4907 21.6346i 0.758758 1.31421i −0.184727 0.982790i \(-0.559140\pi\)
0.943484 0.331417i \(-0.107527\pi\)
\(272\) −24.4502 −1.48251
\(273\) 0 0
\(274\) −1.83021 −0.110567
\(275\) −1.81314 + 3.14046i −0.109337 + 0.189377i
\(276\) −17.2637 29.9017i −1.03915 1.79987i
\(277\) −10.4370 18.0775i −0.627100 1.08617i −0.988131 0.153616i \(-0.950908\pi\)
0.361030 0.932554i \(-0.382425\pi\)
\(278\) 2.65084 4.59140i 0.158987 0.275374i
\(279\) 2.35646 0.141077
\(280\) 0 0
\(281\) 29.3117 1.74859 0.874296 0.485393i \(-0.161324\pi\)
0.874296 + 0.485393i \(0.161324\pi\)
\(282\) 1.92022 3.32592i 0.114347 0.198055i
\(283\) 0.283137 + 0.490408i 0.0168308 + 0.0291518i 0.874318 0.485353i \(-0.161309\pi\)
−0.857487 + 0.514505i \(0.827976\pi\)
\(284\) 6.24295 + 10.8131i 0.370451 + 0.641639i
\(285\) 2.51204 4.35098i 0.148801 0.257730i
\(286\) −2.34143 −0.138452
\(287\) 0 0
\(288\) 9.62165 0.566961
\(289\) −15.9307 + 27.5928i −0.937102 + 1.62311i
\(290\) 1.16867 + 2.02420i 0.0686268 + 0.118865i
\(291\) −17.1054 29.6274i −1.00273 1.73679i
\(292\) −2.00112 + 3.46604i −0.117107 + 0.202834i
\(293\) −25.2701 −1.47630 −0.738148 0.674639i \(-0.764300\pi\)
−0.738148 + 0.674639i \(0.764300\pi\)
\(294\) 0 0
\(295\) 11.8888 0.692192
\(296\) 2.34235 4.05707i 0.136146 0.235812i
\(297\) −0.510925 0.884948i −0.0296469 0.0513499i
\(298\) −1.27590 2.20993i −0.0739112 0.128018i
\(299\) 6.01834 10.4241i 0.348050 0.602840i
\(300\) 3.41280 0.197038
\(301\) 0 0
\(302\) −3.50937 −0.201941
\(303\) −2.18176 + 3.77892i −0.125339 + 0.217093i
\(304\) −1.74892 3.02922i −0.100307 0.173738i
\(305\) −11.7553 20.3608i −0.673106 1.16585i
\(306\) 2.96857 5.14172i 0.169702 0.293932i
\(307\) 6.37114 0.363620 0.181810 0.983334i \(-0.441804\pi\)
0.181810 + 0.983334i \(0.441804\pi\)
\(308\) 0 0
\(309\) −41.1046 −2.33836
\(310\) 0.243271 0.421358i 0.0138169 0.0239315i
\(311\) 0.147844 + 0.256074i 0.00838348 + 0.0145206i 0.870187 0.492722i \(-0.163998\pi\)
−0.861803 + 0.507243i \(0.830665\pi\)
\(312\) 2.25243 + 3.90132i 0.127519 + 0.220869i
\(313\) −10.1840 + 17.6392i −0.575632 + 0.997024i 0.420341 + 0.907366i \(0.361911\pi\)
−0.995973 + 0.0896576i \(0.971423\pi\)
\(314\) 1.24585 0.0703074
\(315\) 0 0
\(316\) 4.44261 0.249916
\(317\) 15.2580 26.4276i 0.856974 1.48432i −0.0178276 0.999841i \(-0.505675\pi\)
0.874802 0.484481i \(-0.160992\pi\)
\(318\) 0.705124 + 1.22131i 0.0395414 + 0.0684877i
\(319\) 9.60954 + 16.6442i 0.538031 + 0.931896i
\(320\) −6.23232 + 10.7947i −0.348398 + 0.603442i
\(321\) 21.9114 1.22297
\(322\) 0 0
\(323\) −6.99010 −0.388939
\(324\) −8.85495 + 15.3372i −0.491941 + 0.852068i
\(325\) 0.594871 + 1.03035i 0.0329975 + 0.0571533i
\(326\) 1.31505 + 2.27774i 0.0728340 + 0.126152i
\(327\) −8.52360 + 14.7633i −0.471356 + 0.816413i
\(328\) 9.70431 0.535831
\(329\) 0 0
\(330\) 7.24474 0.398810
\(331\) 14.1407 24.4924i 0.777244 1.34623i −0.156281 0.987713i \(-0.549951\pi\)
0.933525 0.358513i \(-0.116716\pi\)
\(332\) 4.80455 + 8.32172i 0.263684 + 0.456714i
\(333\) −5.98580 10.3677i −0.328020 0.568147i
\(334\) 3.09312 5.35745i 0.169248 0.293147i
\(335\) −28.9101 −1.57953
\(336\) 0 0
\(337\) 0.0981441 0.00534625 0.00267312 0.999996i \(-0.499149\pi\)
0.00267312 + 0.999996i \(0.499149\pi\)
\(338\) 1.50979 2.61503i 0.0821216 0.142239i
\(339\) 0.318242 + 0.551211i 0.0172845 + 0.0299377i
\(340\) 13.8268 + 23.9487i 0.749863 + 1.29880i
\(341\) 2.00033 3.46467i 0.108324 0.187622i
\(342\) 0.849365 0.0459284
\(343\) 0 0
\(344\) −8.34497 −0.449931
\(345\) −18.6216 + 32.2536i −1.00255 + 1.73648i
\(346\) −0.990748 1.71603i −0.0532630 0.0922541i
\(347\) 0.536866 + 0.929880i 0.0288205 + 0.0499186i 0.880076 0.474833i \(-0.157492\pi\)
−0.851255 + 0.524752i \(0.824158\pi\)
\(348\) 9.04380 15.6643i 0.484798 0.839695i
\(349\) 7.94431 0.425249 0.212625 0.977134i \(-0.431799\pi\)
0.212625 + 0.977134i \(0.431799\pi\)
\(350\) 0 0
\(351\) −0.335257 −0.0178947
\(352\) 8.16753 14.1466i 0.435331 0.754015i
\(353\) 4.37905 + 7.58474i 0.233073 + 0.403695i 0.958711 0.284382i \(-0.0917884\pi\)
−0.725638 + 0.688077i \(0.758455\pi\)
\(354\) 2.03917 + 3.53194i 0.108381 + 0.187721i
\(355\) 6.73399 11.6636i 0.357403 0.619040i
\(356\) −12.8205 −0.679485
\(357\) 0 0
\(358\) 5.61527 0.296776
\(359\) −4.44279 + 7.69514i −0.234482 + 0.406134i −0.959122 0.282993i \(-0.908673\pi\)
0.724640 + 0.689127i \(0.242006\pi\)
\(360\) −3.43466 5.94900i −0.181022 0.313540i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 2.99391 5.18560i 0.157356 0.272549i
