Properties

Label 931.2.f.n.324.3
Level $931$
Weight $2$
Character 931.324
Analytic conductor $7.434$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(324,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.2672476416.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} - 4x^{5} + 24x^{4} - 10x^{3} + 9x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 324.3
Root \(0.375512 - 0.650406i\) of defining polynomial
Character \(\chi\) \(=\) 931.324
Dual form 931.2.f.n.704.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.375512 - 0.650406i) q^{2} +(-1.16576 - 2.01915i) q^{3} +(0.717981 + 1.24358i) q^{4} +(-2.13271 + 3.69397i) q^{5} -1.75102 q^{6} +2.58049 q^{8} +(-1.21798 + 2.10961i) q^{9} +(1.60172 + 2.77426i) q^{10} +(-2.04950 - 3.54983i) q^{11} +(1.67398 - 2.89943i) q^{12} -2.18699 q^{13} +9.94491 q^{15} +(-0.466957 + 0.808794i) q^{16} +(-0.295021 - 0.510992i) q^{17} +(0.914733 + 1.58436i) q^{18} +(0.500000 - 0.866025i) q^{19} -6.12500 q^{20} -3.07844 q^{22} +(2.18494 - 3.78442i) q^{23} +(-3.00823 - 5.21040i) q^{24} +(-6.59694 - 11.4262i) q^{25} +(-0.821240 + 1.42243i) q^{26} -1.31506 q^{27} -7.36442 q^{29} +(3.73444 - 6.46823i) q^{30} +(-2.25925 - 3.91314i) q^{31} +(2.93119 + 5.07697i) q^{32} +(-4.77843 + 8.27649i) q^{33} -0.443136 q^{34} -3.49795 q^{36} +(-4.47723 + 7.75479i) q^{37} +(-0.375512 - 0.650406i) q^{38} +(2.54950 + 4.41586i) q^{39} +(-5.50345 + 9.53226i) q^{40} -2.17744 q^{41} -8.69594 q^{43} +(2.94300 - 5.09743i) q^{44} +(-5.19521 - 8.99837i) q^{45} +(-1.64094 - 2.84219i) q^{46} +(5.91665 - 10.2479i) q^{47} +2.17744 q^{48} -9.90893 q^{50} +(-0.687846 + 1.19138i) q^{51} +(-1.57022 - 2.71969i) q^{52} +(-2.20498 - 3.81914i) q^{53} +(-0.493821 + 0.855324i) q^{54} +17.4840 q^{55} -2.33152 q^{57} +(-2.76543 + 4.78986i) q^{58} +(-5.35892 - 9.28193i) q^{59} +(7.14026 + 12.3673i) q^{60} +(1.21525 - 2.10488i) q^{61} -3.39350 q^{62} +2.53496 q^{64} +(4.66422 - 8.07866i) q^{65} +(3.58872 + 6.21584i) q^{66} +(2.82674 + 4.89606i) q^{67} +(0.423639 - 0.733765i) q^{68} -10.1884 q^{69} +8.32434 q^{71} +(-3.14299 + 5.44382i) q^{72} +(5.33974 + 9.24870i) q^{73} +(3.36251 + 5.82404i) q^{74} +(-15.3809 + 26.6405i) q^{75} +1.43596 q^{76} +3.82947 q^{78} +(-4.28188 + 7.41644i) q^{79} +(-1.99177 - 3.44985i) q^{80} +(5.18699 + 8.98412i) q^{81} +(-0.817653 + 1.41622i) q^{82} -4.25826 q^{83} +2.51678 q^{85} +(-3.26543 + 5.65589i) q^{86} +(8.58513 + 14.8699i) q^{87} +(-5.28871 - 9.16031i) q^{88} +(-1.89555 + 3.28319i) q^{89} -7.80346 q^{90} +6.27498 q^{92} +(-5.26748 + 9.12354i) q^{93} +(-4.44354 - 7.69644i) q^{94} +(2.13271 + 3.69397i) q^{95} +(6.83411 - 11.8370i) q^{96} +2.11026 q^{97} +9.98499 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 2 q^{4} - 8 q^{5} - 8 q^{6} + 12 q^{8} - 2 q^{9} - 10 q^{10} + 6 q^{11} - 6 q^{12} + 4 q^{13} + 8 q^{15} - 2 q^{16} - 8 q^{17} + 6 q^{18} + 4 q^{19} - 28 q^{22} + 8 q^{23} - 12 q^{24} - 20 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.375512 0.650406i 0.265527 0.459906i −0.702174 0.712005i \(-0.747787\pi\)
0.967702 + 0.252098i \(0.0811207\pi\)
\(3\) −1.16576 2.01915i −0.673050 1.16576i −0.977035 0.213080i \(-0.931650\pi\)
0.303984 0.952677i \(-0.401683\pi\)
\(4\) 0.717981 + 1.24358i 0.358991 + 0.621790i
\(5\) −2.13271 + 3.69397i −0.953779 + 1.65199i −0.216641 + 0.976251i \(0.569510\pi\)
−0.737138 + 0.675742i \(0.763823\pi\)
\(6\) −1.75102 −0.714853
\(7\) 0 0
\(8\) 2.58049 0.912341
\(9\) −1.21798 + 2.10961i −0.405994 + 0.703202i
\(10\) 1.60172 + 2.77426i 0.506508 + 0.877298i
\(11\) −2.04950 3.54983i −0.617946 1.07031i −0.989860 0.142047i \(-0.954632\pi\)
0.371913 0.928267i \(-0.378702\pi\)
\(12\) 1.67398 2.89943i 0.483238 0.836992i
\(13\) −2.18699 −0.606561 −0.303281 0.952901i \(-0.598082\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(14\) 0 0
\(15\) 9.94491 2.56777
\(16\) −0.466957 + 0.808794i −0.116739 + 0.202198i
\(17\) −0.295021 0.510992i −0.0715531 0.123934i 0.828029 0.560685i \(-0.189462\pi\)
−0.899582 + 0.436752i \(0.856129\pi\)
\(18\) 0.914733 + 1.58436i 0.215605 + 0.373438i
\(19\) 0.500000 0.866025i 0.114708 0.198680i
\(20\) −6.12500 −1.36959
\(21\) 0 0
\(22\) −3.07844 −0.656326
\(23\) 2.18494 3.78442i 0.455591 0.789107i −0.543131 0.839648i \(-0.682761\pi\)
0.998722 + 0.0505410i \(0.0160946\pi\)
\(24\) −3.00823 5.21040i −0.614052 1.06357i
\(25\) −6.59694 11.4262i −1.31939 2.28525i
\(26\) −0.821240 + 1.42243i −0.161058 + 0.278961i
\(27\) −1.31506 −0.253084
\(28\) 0 0
\(29\) −7.36442 −1.36754 −0.683769 0.729698i \(-0.739661\pi\)
−0.683769 + 0.729698i \(0.739661\pi\)
\(30\) 3.73444 6.46823i 0.681811 1.18093i
\(31\) −2.25925 3.91314i −0.405773 0.702820i 0.588638 0.808397i \(-0.299664\pi\)
−0.994411 + 0.105577i \(0.966331\pi\)
\(32\) 2.93119 + 5.07697i 0.518166 + 0.897489i
\(33\) −4.77843 + 8.27649i −0.831818 + 1.44075i
\(34\) −0.443136 −0.0759972
\(35\) 0 0
\(36\) −3.49795 −0.582992
\(37\) −4.47723 + 7.75479i −0.736052 + 1.27488i 0.218208 + 0.975902i \(0.429979\pi\)
−0.954260 + 0.298978i \(0.903354\pi\)
\(38\) −0.375512 0.650406i −0.0609161 0.105510i
\(39\) 2.54950 + 4.41586i 0.408246 + 0.707103i