\(363\) 32.8176 1.72248
\(364\) 0 0
\(365\) 4.31703 0.225964
\(366\) 4.03254 6.98457i 0.210784 0.365089i
\(367\) −7.03222 12.1802i −0.367079 0.635799i 0.622029 0.782995i \(-0.286309\pi\)
−0.989107 + 0.147195i \(0.952975\pi\)
\(368\) 12.9646 + 22.4554i 0.675829 + 1.17057i
\(369\) 12.3995 21.4766i 0.645494 1.11803i
\(370\) −2.47180 −0.128503
\(371\) 0 0
\(372\) −3.76512 −0.195212
\(373\) 18.4284 31.9189i 0.954187 1.65270i 0.217968 0.975956i \(-0.430057\pi\)
0.736218 0.676744i \(-0.236610\pi\)
\(374\) −5.03987 8.72930i −0.260605 0.451382i
\(375\) −14.4008 24.9430i −0.743656 1.28805i
\(376\) −3.09110 + 5.35394i −0.159411 + 0.276108i
\(377\) 6.30555 0.324752
\(378\) 0 0
\(379\) −17.2907 −0.888164 −0.444082 0.895986i \(-0.646470\pi\)
−0.444082 + 0.895986i \(0.646470\pi\)
\(380\) −1.97805 + 3.42609i −0.101472 + 0.175755i
\(381\) 9.81761 + 17.0046i 0.502972 + 0.871172i
\(382\) 0.653195 + 1.13137i 0.0334203 + 0.0578857i
\(383\) 11.8112 20.4576i 0.603525 1.04534i −0.388758 0.921340i \(-0.627096\pi\)
0.992283 0.123996i \(-0.0395710\pi\)
\(384\) −20.3307 −1.03750
\(385\) 0 0
\(386\) −7.29263 −0.371185
\(387\) −10.6627 + 18.4683i −0.542013 + 0.938794i
\(388\) 13.4693 + 23.3295i 0.683799 + 1.18437i
\(389\) 1.40881 + 2.44012i 0.0714293 + 0.123719i 0.899528 0.436863i \(-0.143911\pi\)
−0.828099 + 0.560582i \(0.810577\pi\)
\(390\) 1.18846 2.05847i 0.0601798 0.104235i
\(391\) 51.8172 2.62051
\(392\) 0 0
\(393\) 47.2623 2.38407
\(394\) 0.0146235 0.0253286i 0.000736720 0.00127604i
\(395\) −2.39602 4.15004i −0.120557 0.208811i
\(396\) −13.8147 23.9278i −0.694216 1.20242i
\(397\) −12.0006 + 20.7857i −0.602293 + 1.04320i 0.390180 + 0.920739i \(0.372413\pi\)
−0.992473 + 0.122464i \(0.960920\pi\)
\(398\) 7.84649 0.393309
\(399\) 0 0
\(400\) −2.56293 −0.128146
\(401\) −16.6870 + 28.9027i −0.833309 + 1.44333i 0.0620915 + 0.998070i \(0.480223\pi\)
−0.895400 + 0.445262i \(0.853110\pi\)
\(402\) −4.95867 8.58867i −0.247316 0.428364i
\(403\) −0.656283 1.13672i −0.0326918 0.0566238i
\(404\) 1.71798 2.97563i 0.0854727 0.148043i
\(405\) 19.1029 0.949230
\(406\) 0 0
\(407\) −20.3247 −1.00746
\(408\) −9.69657 + 16.7950i −0.480052 + 0.831474i
\(409\) 14.2074 + 24.6079i 0.702511 + 1.21678i 0.967582 + 0.252556i \(0.0812712\pi\)
−0.265071 + 0.964229i \(0.585395\pi\)
\(410\) −2.56016 4.43433i −0.126437 0.218996i
\(411\) 7.63857 13.2304i 0.376783 0.652607i
\(412\) 32.3670 1.59461
\(413\) 0 0
\(414\) −6.29630 −0.309446
\(415\) 5.18245 8.97628i 0.254397 0.440628i
\(416\) −2.67967 4.64133i −0.131382 0.227560i
\(417\) 22.1271 + 38.3253i 1.08357 + 1.87680i
\(418\) 0.721001 1.24881i 0.0352653 0.0610813i
\(419\) 5.95276 0.290812 0.145406 0.989372i \(-0.453551\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(420\) 0 0
\(421\) −2.95244 −0.143893 −0.0719465 0.997408i \(-0.522921\pi\)
−0.0719465 + 0.997408i \(0.522921\pi\)
\(422\) −2.11744 + 3.66751i −0.103075 + 0.178532i
\(423\) 7.89921 + 13.6818i 0.384073 + 0.665233i
\(424\) −1.13508 1.96602i −0.0551245 0.0954785i
\(425\) −2.56088 + 4.43558i −0.124221 + 0.215157i
\(426\) 4.62007 0.223843
\(427\) 0 0
\(428\) −17.2537 −0.833987
\(429\) 9.77221 16.9260i 0.471807 0.817193i
\(430\) 2.20154 + 3.81318i 0.106168 + 0.183888i
\(431\) −4.98517 8.63456i −0.240127 0.415912i 0.720623 0.693327i \(-0.243856\pi\)
−0.960750 + 0.277415i \(0.910522\pi\)
\(432\) 0.361103 0.625449i 0.0173736 0.0300919i
\(433\) −19.1090 −0.918319 −0.459159 0.888354i \(-0.651849\pi\)
−0.459159 + 0.888354i \(0.651849\pi\)
\(434\) 0 0
\(435\) −19.5103 −0.935447
\(436\) 6.71173 11.6251i 0.321433 0.556739i
\(437\) 3.70647 + 6.41980i 0.177305 + 0.307101i
\(438\) 0.740459 + 1.28251i 0.0353805 + 0.0612809i
\(439\) −3.65340 + 6.32788i −0.174367 + 0.302013i −0.939942 0.341334i \(-0.889121\pi\)
0.765575 + 0.643347i \(0.222455\pi\)
\(440\) −11.6623 −0.555979
\(441\) 0 0
\(442\) −3.30704 −0.157300
\(443\) 8.23193 14.2581i 0.391111 0.677423i −0.601486 0.798884i \(-0.705424\pi\)
0.992596 + 0.121460i \(0.0387577\pi\)
\(444\) 9.56405 + 16.5654i 0.453890 + 0.786160i
\(445\) 6.91445 + 11.9762i 0.327777 + 0.567726i
\(446\) −0.336279 + 0.582453i −0.0159233 + 0.0275799i
\(447\) 21.3005 1.00748
\(448\) 0 0
\(449\) −9.71849 −0.458644 −0.229322 0.973351i \(-0.573651\pi\)
−0.229322 + 0.973351i \(0.573651\pi\)
\(450\) 0.311172 0.538966i 0.0146688 0.0254071i
\(451\) −21.0512 36.4617i −0.991262 1.71692i
\(452\) −0.250593 0.434040i −0.0117869 0.0204155i
\(453\) 14.6467 25.3688i 0.688162 1.19193i
\(454\) −5.78428 −0.271470
\(455\) 0 0
\(456\) −2.77437 −0.129922
\(457\) 5.50079 9.52765i 0.257316 0.445685i −0.708206 0.706006i \(-0.750495\pi\)
0.965522 + 0.260321i \(0.0838285\pi\)
\(458\) 2.53884 + 4.39741i 0.118632 + 0.205477i
\(459\) −0.721630 1.24990i −0.0336828 0.0583404i
\(460\) 14.6632 25.3974i 0.683676 1.18416i
\(461\) −28.6779 −1.33567 −0.667833 0.744311i \(-0.732778\pi\)
−0.667833 + 0.744311i \(0.732778\pi\)
\(462\) 0 0
\(463\) −33.7722 −1.56953 −0.784765 0.619794i \(-0.787216\pi\)
−0.784765 + 0.619794i \(0.787216\pi\)
\(464\) −6.79167 + 11.7635i −0.315295 + 0.546108i
\(465\) 2.03064 + 3.51716i 0.0941685 + 0.163105i
\(466\) −1.29546 2.24380i −0.0600109 0.103942i
\(467\) 8.42387 14.5906i 0.389810 0.675171i −0.602614 0.798033i \(-0.705874\pi\)
0.992424 + 0.122862i \(0.0392073\pi\)
\(468\) −9.06490 −0.419025
\(469\) 0 0
\(470\) 3.26193 0.150462
\(471\) −5.19969 + 9.00612i −0.239589 + 0.414980i
\(472\) −3.28258 5.68560i −0.151093 0.261701i
\(473\) 18.1024 + 31.3543i 0.832350 + 1.44167i
\(474\) 0.821934 1.42363i 0.0377527 0.0653896i
\(475\) −0.732718 −0.0336194
\(476\) 0 0
\(477\) −5.80134 −0.265625
\(478\) 1.59136 2.75631i 0.0727869 0.126071i
\(479\) 11.5225 + 19.9575i 0.526476 + 0.911882i 0.999524 + 0.0308461i \(0.00982016\pi\)
−0.473049 + 0.881036i \(0.656847\pi\)
\(480\) 8.29129 + 14.3609i 0.378444 + 0.655484i
\(481\) −3.33414 + 5.77490i −0.152024 + 0.263313i
\(482\) −1.51044 −0.0687985
\(483\) 0 0
\(484\) −25.8415 −1.17461
\(485\) 14.5287 25.1645i 0.659715 1.14266i
\(486\) 3.18630 + 5.51883i 0.144533 + 0.250339i
\(487\) 10.9734 + 19.0065i 0.497253 + 0.861267i 0.999995 0.00316956i \(-0.00100890\pi\)
−0.502742 + 0.864436i \(0.667676\pi\)
\(488\) −6.49145 + 11.2435i −0.293854 + 0.508970i
\(489\) −21.9540 −0.992795
\(490\) 0 0
\(491\) 10.1883 0.459791 0.229896 0.973215i \(-0.426162\pi\)
0.229896 + 0.973215i \(0.426162\pi\)
\(492\) −19.8118 + 34.3151i −0.893187 + 1.54705i
\(493\) 13.5725 + 23.5083i 0.611275 + 1.05876i
\(494\) −0.236552 0.409720i −0.0106430 0.0184342i
\(495\) −14.9013 + 25.8099i −0.669766 + 1.16007i
\(496\) 2.82752 0.126959
\(497\) 0 0
\(498\) 3.55559 0.159330
\(499\) −8.21501 + 14.2288i −0.367754 + 0.636969i −0.989214 0.146477i \(-0.953207\pi\)
0.621460 + 0.783446i \(0.286540\pi\)
\(500\) 11.3396 + 19.6408i 0.507124 + 0.878364i
\(501\) 25.8189 + 44.7197i 1.15351 + 1.99793i
\(502\) 1.78713 3.09541i 0.0797637 0.138155i
\(503\) 2.13595 0.0952373 0.0476186 0.998866i \(-0.484837\pi\)
0.0476186 + 0.998866i \(0.484837\pi\)
\(504\) 0 0
\(505\) −3.70622 −0.164925
\(506\) −5.34474 + 9.25736i −0.237603 + 0.411540i
\(507\) 12.6025 + 21.8282i 0.559697 + 0.969423i
\(508\) −7.73067 13.3899i −0.342993 0.594082i
\(509\) 12.1123 20.9792i 0.536869 0.929885i −0.462201 0.886775i \(-0.652940\pi\)
0.999070 0.0431099i \(-0.0137265\pi\)
\(510\) 10.2325 0.453101
\(511\) 0 0
\(512\) 19.5252 0.862901
\(513\) 0.103236 0.178810i 0.00455799 0.00789466i
\(514\) −3.25952 5.64565i −0.143771 0.249019i
\(515\) −17.4564 30.2354i −0.769222 1.33233i
\(516\) 17.0367 29.5084i 0.749998 1.29903i
\(517\) 26.8216 1.17961
\(518\) 0 0
\(519\) 16.5400 0.726023
\(520\) −1.91313 + 3.31365i −0.0838965 + 0.145313i
\(521\) 3.78220 + 6.55097i 0.165701 + 0.287003i 0.936904 0.349586i \(-0.113678\pi\)
−0.771203 + 0.636590i \(0.780345\pi\)
\(522\) −1.64919 2.85648i −0.0721832 0.125025i
\(523\) 5.87203 10.1707i 0.256766 0.444732i −0.708608 0.705603i \(-0.750676\pi\)
0.965374 + 0.260871i \(0.0840097\pi\)
\(524\) −37.2157 −1.62577
\(525\) 0 0
\(526\) 2.64452 0.115307
\(527\) 2.82526 4.89349i 0.123070 0.213164i
\(528\) 21.0512 + 36.4617i 0.916135 + 1.58679i
\(529\) −15.9759 27.6710i −0.694603 1.20309i
\(530\) −0.598908 + 1.03734i −0.0260149 + 0.0450591i
\(531\) −16.7771 −0.728063
\(532\) 0 0
\(533\) −13.8133 −0.598320
\(534\) −2.37194 + 4.10832i −0.102644 + 0.177784i
\(535\) 9.30539 + 16.1174i 0.402307 + 0.696816i
\(536\) 7.98229 + 13.8257i 0.344782 + 0.597181i
\(537\) −23.4359 + 40.5922i −1.01133 + 1.75168i
\(538\) −5.48348 −0.236410
\(539\) 0 0
\(540\) −0.816827 −0.0351506
\(541\) 2.22196 3.84854i 0.0955293 0.165462i −0.814300 0.580444i \(-0.802879\pi\)
0.909829 + 0.414982i \(0.136212\pi\)
\(542\) 3.63938 + 6.30360i 0.156325 + 0.270763i
\(543\) 24.9908 + 43.2853i 1.07246 + 1.85755i
\(544\) 11.5358 19.9806i 0.494594 0.856662i
\(545\) −14.4793 −0.620225
\(546\) 0 0
\(547\) −8.15542 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(548\) −6.01483 + 10.4180i −0.256941 + 0.445035i