\(40\) −5.50345 + 9.53226i −0.870172 + 1.50718i
\(41\) −2.17744 −0.340058 −0.170029 0.985439i \(-0.554386\pi\)
−0.170029 + 0.985439i \(0.554386\pi\)
\(42\) 0 0
\(43\) −8.69594 −1.32612 −0.663059 0.748567i \(-0.730742\pi\)
−0.663059 + 0.748567i \(0.730742\pi\)
\(44\) 2.94300 5.09743i 0.443674 0.768466i
\(45\) −5.19521 8.99837i −0.774457 1.34140i
\(46\) −1.64094 2.84219i −0.241944 0.419059i
\(47\) 5.91665 10.2479i 0.863032 1.49481i −0.00595694 0.999982i \(-0.501896\pi\)
0.868989 0.494832i \(-0.164771\pi\)
\(48\) 2.17744 0.314286
\(49\) 0 0
\(50\) −9.90893 −1.40133
\(51\) −0.687846 + 1.19138i −0.0963177 + 0.166827i
\(52\) −1.57022 2.71969i −0.217750 0.377154i
\(53\) −2.20498 3.81914i −0.302877 0.524599i 0.673909 0.738814i \(-0.264614\pi\)
−0.976786 + 0.214216i \(0.931281\pi\)
\(54\) −0.493821 + 0.855324i −0.0672006 + 0.116395i
\(55\) 17.4840 2.35754
\(56\) 0 0
\(57\) −2.33152 −0.308817
\(58\) −2.76543 + 4.78986i −0.363119 + 0.628940i
\(59\) −5.35892 9.28193i −0.697672 1.20840i −0.969271 0.245993i \(-0.920886\pi\)
0.271599 0.962410i \(-0.412448\pi\)
\(60\) 7.14026 + 12.3673i 0.921804 + 1.59661i
\(61\) 1.21525 2.10488i 0.155597 0.269502i −0.777679 0.628662i \(-0.783603\pi\)
0.933276 + 0.359159i \(0.116936\pi\)
\(62\) −3.39350 −0.430975
\(63\) 0 0
\(64\) 2.53496 0.316869
\(65\) 4.66422 8.07866i 0.578525 1.00204i
\(66\) 3.58872 + 6.21584i 0.441741 + 0.765117i
\(67\) 2.82674 + 4.89606i 0.345341 + 0.598148i 0.985416 0.170164i \(-0.0544299\pi\)
−0.640075 + 0.768313i \(0.721097\pi\)
\(68\) 0.423639 0.733765i 0.0513738 0.0889821i
\(69\) −10.1884 −1.22654
\(70\) 0 0
\(71\) 8.32434 0.987918 0.493959 0.869485i \(-0.335549\pi\)
0.493959 + 0.869485i \(0.335549\pi\)
\(72\) −3.14299 + 5.44382i −0.370405 + 0.641560i
\(73\) 5.33974 + 9.24870i 0.624970 + 1.08248i 0.988547 + 0.150915i \(0.0482219\pi\)
−0.363577 + 0.931564i \(0.618445\pi\)
\(74\) 3.36251 + 5.82404i 0.390884 + 0.677031i
\(75\) −15.3809 + 26.6405i −1.77603 + 3.07618i
\(76\) 1.43596 0.164716
\(77\) 0 0
\(78\) 3.82947 0.433602
\(79\) −4.28188 + 7.41644i −0.481750 + 0.834415i −0.999781 0.0209472i \(-0.993332\pi\)
0.518031 + 0.855362i \(0.326665\pi\)
\(80\) −1.99177 3.44985i −0.222687 0.385705i
\(81\) 5.18699 + 8.98412i 0.576332 + 0.998236i
\(82\) −0.817653 + 1.41622i −0.0902947 + 0.156395i
\(83\) −4.25826 −0.467404 −0.233702 0.972308i \(-0.575084\pi\)
−0.233702 + 0.972308i \(0.575084\pi\)
\(84\) 0 0
\(85\) 2.51678 0.272983
\(86\) −3.26543 + 5.65589i −0.352120 + 0.609890i
\(87\) 8.58513 + 14.8699i 0.920423 + 1.59422i
\(88\) −5.28871 9.16031i −0.563778 0.976492i
\(89\) −1.89555 + 3.28319i −0.200928 + 0.348018i −0.948828 0.315794i \(-0.897729\pi\)
0.747900 + 0.663812i \(0.231062\pi\)
\(90\) −7.80346 −0.822557
\(91\) 0 0
\(92\) 6.27498 0.654212
\(93\) −5.26748 + 9.12354i −0.546212 + 0.946067i
\(94\) −4.44354 7.69644i −0.458317 0.793828i
\(95\) 2.13271 + 3.69397i 0.218812 + 0.378993i
\(96\) 6.83411 11.8370i 0.697503 1.20811i
\(97\) 2.11026 0.214265 0.107132 0.994245i \(-0.465833\pi\)
0.107132 + 0.994245i \(0.465833\pi\)
\(98\) 0 0
\(99\) 9.98499 1.00353
\(100\) 9.47297 16.4077i 0.947297 1.64077i
\(101\) −7.53032 13.0429i −0.749294 1.29782i −0.948161 0.317789i \(-0.897059\pi\)
0.198867 0.980027i \(-0.436274\pi\)
\(102\) 0.516589 + 0.894759i 0.0511499 + 0.0885943i
\(103\) −2.44692 + 4.23818i −0.241102 + 0.417601i −0.961028 0.276450i \(-0.910842\pi\)
0.719927 + 0.694050i \(0.244175\pi\)
\(104\) −5.64350 −0.553391
\(105\) 0 0
\(106\) −3.31198 −0.321688
\(107\) −0.444325 + 0.769593i −0.0429545 + 0.0743994i −0.886703 0.462339i \(-0.847010\pi\)
0.843749 + 0.536738i \(0.180344\pi\)
\(108\) −0.944190 1.63538i −0.0908547 0.157365i
\(109\) 0.555675 + 0.962457i 0.0532240 + 0.0921867i 0.891410 0.453198i \(-0.149717\pi\)
−0.838186 + 0.545385i \(0.816384\pi\)
\(110\) 6.56544 11.3717i 0.625990 1.08425i
\(111\) 20.8775 1.98160
\(112\) 0 0
\(113\) −12.9161 −1.21504 −0.607522 0.794303i \(-0.707836\pi\)
−0.607522 + 0.794303i \(0.707836\pi\)
\(114\) −0.875512 + 1.51643i −0.0819992 + 0.142027i
\(115\) 9.31970 + 16.1422i 0.869067 + 1.50527i
\(116\) −5.28752 9.15825i −0.490934 0.850322i
\(117\) 2.66371 4.61368i 0.246260 0.426535i
\(118\) −8.04936 −0.741004
\(119\) 0 0
\(120\) 25.6628 2.34268
\(121\) −2.90087 + 5.02446i −0.263716 + 0.456769i
\(122\) −0.912685 1.58082i −0.0826306 0.143120i
\(123\) 2.53836 + 4.39657i 0.228876 + 0.396426i
\(124\) 3.24420 5.61912i 0.291338 0.504612i
\(125\) 34.9505 3.12606
\(126\) 0 0
\(127\) −3.11373 −0.276299 −0.138149 0.990411i \(-0.544115\pi\)
−0.138149 + 0.990411i \(0.544115\pi\)
\(128\) −4.91047 + 8.50518i −0.434028 + 0.751759i
\(129\) 10.1374 + 17.5584i 0.892544 + 1.54593i
\(130\) −3.50294 6.06727i −0.307228 0.532135i
\(131\) −1.85360 + 3.21054i −0.161950 + 0.280506i −0.935568 0.353147i \(-0.885112\pi\)
0.773618 + 0.633652i \(0.218445\pi\)
\(132\) −13.7233 −1.19446
\(133\) 0 0
\(134\) 4.24590 0.366790
\(135\) 2.80465 4.85780i 0.241386 0.418093i
\(136\) −0.761299 1.31861i −0.0652809 0.113070i
\(137\) −0.580491 1.00544i −0.0495947 0.0859005i 0.840162 0.542335i \(-0.182460\pi\)
−0.889757 + 0.456434i \(0.849126\pi\)