\(549\) 16.5887 + 28.7324i 0.707988 + 1.22627i
\(550\) −0.528290 0.915025i −0.0225264 0.0390168i
\(551\) −1.94168 + 3.36308i −0.0827182 + 0.143272i
\(552\) 20.5663 0.875359
\(553\) 0 0
\(554\) 6.08201 0.258400
\(555\) 10.3163 17.8684i 0.437903 0.758471i
\(556\) −17.4236 30.1785i −0.738923 1.27985i
\(557\) −2.61737 4.53341i −0.110901 0.192087i 0.805233 0.592959i \(-0.202040\pi\)
−0.916134 + 0.400872i \(0.868707\pi\)
\(558\) −0.343297 + 0.594607i −0.0145329 + 0.0251717i
\(559\) 11.8784 0.502402
\(560\) 0 0
\(561\) 84.1376 3.55229
\(562\) −4.27023 + 7.39626i −0.180129 + 0.311993i
\(563\) −12.6952 21.9888i −0.535040 0.926716i −0.999161 0.0409446i \(-0.986963\pi\)
0.464122 0.885771i \(-0.346370\pi\)
\(564\) −12.6213 21.8607i −0.531451 0.920501i
\(565\) −0.270304 + 0.468180i −0.0113718 + 0.0196965i
\(566\) −0.164994 −0.00693521
\(567\) 0 0
\(568\) −7.43722 −0.312059
\(569\) 3.59078 6.21941i 0.150533 0.260731i −0.780890 0.624668i \(-0.785234\pi\)
0.931424 + 0.363937i \(0.118568\pi\)
\(570\) 0.731926 + 1.26773i 0.0306570 + 0.0530995i
\(571\) −4.47094 7.74390i −0.187103 0.324072i 0.757180 0.653206i \(-0.226577\pi\)
−0.944283 + 0.329134i \(0.893243\pi\)
\(572\) −7.69492 + 13.3280i −0.321741 + 0.557272i
\(573\) −10.9047 −0.455550
\(574\) 0 0
\(575\) 5.43159 0.226513
\(576\) 8.79485 15.2331i 0.366452 0.634714i
\(577\) −6.38221 11.0543i −0.265695 0.460197i 0.702050 0.712127i \(-0.252268\pi\)
−0.967745 + 0.251930i \(0.918935\pi\)
\(578\) −4.64169 8.03964i −0.193069 0.334405i
\(579\) 30.4365 52.7176i 1.26490 2.19087i
\(580\) 15.3630 0.637913
\(581\) 0 0
\(582\) 9.96788 0.413182
\(583\) −4.92459 + 8.52964i −0.203956 + 0.353261i
\(584\) −1.19196 2.06454i −0.0493239 0.0854314i
\(585\) 4.88895 + 8.46792i 0.202133 + 0.350105i
\(586\) 3.68144 6.37644i 0.152079 0.263408i
\(587\) 24.2518 1.00098 0.500489 0.865743i \(-0.333153\pi\)
0.500489 + 0.865743i \(0.333153\pi\)
\(588\) 0 0
\(589\) 0.808361 0.0333079
\(590\) −1.73200 + 2.99991i −0.0713053 + 0.123504i
\(591\) 0.122065 + 0.211423i 0.00502109 + 0.00869678i
\(592\) −7.18237 12.4402i −0.295193 0.511290i
\(593\) 1.92547 3.33502i 0.0790698 0.136953i −0.823779 0.566911i \(-0.808138\pi\)
0.902849 + 0.429958i \(0.141472\pi\)
\(594\) 0.297733 0.0122161
\(595\) 0 0
\(596\) −16.7726 −0.687033
\(597\) −32.7481 + 56.7214i −1.34029 + 2.32145i
\(598\) 1.75355 + 3.03723i 0.0717078 + 0.124202i
\(599\) −18.6359 32.2782i −0.761440 1.31885i −0.942108 0.335309i \(-0.891159\pi\)
0.180668 0.983544i \(-0.442174\pi\)
\(600\) −1.01642 + 1.76048i −0.0414950 + 0.0718715i
\(601\) −2.99633 −0.122223 −0.0611114 0.998131i \(-0.519464\pi\)
−0.0611114 + 0.998131i \(0.519464\pi\)
\(602\) 0 0
\(603\) 40.7970 1.66138
\(604\) −11.5332 + 19.9762i −0.469281 + 0.812818i
\(605\) 13.9371 + 24.1397i 0.566622 + 0.981418i
\(606\) −0.635692 1.10105i −0.0258232 0.0447271i
\(607\) −12.6711 + 21.9471i −0.514306 + 0.890803i 0.485557 + 0.874205i \(0.338617\pi\)
−0.999862 + 0.0165982i \(0.994716\pi\)
\(608\) 3.30062 0.133858
\(609\) 0 0
\(610\) 6.85021 0.277357
\(611\) 4.39993 7.62089i 0.178002 0.308308i
\(612\) −19.5119 33.7956i −0.788723 1.36611i
\(613\) −5.61967 9.73356i −0.226976 0.393135i 0.729934 0.683518i \(-0.239551\pi\)
−0.956911 + 0.290383i \(0.906217\pi\)
\(614\) −0.928170 + 1.60764i −0.0374579 + 0.0648790i
\(615\) 42.7403 1.72346
\(616\) 0 0
\(617\) −16.1879 −0.651701 −0.325851 0.945421i \(-0.605651\pi\)
−0.325851 + 0.945421i \(0.605651\pi\)
\(618\) 5.98826 10.3720i 0.240883 0.417222i
\(619\) −7.32638 12.6897i −0.294472 0.510040i 0.680390 0.732850i \(-0.261810\pi\)
−0.974862 + 0.222810i \(0.928477\pi\)
\(620\) −1.59898 2.76952i −0.0642166 0.111226i
\(621\) −0.765284 + 1.32551i −0.0307098 + 0.0531909i
\(622\) −0.0861539 −0.00345446
\(623\) 0 0
\(624\) 13.8133 0.552974
\(625\) 10.3998 18.0129i 0.415991 0.720517i
\(626\) −2.96727 5.13947i −0.118596 0.205414i
\(627\) 6.01834 + 10.4241i 0.240349 + 0.416297i
\(628\) 4.09438 7.09168i 0.163384 0.282989i
\(629\) −28.7065 −1.14460
\(630\) 0 0
\(631\) −23.3309 −0.928790 −0.464395 0.885628i \(-0.653728\pi\)
−0.464395 + 0.885628i \(0.653728\pi\)
\(632\) −1.32312 + 2.29171i −0.0526309 + 0.0911594i
\(633\) −17.6747 30.6135i −0.702506 1.21678i
\(634\) 4.44567 + 7.70013i 0.176560 + 0.305811i
\(635\) −8.33874 + 14.4431i −0.330913 + 0.573158i
\(636\) 9.26933 0.367553
\(637\) 0 0
\(638\) −5.59980 −0.221698
\(639\) −9.50279 + 16.4593i −0.375925 + 0.651120i