\(138\) −3.82588 + 6.62662i −0.325681 + 0.564095i
\(139\) −4.24633 −0.360169 −0.180084 0.983651i \(-0.557637\pi\)
−0.180084 + 0.983651i \(0.557637\pi\)
\(140\) 0 0
\(141\) −27.5895 −2.32346
\(142\) 3.12589 5.41420i 0.262319 0.454350i
\(143\) 4.48222 + 7.76344i 0.374822 + 0.649211i
\(144\) −1.13749 1.97019i −0.0947909 0.164183i
\(145\) 15.7062 27.2040i 1.30433 2.25917i
\(146\) 8.02055 0.663785
\(147\) 0 0
\(148\) −12.8583 −1.05694
\(149\) 11.9966 20.7787i 0.982799 1.70226i 0.331465 0.943468i \(-0.392457\pi\)
0.651335 0.758791i \(-0.274209\pi\)
\(150\) 11.5514 + 20.0076i 0.943169 + 1.63362i
\(151\) −4.25035 7.36181i −0.345888 0.599096i 0.639627 0.768686i \(-0.279089\pi\)
−0.985515 + 0.169590i \(0.945756\pi\)
\(152\) 1.29025 2.23477i 0.104653 0.181264i
\(153\) 1.43732 0.116201
\(154\) 0 0
\(155\) 19.2734 1.54807
\(156\) −3.66098 + 6.34101i −0.293113 + 0.507687i
\(157\) −2.21938 3.84409i −0.177126 0.306791i 0.763769 0.645490i \(-0.223347\pi\)
−0.940895 + 0.338698i \(0.890013\pi\)
\(158\) 3.21580 + 5.56993i 0.255835 + 0.443119i
\(159\) −5.14094 + 8.90437i −0.407703 + 0.706163i
\(160\) −25.0055 −1.97686
\(161\) 0 0
\(162\) 7.79110 0.612127
\(163\) 0.0734531 0.127225i 0.00575329 0.00996500i −0.863134 0.504974i \(-0.831502\pi\)
0.868888 + 0.495009i \(0.164835\pi\)
\(164\) −1.56336 2.70782i −0.122078 0.211445i
\(165\) −20.3821 35.3028i −1.58674 2.74832i
\(166\) −1.59903 + 2.76960i −0.124109 + 0.214962i
\(167\) 0.885641 0.0685329 0.0342665 0.999413i \(-0.489091\pi\)
0.0342665 + 0.999413i \(0.489091\pi\)
\(168\) 0 0
\(169\) −8.21709 −0.632084
\(170\) 0.945083 1.63693i 0.0724845 0.125547i
\(171\) 1.21798 + 2.10961i 0.0931414 + 0.161326i
\(172\) −6.24352 10.8141i −0.476064 0.824567i
\(173\) −12.1319 + 21.0131i −0.922371 + 1.59759i −0.126636 + 0.991949i \(0.540418\pi\)
−0.795735 + 0.605645i \(0.792915\pi\)
\(174\) 12.8953 0.977589
\(175\) 0 0
\(176\) 3.82811 0.288555
\(177\) −12.4944 + 21.6410i −0.939137 + 1.62663i
\(178\) 1.42361 + 2.46576i 0.106704 + 0.184816i
\(179\) 6.47332 + 11.2121i 0.483838 + 0.838033i 0.999828 0.0185624i \(-0.00590893\pi\)
−0.515989 + 0.856595i \(0.672576\pi\)
\(180\) 7.46013 12.9213i 0.556046 0.963099i
\(181\) 18.6034 1.38278 0.691391 0.722481i \(-0.256998\pi\)
0.691391 + 0.722481i \(0.256998\pi\)
\(182\) 0 0
\(183\) −5.66677 −0.418899
\(184\) 5.63821 9.76567i 0.415655 0.719935i
\(185\) −19.0973 33.0775i −1.40406 2.43191i
\(186\) 3.95600 + 6.85200i 0.290068 + 0.502413i
\(187\) −1.20929 + 2.09455i −0.0884320 + 0.153169i
\(188\) 16.9922 1.23928
\(189\) 0 0
\(190\) 3.20344 0.232402
\(191\) 11.6444 20.1687i 0.842559 1.45935i −0.0451659 0.998980i \(-0.514382\pi\)
0.887725 0.460375i \(-0.152285\pi\)
\(192\) −2.95514 5.11846i −0.213269 0.369393i
\(193\) −1.59422 2.76127i −0.114754 0.198760i 0.802927 0.596077i \(-0.203275\pi\)
−0.917681 + 0.397317i \(0.869941\pi\)
\(194\) 0.792429 1.37253i 0.0568931 0.0985417i
\(195\) −21.7494 −1.55751
\(196\) 0 0
\(197\) −8.25178 −0.587915 −0.293958 0.955818i \(-0.594972\pi\)
−0.293958 + 0.955818i \(0.594972\pi\)
\(198\) 3.74949 6.49430i 0.266464 0.461530i
\(199\) 9.80120 + 16.9762i 0.694789 + 1.20341i 0.970252 + 0.242098i \(0.0778354\pi\)
−0.275463 + 0.961312i \(0.588831\pi\)
\(200\) −17.0234 29.4853i −1.20373 2.08493i
\(201\) 6.59059 11.4152i 0.464864 0.805168i
\(202\) −11.3109 −0.795832
\(203\) 0 0
\(204\) −1.97544 −0.138309
\(205\) 4.64385 8.04338i 0.324340 0.561774i
\(206\) 1.83769 + 3.18298i 0.128038 + 0.221769i
\(207\) 5.32243 + 9.21872i 0.369934 + 0.640745i
\(208\) 1.02123 1.76882i 0.0708095 0.122646i
\(209\) −4.09899 −0.283533
\(210\) 0 0
\(211\) 9.49078 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(212\) 3.16627 5.48414i 0.217460 0.376652i
\(213\) −9.70416 16.8081i −0.664918 1.15167i
\(214\) 0.333699 + 0.577983i 0.0228112 + 0.0395101i
\(215\) 18.5460 32.1225i 1.26482 2.19074i
\(216\) −3.39350 −0.230899
\(217\) 0 0
\(218\) 0.834651 0.0565297
\(219\) 12.4497 21.5635i 0.841272 1.45713i
\(220\) 12.5532 + 21.7427i 0.846334 + 1.46589i
\(221\) 0.645207 + 1.11753i 0.0434013 + 0.0751733i
\(222\) 7.83974 13.5788i 0.526169 0.911351i
\(223\) −18.8829 −1.26449 −0.632247 0.774767i \(-0.717867\pi\)
−0.632247 + 0.774767i \(0.717867\pi\)
\(224\) 0 0
\(225\) 32.1398 2.14265
\(226\) −4.85015 + 8.40071i −0.322627 + 0.558807i
\(227\) 10.2703 + 17.7886i 0.681660 + 1.18067i 0.974474 + 0.224501i \(0.0720752\pi\)
−0.292813 + 0.956170i \(0.594591\pi\)
\(228\) −1.67398 2.89943i −0.110862 0.192019i
\(229\) 3.49250 6.04918i 0.230791 0.399741i −0.727250 0.686372i \(-0.759202\pi\)
0.958041 + 0.286631i \(0.0925354\pi\)
\(230\) 13.9986 0.923043
\(231\) 0 0
\(232\) −19.0038 −1.24766
\(233\) −9.76325 + 16.9104i −0.639612 + 1.10784i 0.345907 + 0.938269i \(0.387571\pi\)
−0.985518 + 0.169571i \(0.945762\pi\)
\(234\) −2.00051 3.46498i −0.130777 0.226513i
\(235\) 25.2370 + 43.7118i 1.64628 + 2.85145i
\(236\) 7.69521 13.3285i 0.500916 0.867612i
\(237\) 19.9666 1.29697
\(238\) 0 0
\(239\) −17.8056 −1.15175 −0.575873 0.817539i \(-0.695338\pi\)
−0.575873 + 0.817539i \(0.695338\pi\)
\(240\) −4.64385 + 8.04338i −0.299759 + 0.519198i
\(241\) 7.61340 + 13.1868i 0.490422 + 0.849436i 0.999939 0.0110245i \(-0.00350928\pi\)
−0.509517 + 0.860461i \(0.670176\pi\)
\(242\) 2.17862 + 3.77349i 0.140047 + 0.242569i
\(243\) 10.1209 17.5300i 0.649259 1.12455i
\(244\) 3.49012 0.223432
\(245\) 0 0
\(246\) 3.81274 0.243092
\(247\) −1.09349 + 1.89399i −0.0695773 + 0.120511i
\(248\) −5.82998 10.0978i −0.370204 0.641212i
\(249\) 4.96409 + 8.59806i 0.314587 + 0.544880i
\(250\) 13.1243 22.7320i 0.830055 1.43770i
\(251\) −6.70311 −0.423097 −0.211548 0.977368i \(-0.567851\pi\)
−0.211548 + 0.977368i \(0.567851\pi\)
\(252\) 0 0
\(253\) −17.9121 −1.12612
\(254\) −1.16924 + 2.02519i −0.0733648 + 0.127072i
\(255\) −2.93396 5.08177i −0.183732 0.318233i
\(256\) 6.22284 + 10.7783i 0.388927 + 0.673642i
\(257\) 4.12568 7.14588i 0.257353 0.445748i −0.708179 0.706033i \(-0.750483\pi\)
0.965532 + 0.260285i \(0.0838165\pi\)
\(258\) 15.2268 0.947979
\(259\) 0 0
\(260\) 13.3953 0.830741
\(261\) 8.96973 15.5360i 0.555212 0.961656i
\(262\) 1.39210 + 2.41119i 0.0860043 + 0.148964i
\(263\) 0.350152 + 0.606482i 0.0215913 + 0.0373973i 0.876619 0.481185i \(-0.159793\pi\)
−0.855028 + 0.518582i \(0.826460\pi\)
\(264\) −12.3307 + 21.3574i −0.758902 + 1.31446i
\(265\) 18.8104 1.15551
\(266\) 0 0
\(267\) 8.83902 0.540939
\(268\) −4.05909 + 7.03055i −0.247949 + 0.429459i
\(269\) 6.98260 + 12.0942i 0.425736 + 0.737397i 0.996489 0.0837251i \(-0.0266817\pi\)
−0.570752 + 0.821122i \(0.693348\pi\)
\(270\) −2.10636 3.64832i −0.128189 0.222030i
\(271\) −4.16285 + 7.21027i −0.252875 + 0.437993i −0.964316 0.264753i \(-0.914710\pi\)
0.711441 + 0.702746i \(0.248043\pi\)
\(272\) 0.551049 0.0334122
\(273\) 0 0
\(274\) −0.871925 −0.0526749
\(275\) −27.0408 + 46.8361i −1.63062 + 2.82432i
\(276\) −7.31511 12.6701i −0.440318 0.762653i
\(277\) 7.57504 + 13.1203i 0.455140 + 0.788325i 0.998696 0.0510473i \(-0.0162559\pi\)
−0.543556 + 0.839373i \(0.682923\pi\)
\(278\) −1.59455 + 2.76184i −0.0956346 + 0.165644i
\(279\) 11.0069 0.658966
\(280\) 0 0
\(281\) −10.2038 −0.608708 −0.304354 0.952559i \(-0.598441\pi\)
−0.304354 + 0.952559i \(0.598441\pi\)
\(282\) −10.3602 + 17.9444i −0.616940 + 1.06857i
\(283\) −3.14558 5.44831i −0.186985 0.323868i 0.757258 0.653115i \(-0.226538\pi\)
−0.944244 + 0.329247i \(0.893205\pi\)
\(284\) 5.97672 + 10.3520i 0.354653 + 0.614277i
\(285\) 4.97246 8.61255i 0.294543 0.510163i
\(286\) 6.73251 0.398102
\(287\) 0 0
\(288\) −14.2805 −0.841488
\(289\) 8.32593 14.4209i 0.489760 0.848290i
\(290\) −11.7957 20.4308i −0.692670 1.19974i
\(291\) −2.46005 4.26094i −0.144211 0.249781i
\(292\) −7.66767 + 13.2808i −0.448716 + 0.777200i
\(293\) 1.48286 0.0866294 0.0433147 0.999061i \(-0.486208\pi\)
0.0433147 + 0.999061i \(0.486208\pi\)
\(294\) 0 0
\(295\) 45.7162 2.66170
\(296\) −11.5535 + 20.0112i −0.671531 + 1.16313i
\(297\) 2.69521 + 4.66825i 0.156392 + 0.270879i
\(298\) −9.00973 15.6053i −0.521920 0.903991i
\(299\) −4.77843 + 8.27649i −0.276344 + 0.478642i
\(300\) −44.1727 −2.55031
\(301\) 0 0
\(302\) −6.38422 −0.367371
\(303\) −17.5570 + 30.4097i −1.00863 + 1.74699i
\(304\) 0.466957 + 0.808794i 0.0267818 + 0.0463875i
\(305\) 5.18358 + 8.97822i 0.296811 + 0.514092i
\(306\) 0.539731 0.934842i 0.0308544 0.0534414i
\(307\) −29.9624 −1.71004 −0.855022 0.518592i \(-0.826456\pi\)
−0.855022 + 0.518592i \(0.826456\pi\)
\(308\) 0 0
\(309\) 11.4100 0.649095
\(310\) 7.23738 12.5355i 0.411055 0.711969i
\(311\) −2.19057 3.79418i −0.124216 0.215148i 0.797210 0.603702i \(-0.206308\pi\)
−0.921426 + 0.388553i \(0.872975\pi\)
\(312\) 6.57895 + 11.3951i 0.372460 + 0.645119i
\(313\) −10.2268 + 17.7133i −0.578053 + 1.00122i 0.417650 + 0.908608i \(0.362854\pi\)
−0.995703 + 0.0926086i \(0.970479\pi\)
\(314\) −3.33362 −0.188127
\(315\) 0 0
\(316\) −12.2972 −0.691774
\(317\) 4.40824 7.63529i 0.247591 0.428841i −0.715266 0.698853i \(-0.753694\pi\)
0.962857 + 0.270012i \(0.0870276\pi\)
\(318\) 3.86097 + 6.68740i 0.216513 + 0.375011i
\(319\) 15.0934 + 26.1425i 0.845066 + 1.46370i
\(320\) −5.40634 + 9.36405i −0.302223 + 0.523466i
\(321\) 2.07190 0.115642
\(322\) 0 0
\(323\) −0.590042 −0.0328308
\(324\) −7.44832 + 12.9009i −0.413796 + 0.716715i
\(325\) 14.4274 + 24.9890i 0.800290 + 1.38614i
\(326\) −0.0551651 0.0955487i −0.00305531 0.00529195i
\(327\) 1.29556 2.24398i 0.0716449 0.124093i
\(328\) −5.61885 −0.310249
\(329\) 0 0
\(330\) −30.6148 −1.68529
\(331\) −6.02899 + 10.4425i −0.331383 + 0.573973i −0.982783 0.184762i \(-0.940849\pi\)
0.651400 + 0.758734i \(0.274182\pi\)
\(332\) −3.05735 5.29548i −0.167794 0.290627i
\(333\) −10.9064 18.8904i −0.597665 1.03519i
\(334\) 0.332569 0.576026i 0.0181974 0.0315187i
\(335\) −24.1145 −1.31752
\(336\) 0 0
\(337\) 27.5871 1.50277 0.751383 0.659866i \(-0.229387\pi\)
0.751383 + 0.659866i \(0.229387\pi\)
\(338\) −3.08562 + 5.34444i −0.167835 + 0.290699i
\(339\) 15.0570 + 26.0796i 0.817786 + 1.41645i
\(340\) 1.80700 + 3.12982i 0.0979985 + 0.169738i
\(341\) −9.26065 + 16.0399i −0.501493 + 0.868611i
\(342\) 1.82947 0.0989262
\(343\) 0 0
\(344\) −22.4398 −1.20987
\(345\) 21.7290 37.6358i 1.16985 2.02624i
\(346\) 9.11135 + 15.7813i 0.489829 + 0.848409i