\(640\) −8.63411 14.9547i −0.341293 0.591137i
\(641\) −7.59159 13.1490i −0.299850 0.519355i 0.676252 0.736671i \(-0.263603\pi\)
−0.976101 + 0.217316i \(0.930270\pi\)
\(642\) −3.19213 + 5.52893i −0.125983 + 0.218209i
\(643\) −31.7842 −1.25345 −0.626723 0.779242i \(-0.715604\pi\)
−0.626723 + 0.779242i \(0.715604\pi\)
\(644\) 0 0
\(645\) −36.7534 −1.44717
\(646\) 1.01834 1.76382i 0.0400661 0.0693965i
\(647\) 6.68836 + 11.5846i 0.262947 + 0.455437i 0.967024 0.254687i \(-0.0819724\pi\)
−0.704077 + 0.710124i \(0.748639\pi\)
\(648\) −5.27445 9.13561i −0.207200 0.358881i
\(649\) −14.2416 + 24.6671i −0.559030 + 0.968268i
\(650\) −0.346651 −0.0135968
\(651\) 0 0
\(652\) 17.2872 0.677020
\(653\) 13.6852 23.7035i 0.535544 0.927590i −0.463592 0.886049i \(-0.653440\pi\)
0.999137 0.0415416i \(-0.0132269\pi\)
\(654\) −2.48349 4.30154i −0.0971123 0.168203i
\(655\) 20.0715 + 34.7648i 0.784257 + 1.35837i
\(656\) 14.8782 25.7698i 0.580897 1.00614i
\(657\) −6.09206 −0.237674
\(658\) 0 0
\(659\) 47.6905 1.85776 0.928879 0.370383i \(-0.120774\pi\)
0.928879 + 0.370383i \(0.120774\pi\)
\(660\) 23.8092 41.2388i 0.926773 1.60522i
\(661\) −8.41086 14.5680i −0.327144 0.566631i 0.654800 0.755803i \(-0.272753\pi\)
−0.981944 + 0.189172i \(0.939420\pi\)
\(662\) 4.12013 + 7.13628i 0.160134 + 0.277360i
\(663\) 13.8023 23.9062i 0.536036 0.928441i
\(664\) −5.72366 −0.222121
\(665\) 0 0
\(666\) 3.48813 0.135162
\(667\) 14.3935 24.9303i 0.557320 0.965307i
\(668\) −20.3306 35.2136i −0.786614 1.36246i
\(669\) −2.80699 4.86185i −0.108525 0.187970i
\(670\) 4.21172 7.29492i 0.162713 0.281827i
\(671\) 56.3266 2.17446
\(672\) 0 0
\(673\) 14.1611 0.545870 0.272935 0.962032i \(-0.412006\pi\)
0.272935 + 0.962032i \(0.412006\pi\)
\(674\) −0.0142980 + 0.0247648i −0.000550737 + 0.000953905i
\(675\) −0.0756429 0.131017i −0.00291150 0.00504286i
\(676\) −9.92357 17.1881i −0.381676 0.661082i
\(677\) −2.52657 + 4.37615i −0.0971040 + 0.168189i −0.910485 0.413543i \(-0.864291\pi\)
0.813381 + 0.581732i \(0.197625\pi\)
\(678\) −0.185450 −0.00712218
\(679\) 0 0
\(680\) −16.4719 −0.631667
\(681\) 24.1413 41.8139i 0.925095 1.60231i
\(682\) 0.582829 + 1.00949i 0.0223177 + 0.0386553i
\(683\) −10.1679 17.6114i −0.389065 0.673881i 0.603259 0.797545i \(-0.293869\pi\)
−0.992324 + 0.123665i \(0.960535\pi\)
\(684\) 2.79137 4.83479i 0.106731 0.184863i
\(685\) 12.9759 0.495783
\(686\) 0 0
\(687\) −42.3845 −1.61707
\(688\) −12.7941 + 22.1601i −0.487772 + 0.844846i
\(689\) 1.61570 + 2.79847i 0.0615532 + 0.106613i
\(690\) −5.42573 9.39763i −0.206554 0.357762i
\(691\) −11.5570 + 20.0174i −0.439650 + 0.761496i −0.997662 0.0683367i \(-0.978231\pi\)
0.558012 + 0.829833i \(0.311564\pi\)
\(692\) −13.0240 −0.495100
\(693\) 0 0
\(694\) −0.312850 −0.0118756
\(695\) −18.7940 + 32.5522i −0.712898 + 1.23478i
\(696\) 5.38693 + 9.33044i 0.204191 + 0.353670i
\(697\) −29.7327 51.4985i −1.12621 1.95065i
\(698\) −1.15735 + 2.00460i −0.0438065 + 0.0758751i
\(699\) 21.6269 0.818005
\(700\) 0 0
\(701\) −50.1400 −1.89376 −0.946882 0.321583i \(-0.895785\pi\)
−0.946882 + 0.321583i \(0.895785\pi\)
\(702\) 0.0488414 0.0845957i 0.00184340 0.00319286i
\(703\) −2.05337 3.55655i −0.0774444 0.134138i
\(704\) −14.9314 25.8619i −0.562748 0.974707i
\(705\) −13.6140 + 23.5802i −0.512733 + 0.888080i
\(706\) −2.55182 −0.0960391
\(707\) 0 0
\(708\) 26.8062 1.00744
\(709\) 1.90369 3.29729i 0.0714947 0.123832i −0.828062 0.560637i \(-0.810556\pi\)
0.899557 + 0.436804i \(0.143890\pi\)
\(710\) 1.96206 + 3.39839i 0.0736349 + 0.127539i
\(711\) 3.38119 + 5.85640i 0.126805 + 0.219632i
\(712\) 3.81826 6.61343i 0.143095 0.247849i
\(713\) −5.99233 −0.224415
\(714\) 0 0
\(715\) 16.6004 0.620818
\(716\) 18.4541 31.9635i 0.689663 1.19453i
\(717\) 13.2834 + 23.0075i 0.496077 + 0.859230i
\(718\) −1.29448 2.24211i −0.0483097 0.0836748i
\(719\) −5.35088 + 9.26799i −0.199554 + 0.345638i −0.948384 0.317125i \(-0.897283\pi\)
0.748830 + 0.662762i \(0.230616\pi\)
\(720\) −21.0635 −0.784989
\(721\) 0 0
\(722\) 0.291367 0.0108436
\(723\) 6.30397 10.9188i 0.234447 0.406074i
\(724\) −19.6785 34.0841i −0.731344 1.26673i
\(725\) 1.42270 + 2.46419i 0.0528378 + 0.0915177i
\(726\) −4.78098 + 8.28089i −0.177439 + 0.307333i
\(727\) 22.1589 0.821829 0.410914 0.911674i \(-0.365210\pi\)
0.410914 + 0.911674i \(0.365210\pi\)
\(728\) 0 0
\(729\) −25.4509 −0.942625
\(730\) −0.628920 + 1.08932i −0.0232774 + 0.0403176i
\(731\) 25.5679 + 44.2848i 0.945661 + 1.63793i