\(347\) −0.495768 0.858695i −0.0266142 0.0460972i 0.852412 0.522871i \(-0.175139\pi\)
−0.879026 + 0.476774i \(0.841806\pi\)
\(348\) −12.3279 + 21.3526i −0.660846 + 1.14462i
\(349\) 31.6583 1.69463 0.847316 0.531090i \(-0.178217\pi\)
0.847316 + 0.531090i \(0.178217\pi\)
\(350\) 0 0
\(351\) 2.87602 0.153511
\(352\) 12.0149 20.8104i 0.640397 1.10920i
\(353\) −4.45191 7.71093i −0.236951 0.410411i 0.722887 0.690966i \(-0.242815\pi\)
−0.959838 + 0.280555i \(0.909481\pi\)
\(354\) 9.38360 + 16.2529i 0.498733 + 0.863831i
\(355\) −17.7534 + 30.7499i −0.942255 + 1.63203i
\(356\) −5.44389 −0.288525
\(357\) 0 0
\(358\) 9.72323 0.513889
\(359\) 10.8499 18.7925i 0.572635 0.991833i −0.423659 0.905822i \(-0.639255\pi\)
0.996294 0.0860111i \(-0.0274120\pi\)
\(360\) −13.4062 23.2202i −0.706569 1.22381i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) 6.98581 12.0998i 0.367166 0.635950i
\(363\) 13.5269 0.709976
\(364\) 0 0
\(365\) −45.5526 −2.38433
\(366\) −2.12794 + 3.68570i −0.111229 + 0.192655i
\(367\) −6.38859 11.0654i −0.333482 0.577608i 0.649710 0.760182i \(-0.274890\pi\)
−0.983192 + 0.182575i \(0.941557\pi\)
\(368\) 2.04055 + 3.53433i 0.106371 + 0.184240i
\(369\) 2.65208 4.59353i 0.138062 0.239130i
\(370\) −28.6851 −1.49127
\(371\) 0 0
\(372\) −15.1278 −0.784340
\(373\) 6.60912 11.4473i 0.342207 0.592721i −0.642635 0.766172i \(-0.722159\pi\)
0.984842 + 0.173452i \(0.0554921\pi\)
\(374\) 0.908206 + 1.57306i 0.0469622 + 0.0813409i
\(375\) −40.7438 70.5703i −2.10400 3.64423i
\(376\) 15.2679 26.4447i 0.787379 1.36378i
\(377\) 16.1059 0.829496
\(378\) 0 0
\(379\) −1.72767 −0.0887443 −0.0443722 0.999015i \(-0.514129\pi\)
−0.0443722 + 0.999015i \(0.514129\pi\)
\(380\) −3.06250 + 5.30440i −0.157103 + 0.272110i
\(381\) 3.62985 + 6.28709i 0.185963 + 0.322097i
\(382\) −8.74522 15.1472i −0.447444 0.774996i
\(383\) 2.42781 4.20510i 0.124056 0.214870i −0.797308 0.603573i \(-0.793743\pi\)
0.921363 + 0.388702i \(0.127077\pi\)
\(384\) 22.8977 1.16849
\(385\) 0 0
\(386\) −2.39459 −0.121881
\(387\) 10.5915 18.3450i 0.538396 0.932529i
\(388\) 1.51513 + 2.62428i 0.0769190 + 0.133228i
\(389\) −5.31493 9.20572i −0.269477 0.466749i 0.699250 0.714878i \(-0.253518\pi\)
−0.968727 + 0.248129i \(0.920184\pi\)
\(390\) −8.16716 + 14.1459i −0.413560 + 0.716307i
\(391\) −2.57841 −0.130396
\(392\) 0 0
\(393\) 8.64341 0.436002
\(394\) −3.09864 + 5.36701i −0.156107 + 0.270386i
\(395\) −18.2641 31.6343i −0.918965 1.59169i
\(396\) 7.16904 + 12.4171i 0.360258 + 0.623985i
\(397\) −6.37569 + 11.0430i −0.319987 + 0.554233i −0.980485 0.196594i \(-0.937012\pi\)
0.660498 + 0.750828i \(0.270345\pi\)
\(398\) 14.7219 0.737941
\(399\) 0 0
\(400\) 12.3220 0.616098
\(401\) −9.62568 + 16.6722i −0.480683 + 0.832568i −0.999754 0.0221631i \(-0.992945\pi\)
0.519071 + 0.854731i \(0.326278\pi\)
\(402\) −4.94969 8.57311i −0.246868 0.427588i
\(403\) 4.94095 + 8.55798i 0.246126 + 0.426303i
\(404\) 10.8133 18.7291i 0.537979 0.931808i
\(405\) −44.2495 −2.19877
\(406\) 0 0
\(407\) 36.7043 1.81936
\(408\) −1.77498 + 3.07436i −0.0878746 + 0.152203i
\(409\) −1.56990 2.71915i −0.0776266 0.134453i 0.824599 0.565718i \(-0.191401\pi\)
−0.902225 + 0.431265i \(0.858068\pi\)
\(410\) −3.48764 6.04077i −0.172242 0.298333i
\(411\) −1.35342 + 2.34420i −0.0667595 + 0.115631i
\(412\) −7.02736 −0.346213
\(413\) 0 0
\(414\) 7.99455 0.392910
\(415\) 9.08165 15.7299i 0.445800 0.772149i
\(416\) −6.41047 11.1033i −0.314299 0.544382i
\(417\) 4.95019 + 8.57398i 0.242412 + 0.419869i
\(418\) −1.53922 + 2.66601i −0.0752858 + 0.130399i
\(419\) 12.4881 0.610085 0.305043 0.952339i \(-0.401329\pi\)
0.305043 + 0.952339i \(0.401329\pi\)
\(420\) 0 0
\(421\) −14.5141 −0.707376 −0.353688 0.935364i \(-0.615072\pi\)
−0.353688 + 0.935364i \(0.615072\pi\)
\(422\) 3.56390 6.17286i 0.173488 0.300490i
\(423\) 14.4127 + 24.9636i 0.700771 + 1.21377i
\(424\) −5.68993 9.85524i −0.276327 0.478613i
\(425\) −3.89248 + 6.74197i −0.188813 + 0.327033i
\(426\) −14.5761 −0.706215
\(427\) 0 0
\(428\) −1.27607 −0.0616811
\(429\) 10.4504 18.1006i 0.504549 0.873904i
\(430\) −13.9285 24.1248i −0.671690 1.16340i
\(431\) −11.8336 20.4963i −0.570003 0.987274i −0.996565 0.0828154i \(-0.973609\pi\)
0.426562 0.904458i \(-0.359725\pi\)
\(432\) 0.614077 1.06361i 0.0295448 0.0511731i
\(433\) 4.61912 0.221981 0.110990 0.993821i \(-0.464598\pi\)
0.110990 + 0.993821i \(0.464598\pi\)
\(434\) 0 0
\(435\) −73.2385 −3.51152
\(436\) −0.797929 + 1.38205i −0.0382139 + 0.0661883i
\(437\) −2.18494 3.78442i −0.104520 0.181034i
\(438\) −9.35002 16.1947i −0.446761 0.773813i
\(439\) −9.48014 + 16.4201i −0.452462 + 0.783688i −0.998538 0.0540478i \(-0.982788\pi\)
0.546076 + 0.837736i \(0.316121\pi\)
\(440\) 45.1172 2.15088
\(441\) 0 0
\(442\) 0.969132 0.0460969
\(443\) 11.2344 19.4586i 0.533764 0.924507i −0.465458 0.885070i \(-0.654110\pi\)
0.999222 0.0394366i \(-0.0125563\pi\)
\(444\) 14.9896 + 25.9628i 0.711377 + 1.23214i
\(445\) −8.08535 14.0042i −0.383282 0.663864i
\(446\) −7.09077 + 12.2816i −0.335758 + 0.581549i
\(447\) −55.9405 −2.64589
\(448\) 0 0
\(449\) 15.7360 0.742629 0.371314 0.928507i \(-0.378907\pi\)
0.371314 + 0.928507i \(0.378907\pi\)
\(450\) 12.0689 20.9039i 0.568933 0.985421i
\(451\) 4.46265 + 7.72953i 0.210138 + 0.363969i
\(452\) −9.27352 16.0622i −0.436190 0.755503i
\(453\) −9.90974 + 17.1642i −0.465600 + 0.806444i
\(454\) 15.4264 0.723997
\(455\) 0 0
\(456\) −6.01645 −0.281746
\(457\) −11.4283 + 19.7944i −0.534594 + 0.925945i 0.464588 + 0.885527i \(0.346202\pi\)
−0.999183 + 0.0404180i \(0.987131\pi\)
\(458\) −2.62295 4.54308i −0.122562 0.212284i
\(459\) 0.387971 + 0.671985i 0.0181089 + 0.0313656i
\(460\) −13.3827 + 23.1796i −0.623974 + 1.08075i
\(461\) 26.0021 1.21104 0.605519 0.795831i \(-0.292965\pi\)
0.605519 + 0.795831i \(0.292965\pi\)
\(462\) 0 0
\(463\) 20.3481 0.945654 0.472827 0.881155i \(-0.343233\pi\)
0.472827 + 0.881155i \(0.343233\pi\)
\(464\) 3.43887 5.95630i 0.159646 0.276514i
\(465\) −22.4681 38.9158i −1.04193 1.80468i
\(466\) 7.33243 + 12.7001i 0.339668 + 0.588323i
\(467\) −7.56509 + 13.1031i −0.350071 + 0.606340i −0.986262 0.165192i \(-0.947176\pi\)
0.636191 + 0.771532i \(0.280509\pi\)
\(468\) 7.64997 0.353620
\(469\) 0 0
\(470\) 37.9073 1.74853
\(471\) −5.17453 + 8.96255i −0.238430 + 0.412972i
\(472\) −13.8287 23.9519i −0.636515 1.10248i
\(473\) 17.8223 + 30.8691i 0.819470 + 1.41936i
\(474\) 7.49768 12.9864i 0.344380 0.596483i
\(475\) −13.1939 −0.605377
\(476\) 0 0
\(477\) 10.7425 0.491865
\(478\) −6.68621 + 11.5808i −0.305820 + 0.529696i
\(479\) −13.9632 24.1850i −0.637997 1.10504i −0.985872 0.167502i \(-0.946430\pi\)
0.347875 0.937541i \(-0.386903\pi\)
\(480\) 29.1504 + 50.4900i 1.33053 + 2.30454i
\(481\) 9.79165 16.9596i 0.446461 0.773293i
\(482\) 11.4357 0.520881
\(483\) 0 0
\(484\) −8.33109 −0.378686
\(485\) −4.50059 + 7.79525i −0.204361 + 0.353964i
\(486\) −7.60107 13.1654i −0.344792 0.597197i
\(487\) −0.330326 0.572142i −0.0149685 0.0259262i 0.858444 0.512907i \(-0.171431\pi\)
−0.873413 + 0.486981i \(0.838098\pi\)
\(488\) 3.13595 5.43163i 0.141958 0.245878i
\(489\) −0.342514 −0.0154890
\(490\) 0 0
\(491\) −5.09463 −0.229917 −0.114959 0.993370i \(-0.536674\pi\)
−0.114959 + 0.993370i \(0.536674\pi\)
\(492\) −3.64499 + 6.31331i −0.164329 + 0.284626i
\(493\) 2.17266 + 3.76316i 0.0978517 + 0.169484i
\(494\) 0.821240 + 1.42243i 0.0369493 + 0.0639981i
\(495\) −21.2951 + 36.8843i −0.957146 + 1.65782i
\(496\) 4.21989 0.189479
\(497\) 0 0
\(498\) 7.45631 0.334125
\(499\) 6.39951 11.0843i 0.286482 0.496201i −0.686486 0.727143i \(-0.740848\pi\)
0.972967 + 0.230943i \(0.0741809\pi\)
\(500\) 25.0938 + 43.4637i 1.12223 + 1.94376i
\(501\) −1.03244 1.78824i −0.0461261 0.0798928i
\(502\) −2.51710 + 4.35974i −0.112344 + 0.194585i
\(503\) 32.1398 1.43304 0.716522 0.697565i \(-0.245733\pi\)
0.716522 + 0.697565i \(0.245733\pi\)
\(504\) 0 0
\(505\) 64.2401 2.85865
\(506\) −6.72621 + 11.6501i −0.299016 + 0.517912i
\(507\) 9.57913 + 16.5915i 0.425424 + 0.736856i
\(508\) −2.23560 3.87217i −0.0991887 0.171800i
\(509\) −18.2323 + 31.5792i −0.808130 + 1.39972i 0.106027 + 0.994363i \(0.466187\pi\)
−0.914157 + 0.405360i \(0.867146\pi\)
\(510\) −4.40695 −0.195143
\(511\) 0 0
\(512\) −10.2949 −0.454973
\(513\) −0.657531 + 1.13888i −0.0290307 + 0.0502826i
\(514\) −3.09848 5.36673i −0.136668 0.236716i
\(515\) −10.4372 18.0777i −0.459916 0.796598i
\(516\) −14.5569 + 25.2132i −0.640830 + 1.10995i
\(517\) −48.5046 −2.13323
\(518\) 0 0
\(519\) 56.5714 2.48321
\(520\) 12.0360 20.8469i 0.527812 0.914198i
\(521\) −17.7606 30.7623i −0.778107 1.34772i −0.933032 0.359794i \(-0.882847\pi\)
0.154925 0.987926i \(-0.450487\pi\)
\(522\) −6.73648 11.6679i −0.294848 0.510691i
\(523\) −7.08114 + 12.2649i −0.309636 + 0.536306i −0.978283 0.207274i \(-0.933541\pi\)
0.668646 + 0.743581i \(0.266874\pi\)
\(524\) −5.32341 −0.232554
\(525\) 0 0
\(526\) 0.525946 0.0229323
\(527\) −1.33305 + 2.30892i −0.0580687 + 0.100578i
\(528\) −4.46265 7.72953i −0.194212 0.336385i
\(529\) 1.95209 + 3.38111i 0.0848733 + 0.147005i
\(530\) 7.06352 12.2344i 0.306820 0.531427i
\(531\) 26.1083 1.13300
\(532\) 0 0
\(533\) 4.76202 0.206266
\(534\) 3.31916 5.74895i 0.143634 0.248781i
\(535\) −1.89524 3.28265i −0.0819382 0.141921i
\(536\) 7.29438 + 12.6342i 0.315069 + 0.545716i
\(537\) 15.0926 26.1412i 0.651295 1.12808i
\(538\) 10.4882 0.452178
\(539\) 0 0
\(540\) 8.05475 0.346621
\(541\) 8.37268 14.5019i 0.359970 0.623486i −0.627986 0.778225i \(-0.716120\pi\)
0.987955 + 0.154739i \(0.0494537\pi\)
\(542\) 3.12640 + 5.41509i 0.134290 + 0.232598i
\(543\) −21.6871 37.5631i −0.930682 1.61199i
\(544\) 1.72952 2.99562i 0.0741527 0.128436i
\(545\) −4.74039 −0.203056
\(546\) 0 0
\(547\) −41.3888 −1.76966 −0.884829 0.465917i \(-0.845725\pi\)
−0.884829 + 0.465917i \(0.845725\pi\)
\(548\) 0.833563 1.44377i 0.0356081 0.0616750i
\(549\) 2.96031 + 5.12741i 0.126343 + 0.218833i
\(550\) 20.3083 + 35.1750i 0.865950 + 1.49987i
\(551\) −3.68221 + 6.37778i −0.156867 + 0.271702i
\(552\) −26.2912 −1.11903
\(553\) 0 0
\(554\) 11.3781 0.483408
\(555\) −44.5257 + 77.1208i −1.89001 + 3.27359i
\(556\) −3.04878 5.28065i −0.129297 0.223949i
\(557\) −18.8375 32.6275i −0.798172 1.38247i −0.920806 0.390022i \(-0.872468\pi\)