\(732\) −26.5052 45.9084i −0.979662 1.69682i
\(733\) 18.6709 32.3390i 0.689627 1.19447i −0.282332 0.959317i \(-0.591108\pi\)
0.971959 0.235152i \(-0.0755587\pi\)
\(734\) 4.09791 0.151257
\(735\) 0 0
\(736\) −24.4673 −0.901877
\(737\) 34.6313 59.9832i 1.27566 2.20951i
\(738\) 3.61281 + 6.25758i 0.132989 + 0.230345i
\(739\) 8.02690 + 13.9030i 0.295274 + 0.511430i 0.975049 0.221991i \(-0.0712557\pi\)
−0.679774 + 0.733421i \(0.737922\pi\)
\(740\) −8.12337 + 14.0701i −0.298621 + 0.517227i
\(741\) 3.94909 0.145074
\(742\) 0 0
\(743\) 24.6993 0.906131 0.453065 0.891477i \(-0.350330\pi\)
0.453065 + 0.891477i \(0.350330\pi\)
\(744\) 1.12135 1.94223i 0.0411106 0.0712056i
\(745\) 9.04594 + 15.6680i 0.331418 + 0.574032i
\(746\) 5.36943 + 9.30012i 0.196589 + 0.340502i
\(747\) −7.31331 + 12.6670i −0.267580 + 0.463462i
\(748\) −66.2524 −2.42243
\(749\) 0 0
\(750\) 8.39185 0.306427
\(751\) −13.0960 + 22.6830i −0.477881 + 0.827714i −0.999679 0.0253551i \(-0.991928\pi\)
0.521797 + 0.853069i \(0.325262\pi\)
\(752\) 9.47827 + 16.4168i 0.345637 + 0.598661i
\(753\) 14.9176 + 25.8380i 0.543626 + 0.941589i
\(754\) −0.918614 + 1.59109i −0.0334540 + 0.0579439i
\(755\) 24.8808 0.905505
\(756\) 0 0
\(757\) 23.2718 0.845826 0.422913 0.906170i \(-0.361008\pi\)
0.422913 + 0.906170i \(0.361008\pi\)
\(758\) 2.51897 4.36299i 0.0914931 0.158471i
\(759\) −44.6136 77.2731i −1.61937 2.80483i
\(760\) −1.17823 2.04075i −0.0427388 0.0740258i
\(761\) 17.2717 29.9155i 0.626099 1.08443i −0.362229 0.932089i \(-0.617984\pi\)
0.988327 0.152346i \(-0.0486827\pi\)
\(762\) −5.72105 −0.207252
\(763\) 0 0
\(764\) 8.58668 0.310655
\(765\) −21.0467 + 36.4539i −0.760944 + 1.31799i
\(766\) 3.44140 + 5.96068i 0.124343 + 0.215368i
\(767\) 4.67248 + 8.09298i 0.168714 + 0.292221i
\(768\) −11.7134 + 20.2882i −0.422671 + 0.732088i
\(769\) −11.1106 −0.400659 −0.200329 0.979729i \(-0.564201\pi\)
−0.200329 + 0.979729i \(0.564201\pi\)
\(770\) 0 0
\(771\) 54.4157 1.95974
\(772\) −23.9666 + 41.5114i −0.862577 + 1.49403i
\(773\) 4.15207 + 7.19160i 0.149340 + 0.258664i 0.930984 0.365061i \(-0.118952\pi\)
−0.781644 + 0.623725i \(0.785619\pi\)
\(774\) −3.10674 5.38104i −0.111670 0.193417i
\(775\) 0.296150 0.512947i 0.0106380 0.0184256i
\(776\) −16.0459 −0.576015
\(777\) 0 0
\(778\) −0.820959 −0.0294328
\(779\) 4.25355 7.36736i 0.152399 0.263963i
\(780\) −7.81152 13.5300i −0.279697 0.484450i
\(781\) 16.1333 + 27.9436i 0.577294 + 0.999902i
\(782\) −7.54891 + 13.0751i −0.269948 + 0.467564i
\(783\) −0.801804 −0.0286542
\(784\) 0 0
\(785\) −8.83286 −0.315258
\(786\) −6.88533 + 11.9257i −0.245592 + 0.425377i
\(787\) −8.30955 14.3926i −0.296203 0.513039i 0.679061 0.734082i \(-0.262387\pi\)
−0.975264 + 0.221043i \(0.929054\pi\)
\(788\) −0.0961176 0.166481i −0.00342405 0.00593063i
\(789\) −11.0372 + 19.1169i −0.392934 + 0.680581i
\(790\) 1.39624 0.0496761
\(791\) 0 0
\(792\) 16.4575 0.584791
\(793\) 9.24004 16.0042i 0.328123 0.568326i
\(794\) −3.49658 6.05625i −0.124089 0.214928i
\(795\) −4.99921 8.65888i −0.177304 0.307099i
\(796\) 25.7868 44.6641i 0.913990 1.58308i
\(797\) −24.5479 −0.869532 −0.434766 0.900543i \(-0.643169\pi\)
−0.434766 + 0.900543i \(0.643169\pi\)
\(798\) 0 0
\(799\) 37.8828 1.34020
\(800\) 1.20921 2.09441i 0.0427521 0.0740487i
\(801\) −9.75745 16.9004i −0.344763 0.597146i
\(802\) −4.86204 8.42130i −0.171684 0.297366i
\(803\) −5.17137 + 8.95707i −0.182494 + 0.316088i
\(804\) −65.1850 −2.29890
\(805\) 0 0
\(806\) 0.382438 0.0134708
\(807\) 22.8859 39.6395i 0.805621 1.39538i
\(808\) 1.02331 + 1.77243i 0.0360001 + 0.0623539i
\(809\) 1.99514 + 3.45569i 0.0701455 + 0.121496i 0.898965 0.438021i \(-0.144320\pi\)
−0.828819 + 0.559516i \(0.810987\pi\)
\(810\) −2.78297 + 4.82025i −0.0977837 + 0.169366i
\(811\) −41.1357 −1.44447 −0.722235 0.691648i \(-0.756885\pi\)
−0.722235 + 0.691648i \(0.756885\pi\)
\(812\) 0 0
\(813\) −60.7574 −2.13085
\(814\) 2.96097 5.12854i 0.103782 0.179755i
\(815\) −9.32349 16.1488i −0.326588 0.565666i
\(816\) 29.7327 + 51.4985i 1.04085 + 1.80281i
\(817\) −3.65773 + 6.33537i −0.127968 + 0.221646i
\(818\) −8.27914 −0.289473
\(819\) 0 0
\(820\) −33.6550 −1.17528
\(821\) 1.21907 2.11149i 0.0425459 0.0736916i −0.843968 0.536393i \(-0.819786\pi\)
0.886514 + 0.462701i \(0.153120\pi\)
\(822\) 2.22563 + 3.85490i 0.0776276 + 0.134455i
\(823\) −17.9009 31.0052i −0.623985 1.08077i −0.988736 0.149669i \(-0.952179\pi\)
0.364751 0.931105i \(-0.381154\pi\)
\(824\) −9.63969 + 16.6964i −0.335814 + 0.581648i
\(825\) 8.81949 0.307055
\(826\) 0 0
\(827\) 3.66665 0.127502 0.0637510 0.997966i \(-0.479694\pi\)
0.0637510 + 0.997966i \(0.479694\pi\)
\(828\) −20.6922 + 35.8400i −0.719105 + 1.24553i
\(829\) 24.2953 + 42.0807i 0.843811 + 1.46152i 0.886649 + 0.462442i \(0.153027\pi\)
−0.0428380 + 0.999082i \(0.513640\pi\)
\(830\) 1.51000 + 2.61539i 0.0524127 + 0.0907815i
\(831\) −25.3839 + 43.9662i −0.880557 + 1.52517i
\(832\) −9.79762 −0.339671
\(833\) 0 0
\(834\) −12.8942 −0.446491
\(835\) −21.9297 + 37.9834i −0.758909 + 1.31447i
\(836\) −4.73902 8.20822i −0.163902 0.283887i
\(837\) 0.0834520 + 0.144543i 0.00288452 + 0.00499614i
\(838\) −0.867219 + 1.50207i −0.0299576 + 0.0518881i
\(839\) 9.11600 0.314719 0.157360 0.987541i \(-0.449702\pi\)
0.157360 + 0.987541i \(0.449702\pi\)
\(840\) 0 0
\(841\) −13.9196 −0.479985
\(842\) 0.430122 0.744992i 0.0148230 0.0256741i
\(843\) −35.6445 61.7381i −1.22766 2.12637i
\(844\) 13.9176 + 24.1059i 0.479063 + 0.829761i
\(845\) −10.7041 + 18.5401i −0.368233 + 0.637798i
\(846\) −4.60314 −0.158259
\(847\) 0 0
\(848\) −6.96104 −0.239043
\(849\) 0.688618 1.19272i 0.0236333 0.0409341i
\(850\) −0.746157 1.29238i −0.0255930 0.0443283i
\(851\) 15.2215 + 26.3645i 0.521788 + 0.903762i
\(852\) 15.1835 26.2985i 0.520177 0.900973i
\(853\) 1.01631 0.0347979 0.0173989 0.999849i \(-0.494461\pi\)
0.0173989 + 0.999849i \(0.494461\pi\)
\(854\) 0 0
\(855\) −6.02185 −0.205943
\(856\) 5.13857 8.90027i 0.175633 0.304205i
\(857\) −7.94256 13.7569i −0.271313 0.469928i 0.697885 0.716209i \(-0.254124\pi\)
−0.969198 + 0.246282i \(0.920791\pi\)
\(858\) 2.84730 + 4.93167i 0.0972052 + 0.168364i
\(859\) −2.86206 + 4.95723i −0.0976522 + 0.169139i −0.910712 0.413041i \(-0.864467\pi\)
0.813060 + 0.582180i \(0.197800\pi\)
\(860\) 28.9407 0.986871
\(861\) 0 0
\(862\) 2.90503 0.0989456
\(863\) −6.94749 + 12.0334i −0.236495 + 0.409622i −0.959706 0.281005i \(-0.909332\pi\)
0.723211 + 0.690627i \(0.242665\pi\)
\(864\) 0.340743 + 0.590184i 0.0115923 + 0.0200785i
\(865\) 7.02423 + 12.1663i 0.238831 + 0.413667i
\(866\) 2.78386 4.82179i 0.0945995 0.163851i
\(867\) 77.4902 2.63171
\(868\) 0 0
\(869\) 11.4808 0.389459
\(870\) 2.84233 4.92305i 0.0963639 0.166907i
\(871\) −11.3621 19.6798i −0.384991 0.666824i
\(872\) 3.99784 + 6.92446i 0.135384 + 0.234492i
\(873\) −20.5024 + 35.5113i −0.693903 + 1.20187i
\(874\) −2.15989 −0.0730593
\(875\) 0 0
\(876\) 9.73383 0.328876
\(877\) 20.0105 34.6592i 0.675707 1.17036i −0.300555 0.953765i \(-0.597172\pi\)
0.976262 0.216594i \(-0.0694948\pi\)
\(878\) −1.06448 1.84374i −0.0359245 0.0622230i
\(879\) 30.7297 + 53.2254i 1.03649 + 1.79525i
\(880\) −17.8801 + 30.9693i −0.602740 + 1.04398i
\(881\) −8.38440 −0.282478 −0.141239 0.989976i \(-0.545109\pi\)
−0.141239 + 0.989976i \(0.545109\pi\)
\(882\) 0 0
\(883\) −20.0109 −0.673421 −0.336711 0.941608i \(-0.609314\pi\)
−0.336711 + 0.941608i \(0.609314\pi\)
\(884\) −10.8683 + 18.8245i −0.365541 + 0.633135i
\(885\) −14.4574 25.0409i −0.485979 0.841740i
\(886\) 2.39851 + 4.15434i 0.0805795 + 0.139568i
\(887\) −14.5790 + 25.2516i −0.489516 + 0.847867i −0.999927 0.0120638i \(-0.996160\pi\)
0.510411 + 0.859931i \(0.329493\pi\)
\(888\) −11.3936 −0.382346
\(889\) 0 0
\(890\) −4.02929 −0.135062
\(891\) −22.8833 + 39.6351i −0.766620 + 1.32782i
\(892\) 2.21031 + 3.82836i 0.0740065 + 0.128183i
\(893\) 2.70975 + 4.69343i 0.0906783 + 0.157059i
\(894\) −3.10313 + 5.37477i −0.103784 + 0.179759i
\(895\) −39.8113 −1.33074
\(896\) 0 0
\(897\) −29.2744 −0.977444
\(898\) 1.41582 2.45228i 0.0472466 0.0818336i
\(899\) −1.56957 2.71858i −0.0523482 0.0906698i
\(900\) −2.04528 3.54254i −0.0681761 0.118085i
\(901\) −6.95549 + 12.0473i −0.231721 + 0.401352i
\(902\) 12.2672 0.408454
\(903\) 0 0
\(904\) 0.298531 0.00992900
\(905\) −21.2263 + 36.7650i −0.705586 + 1.22211i
\(906\) 4.26757 + 7.39164i 0.141780 + 0.245571i
\(907\) −25.3305 43.8737i −0.841086 1.45680i −0.888977 0.457951i \(-0.848583\pi\)
0.0478915 0.998853i \(-0.484750\pi\)
\(908\) −19.0095 + 32.9255i −0.630854 + 1.09267i
\(909\) 5.23010 0.173471
\(910\) 0 0
\(911\) −28.9746 −0.959970 −0.479985 0.877277i \(-0.659358\pi\)
−0.479985 + 0.877277i \(0.659358\pi\)
\(912\) −4.25355 + 7.36736i −0.140849 + 0.243958i
\(913\) 12.4161 + 21.5053i 0.410913 + 0.711722i
\(914\) 1.60275 + 2.77604i 0.0530142 + 0.0918233i
\(915\) −28.5900 + 49.5194i −0.945157 + 1.63706i
\(916\) 33.3748 1.10273
\(917\) 0 0
\(918\) 0.420518 0.0138792