0.122634 0.992452i \(-0.460866\pi\)
\(558\) 4.13322 7.15896i 0.174973 0.303063i
\(559\) 19.0179 0.804372
\(560\) 0 0
\(561\) 5.63895 0.238077
\(562\) −3.83165 + 6.63661i −0.161628 + 0.279949i
\(563\) 1.72907 + 2.99484i 0.0728717 + 0.126217i 0.900159 0.435562i \(-0.143450\pi\)
−0.827287 + 0.561779i \(0.810117\pi\)
\(564\) −19.8087 34.3098i −0.834099 1.44470i
\(565\) 27.5464 47.7117i 1.15888 2.00725i
\(566\) −4.72482 −0.198599
\(567\) 0 0
\(568\) 21.4809 0.901318
\(569\) −3.84602 + 6.66151i −0.161234 + 0.279265i −0.935311 0.353826i \(-0.884881\pi\)
0.774078 + 0.633091i \(0.218214\pi\)
\(570\) −3.73444 6.46823i −0.156418 0.270924i
\(571\) 0.208566 + 0.361246i 0.00872819 + 0.0151177i 0.870357 0.492422i \(-0.163888\pi\)
−0.861628 + 0.507540i \(0.830555\pi\)
\(572\) −6.43630 + 11.1480i −0.269115 + 0.466122i
\(573\) −54.2982 −2.26834
\(574\) 0 0
\(575\) −57.6557 −2.40441
\(576\) −3.08753 + 5.34776i −0.128647 + 0.222823i
\(577\) −11.6453 20.1702i −0.484798 0.839695i 0.515049 0.857161i \(-0.327774\pi\)
−0.999847 + 0.0174655i \(0.994440\pi\)
\(578\) −6.25297 10.8305i −0.260089 0.450488i
\(579\) −3.71694 + 6.43793i −0.154471 + 0.267551i
\(580\) 45.1071 1.87297
\(581\) 0 0
\(582\) −3.69512 −0.153168
\(583\) −9.03819 + 15.6546i −0.374324 + 0.648348i
\(584\) 13.7792 + 23.8662i 0.570186 + 0.987590i
\(585\) 11.3619 + 19.6793i 0.469755 + 0.813640i
\(586\) 0.556830 0.964458i 0.0230025 0.0398414i
\(587\) −30.5061 −1.25912 −0.629562 0.776951i \(-0.716766\pi\)
−0.629562 + 0.776951i \(0.716766\pi\)
\(588\) 0 0
\(589\) −4.51850 −0.186182
\(590\) 17.1670 29.7341i 0.706754 1.22413i
\(591\) 9.61958 + 16.6616i 0.395697 + 0.685366i
\(592\) −4.18135 7.24231i −0.171853 0.297657i
\(593\) 16.3431 28.3070i 0.671129 1.16243i −0.306455 0.951885i \(-0.599143\pi\)
0.977584 0.210544i \(-0.0675237\pi\)
\(594\) 4.04834 0.166105
\(595\) 0 0
\(596\) 34.4533 1.41126
\(597\) 22.8516 39.5802i 0.935256 1.61991i
\(598\) 3.58872 + 6.21584i 0.146754 + 0.254185i
\(599\) 10.1869 + 17.6442i 0.416225 + 0.720923i 0.995556 0.0941691i \(-0.0300194\pi\)
−0.579331 + 0.815092i \(0.696686\pi\)
\(600\) −39.6902 + 68.7455i −1.62035 + 2.80652i
\(601\) 12.3891 0.505363 0.252682 0.967549i \(-0.418687\pi\)
0.252682 + 0.967549i \(0.418687\pi\)
\(602\) 0 0
\(603\) −13.7717 −0.560826
\(604\) 6.10334 10.5713i 0.248341 0.430140i
\(605\) −12.3735 21.4315i −0.503053 0.871313i
\(606\) 13.1858 + 22.8384i 0.535635 + 0.927747i
\(607\) 16.6740 28.8802i 0.676776 1.17221i −0.299170 0.954200i \(-0.596710\pi\)
0.975946 0.218011i \(-0.0699568\pi\)
\(608\) 5.86237 0.237751
\(609\) 0 0
\(610\) 7.78599 0.315245
\(611\) −12.9396 + 22.4121i −0.523481 + 0.906696i
\(612\) 1.03197 + 1.78742i 0.0417149 + 0.0722523i
\(613\) 19.3992 + 33.6005i 0.783528 + 1.35711i 0.929874 + 0.367877i \(0.119915\pi\)
−0.146346 + 0.989233i \(0.546751\pi\)
\(614\) −11.2512 + 19.4877i −0.454063 + 0.786460i
\(615\) −21.6544 −0.873190
\(616\) 0 0
\(617\) 1.98936 0.0800887 0.0400443 0.999198i \(-0.487250\pi\)
0.0400443 + 0.999198i \(0.487250\pi\)
\(618\) 4.28461 7.42116i 0.172352 0.298523i
\(619\) −6.50072 11.2596i −0.261286 0.452561i 0.705298 0.708911i \(-0.250813\pi\)
−0.966584 + 0.256350i \(0.917480\pi\)
\(620\) 13.8379 + 23.9680i 0.555744 + 0.962576i
\(621\) −2.87333 + 4.97675i −0.115303 + 0.199710i
\(622\) −3.29035 −0.131931
\(623\) 0 0
\(624\) −4.76202 −0.190633
\(625\) −41.5546 + 71.9747i −1.66219 + 2.87899i
\(626\) 7.68057 + 13.3031i 0.306977 + 0.531700i
\(627\) 4.77843 + 8.27649i 0.190832 + 0.330531i
\(628\) 3.18695 5.51996i 0.127173 0.220271i
\(629\) 5.28351 0.210667
\(630\) 0 0
\(631\) −14.9918 −0.596814 −0.298407 0.954439i \(-0.596455\pi\)
−0.298407 + 0.954439i \(0.596455\pi\)
\(632\) −11.0494 + 19.1381i −0.439520 + 0.761271i
\(633\) −11.0639 19.1633i −0.439752 0.761674i
\(634\) −3.31069 5.73429i −0.131484 0.227738i
\(635\) 6.64069 11.5020i 0.263528 0.456444i
\(636\) −14.7644 −0.585447
\(637\) 0 0
\(638\) 22.6710 0.897552
\(639\) −10.1389 + 17.5611i −0.401088 + 0.694706i
\(640\) −20.9453 36.2782i −0.827934 1.43402i
\(641\) −12.0274 20.8320i −0.475053 0.822815i 0.524539 0.851386i \(-0.324238\pi\)
−0.999592 + 0.0285709i \(0.990904\pi\)
\(642\) 0.778024 1.34758i 0.0307061 0.0531846i
\(643\) −24.3676 −0.960964 −0.480482 0.877005i \(-0.659538\pi\)
−0.480482 + 0.877005i \(0.659538\pi\)
\(644\) 0 0
\(645\) −86.4803 −3.40516
\(646\) −0.221568 + 0.383767i −0.00871748 + 0.0150991i
\(647\) −19.1201 33.1170i −0.751688 1.30196i −0.947004 0.321222i \(-0.895907\pi\)
0.195316 0.980740i \(-0.437427\pi\)
\(648\) 13.3850 + 23.1835i 0.525811 + 0.910732i
\(649\) −21.9662 + 38.0466i −0.862248 + 1.49346i
\(650\) 21.6707 0.849995
\(651\) 0 0
\(652\) 0.210952 0.00826151
\(653\) −10.5812 + 18.3271i −0.414074 + 0.717197i −0.995331 0.0965234i \(-0.969228\pi\)
0.581257 + 0.813720i \(0.302561\pi\)
\(654\) −0.973000 1.68529i −0.0380473 0.0658999i
\(655\) −7.90642 13.6943i −0.308929 0.535081i
\(656\) 1.01677 1.76110i 0.0396982 0.0687593i
\(657\) −26.0148 −1.01493
\(658\) 0 0
\(659\) 24.6069 0.958548 0.479274 0.877665i \(-0.340900\pi\)
0.479274 + 0.877665i \(0.340900\pi\)