\(919\) −25.0947 + 43.4653i −0.827797 + 1.43379i 0.0719655 + 0.997407i \(0.477073\pi\)
−0.899763 + 0.436380i \(0.856260\pi\)
\(920\) 8.73414 + 15.1280i 0.287956 + 0.498754i
\(921\) −7.74762 13.4193i −0.255293 0.442180i
\(922\) 4.17790 7.23634i 0.137592 0.238316i
\(923\) 10.5863 0.348451
\(924\) 0 0
\(925\) −3.00908 −0.0989381
\(926\) 4.92006 8.52179i 0.161683 0.280043i
\(927\) 24.6339 + 42.6672i 0.809084 + 1.40137i
\(928\) −6.40873 11.1003i −0.210377 0.364384i
\(929\) 16.9550 29.3670i 0.556277 0.963500i −0.441526 0.897248i \(-0.645563\pi\)
0.997803 0.0662515i \(-0.0211040\pi\)
\(930\) −1.18332 −0.0388026
\(931\) 0 0
\(932\) −17.0297 −0.557825
\(933\) 0.359572 0.622797i 0.0117719 0.0203895i
\(934\) 2.45444 + 4.25121i 0.0803116 + 0.139104i
\(935\) 35.7318 + 61.8892i 1.16855 + 2.02399i
\(936\) 2.69975 4.67611i 0.0882442 0.152843i
\(937\) 17.4372 0.569648 0.284824 0.958580i \(-0.408065\pi\)
0.284824 + 0.958580i \(0.408065\pi\)
\(938\) 0 0
\(939\) 49.5369 1.61657
\(940\) 10.7201 18.5677i 0.349650 0.605612i
\(941\) 0.299182 + 0.518199i 0.00975306 + 0.0168928i 0.870861 0.491530i \(-0.163562\pi\)
−0.861108 + 0.508423i \(0.830229\pi\)
\(942\) −1.51502 2.62409i −0.0493619 0.0854973i
\(943\) −31.5313 + 54.6138i −1.02680 + 1.77847i
\(944\) −20.1308 −0.655203
\(945\) 0 0
\(946\) −10.5489 −0.342974
\(947\) −16.6568 + 28.8505i −0.541274 + 0.937514i 0.457557 + 0.889180i \(0.348724\pi\)
−0.998831 + 0.0483337i \(0.984609\pi\)
\(948\) −5.40243 9.35729i −0.175463 0.303911i
\(949\) 1.69666 + 2.93871i 0.0550761 + 0.0953945i
\(950\) 0.106745 0.184887i 0.00346326 0.00599854i
\(951\) −74.2179 −2.40668
\(952\) 0 0
\(953\) 8.41792 0.272683 0.136342 0.990662i \(-0.456466\pi\)
0.136342 + 0.990662i \(0.456466\pi\)
\(954\) 0.845160 1.46386i 0.0273631 0.0473942i
\(955\) −4.63104 8.02119i −0.149857 0.259560i
\(956\) −10.4597 18.1168i −0.338291 0.585938i
\(957\) 23.3713 40.4803i 0.755488 1.30854i
\(958\) −6.71454 −0.216937
\(959\) 0 0
\(960\) 30.3153 0.978421
\(961\) 15.1733 26.2809i 0.489461 0.847771i
\(962\) −0.971458 1.68261i −0.0313211 0.0542497i
\(963\) −13.1315 22.7444i −0.423155 0.732927i
\(964\) −4.96393 + 8.59777i −0.159877 + 0.276916i
\(965\) 51.7034 1.66439
\(966\) 0 0
\(967\) −17.5459 −0.564237 −0.282118 0.959380i \(-0.591037\pi\)
−0.282118 + 0.959380i \(0.591037\pi\)
\(968\) 7.69624 13.3303i 0.247367 0.428452i
\(969\) 8.50030 + 14.7230i 0.273069 + 0.472970i
\(970\) 4.23319 + 7.33209i 0.135919 + 0.235419i
\(971\) −4.93633 + 8.54998i −0.158414 + 0.274382i −0.934297 0.356495i \(-0.883972\pi\)
0.775883 + 0.630877i \(0.217305\pi\)
\(972\) 41.8860 1.34349
\(973\) 0 0
\(974\) −6.39458 −0.204895
\(975\) 1.44678 2.50590i 0.0463342 0.0802532i
\(976\) 19.9048 + 34.4761i 0.637137 + 1.10355i
\(977\) 7.48203 + 12.9593i 0.239371 + 0.414603i 0.960534 0.278162i \(-0.0897253\pi\)
−0.721163 + 0.692766i \(0.756392\pi\)
\(978\) 3.19834 5.53968i 0.102272 0.177140i
\(979\) −33.1312 −1.05888
\(980\) 0 0
\(981\) 20.4327 0.652366
\(982\) −1.48427 + 2.57082i −0.0473648 + 0.0820383i
\(983\) −3.29055 5.69941i −0.104952 0.181783i 0.808766 0.588130i \(-0.200136\pi\)
−0.913719 + 0.406347i \(0.866802\pi\)
\(984\) −11.8009 20.4398i −0.376200 0.651597i
\(985\) −0.103678 + 0.179575i −0.00330345 + 0.00572175i
\(986\) −7.90916 −0.251879
\(987\) 0 0
\(988\) −3.10963 −0.0989305
\(989\) 27.1145 46.9637i 0.862191 1.49336i
\(990\) −4.34176 7.52015i −0.137990 0.239006i
\(991\) −7.56502 13.1030i −0.240311 0.416230i 0.720492 0.693463i \(-0.243916\pi\)
−0.960803 + 0.277233i \(0.910583\pi\)
\(992\) −1.33404 + 2.31063i −0.0423560 + 0.0733627i
\(993\) −68.7832 −2.18277
\(994\) 0 0
\(995\) −55.6303 −1.76360
\(996\) 11.6851 20.2392i 0.370258 0.641305i
\(997\) −14.2273 24.6423i −0.450582 0.780430i 0.547840 0.836583i \(-0.315450\pi\)
−0.998422 + 0.0561523i \(0.982117\pi\)
\(998\) −2.39358 4.14580i −0.0757675 0.131233i
\(999\) 0.423964 0.734328i 0.0134136 0.0232331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.f.o.324.2 8
7.2 even 3 931.2.a.l.1.3 4
7.3 odd 6 931.2.f.n.704.2 8
7.4 even 3 inner 931.2.f.o.704.2 8
7.5 odd 6 931.2.a.m.1.3 yes 4
7.6 odd 2 931.2.f.n.324.2 8
21.2 odd 6 8379.2.a.bv.1.2 4
21.5 even 6 8379.2.a.bu.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.3 4 7.2 even 3
931.2.a.m.1.3 yes 4 7.5 odd 6
931.2.f.n.324.2 8 7.6 odd 2
931.2.f.n.704.2 8 7.3 odd 6
931.2.f.o.324.2 8 1.1 even 1 trivial
931.2.f.o.704.2 8 7.4 even 3 inner
8379.2.a.bu.1.2 4 21.5 even 6
8379.2.a.bv.1.2 4 21.2 odd 6