\(660\) 29.2679 50.6935i 1.13925 1.97324i
\(661\) −19.0976 33.0781i −0.742812 1.28659i −0.951210 0.308544i \(-0.900158\pi\)
0.208398 0.978044i \(-0.433175\pi\)
\(662\) 4.52792 + 7.84258i 0.175983 + 0.304811i
\(663\) 1.50431 2.60554i 0.0584226 0.101191i
\(664\) −10.9884 −0.426432
\(665\) 0 0
\(666\) −16.3819 −0.634786
\(667\) −16.0908 + 27.8701i −0.623039 + 1.07913i
\(668\) 0.635874 + 1.10137i 0.0246027 + 0.0426131i
\(669\) 22.0129 + 38.1275i 0.851068 + 1.47409i
\(670\) −9.05529 + 15.6842i −0.349836 + 0.605935i
\(671\) −9.96264 −0.384603
\(672\) 0 0
\(673\) −28.0333 −1.08060 −0.540302 0.841471i \(-0.681690\pi\)
−0.540302 + 0.841471i \(0.681690\pi\)
\(674\) 10.3593 17.9428i 0.399025 0.691132i
\(675\) 8.67539 + 15.0262i 0.333916 + 0.578359i
\(676\) −5.89972 10.2186i −0.226912 0.393023i
\(677\) −2.61817 + 4.53481i −0.100625 + 0.174287i −0.911942 0.410319i \(-0.865417\pi\)
0.811318 + 0.584606i \(0.198751\pi\)
\(678\) 22.6164 0.868578
\(679\) 0 0
\(680\) 6.49454 0.249054
\(681\) 23.9452 41.4744i 0.917584 1.58930i
\(682\) 6.95497 + 12.0464i 0.266320 + 0.461279i
\(683\) 0.625857 + 1.08402i 0.0239478 + 0.0414787i 0.877751 0.479117i \(-0.159043\pi\)
−0.853803 + 0.520596i \(0.825710\pi\)
\(684\) −1.74898 + 3.02932i −0.0668738 + 0.115829i
\(685\) 4.95209 0.189210
\(686\) 0 0
\(687\) −16.2856 −0.621335
\(688\) 4.06063 7.03322i 0.154810 0.268139i
\(689\) 4.82226 + 8.35240i 0.183713 + 0.318201i
\(690\) −16.3190 28.2654i −0.621255 1.07604i
\(691\) 25.4025 43.9984i 0.966357 1.67378i 0.260434 0.965492i \(-0.416135\pi\)
0.705924 0.708288i \(-0.250532\pi\)
\(692\) −34.8419 −1.32449
\(693\) 0 0
\(694\) −0.744668 −0.0282672
\(695\) 9.05620 15.6858i 0.343521 0.594997i
\(696\) 22.1539 + 38.3716i 0.839740 + 1.45447i
\(697\) 0.642389 + 1.11265i 0.0243322 + 0.0421447i
\(698\) 11.8881 20.5908i 0.449971 0.779372i
\(699\) 45.5263 1.72196
\(700\) 0 0
\(701\) 0.998799 0.0377241 0.0188621 0.999822i \(-0.493996\pi\)
0.0188621 + 0.999822i \(0.493996\pi\)
\(702\) 1.07998 1.87058i 0.0407613 0.0706006i
\(703\) 4.47723 + 7.75479i 0.168862 + 0.292478i
\(704\) −5.19538 8.99867i −0.195808 0.339150i
\(705\) 58.8405 101.915i 2.21606 3.83833i
\(706\) −6.68698 −0.251668
\(707\) 0 0
\(708\) −35.8830 −1.34857
\(709\) 6.98123 12.0918i 0.262185 0.454119i −0.704637 0.709568i \(-0.748890\pi\)
0.966822 + 0.255449i \(0.0822234\pi\)
\(710\) 13.3333 + 23.0939i 0.500389 + 0.866698i
\(711\) −10.4305 18.0662i −0.391175 0.677534i
\(712\) −4.89146 + 8.47225i −0.183315 + 0.317511i
\(713\) −19.7453 −0.739467
\(714\) 0 0
\(715\) −38.2372 −1.42999
\(716\) −9.29544 + 16.1002i −0.347387 + 0.601692i
\(717\) 20.7570 + 35.9521i 0.775184 + 1.34266i
\(718\) −8.14852 14.1137i −0.304100 0.526717i
\(719\) −9.28469 + 16.0816i −0.346260 + 0.599741i −0.985582 0.169199i \(-0.945882\pi\)
0.639321 + 0.768940i \(0.279215\pi\)
\(720\) 9.70377 0.361638
\(721\) 0 0
\(722\) −0.751024 −0.0279502
\(723\) 17.7508 30.7452i 0.660158 1.14343i
\(724\) 13.3569 + 23.1348i 0.496406 + 0.859800i
\(725\) 48.5827 + 84.1477i 1.80432 + 3.12517i
\(726\) 5.07950 8.79795i 0.188518 0.326522i
\(727\) −32.1991 −1.19420 −0.597099 0.802168i \(-0.703680\pi\)
−0.597099 + 0.802168i \(0.703680\pi\)
\(728\) 0 0
\(729\) −16.0724 −0.595272
\(730\) −17.1055 + 29.6277i −0.633105 + 1.09657i
\(731\) 2.56549 + 4.44355i 0.0948879 + 0.164351i
\(732\) −4.06863 7.04708i −0.150381 0.260468i
\(733\) −4.77812 + 8.27594i −0.176484 + 0.305679i −0.940674 0.339312i \(-0.889806\pi\)
0.764190 + 0.644991i \(0.223139\pi\)
\(734\) −9.59598 −0.354194
\(735\) 0 0
\(736\) 25.6179 0.944287
\(737\) 11.5868 20.0689i 0.426805 0.739247i
\(738\) −1.99177 3.44985i −0.0733182 0.126991i
\(739\) 10.1425 + 17.5673i 0.373097 + 0.646223i 0.990040 0.140785i \(-0.0449625\pi\)
−0.616943 + 0.787008i \(0.711629\pi\)
\(740\) 27.4230 47.4981i 1.00809 1.74606i
\(741\) 5.09899 0.187316
\(742\) 0 0
\(743\) 0.965374 0.0354161 0.0177081 0.999843i \(-0.494363\pi\)
0.0177081 + 0.999843i \(0.494363\pi\)
\(744\) −13.5927 + 23.5432i −0.498332 + 0.863136i
\(745\) 51.1706 + 88.6301i 1.87475 + 3.24716i
\(746\) −4.96361 8.59722i −0.181731 0.314767i
\(747\) 5.18648 8.98324i 0.189763 0.328680i
\(748\) −3.47299 −0.126985
\(749\) 0 0
\(750\) −61.1991 −2.23468
\(751\) 0.328889 0.569653i 0.0120013 0.0207869i −0.859962 0.510357i \(-0.829513\pi\)
0.871964 + 0.489571i \(0.162846\pi\)
\(752\) 5.52564 + 9.57069i 0.201499 + 0.349007i
\(753\) 7.81420 + 13.5346i 0.284765 + 0.493228i
\(754\) 6.04796 10.4754i 0.220254 0.381491i
\(755\) 36.2591 1.31960
\(756\) 0 0
\(757\) −1.47679 −0.0536749 −0.0268375 0.999640i \(-0.508544\pi\)
−0.0268375 + 0.999640i \(0.508544\pi\)
\(758\) −0.648760 + 1.12369i −0.0235640 + 0.0408141i
\(759\) 20.8812 + 36.1672i 0.757938 + 1.31279i
\(760\) 5.50345 + 9.53226i 0.199631 + 0.345771i
\(761\) −9.24235 + 16.0082i −0.335035 + 0.580297i −0.983492 0.180954i \(-0.942081\pi\)
0.648457 + 0.761252i \(0.275415\pi\)
\(762\) 5.45221 0.197513
\(763\) 0 0
\(764\) 33.4418 1.20988
\(765\) −3.06540 + 5.30942i −0.110830 + 0.191963i
\(766\) −1.82335 3.15813i −0.0658802 0.114108i
\(767\) 11.7199 + 20.2995i 0.423181 + 0.732971i
\(768\) 14.5086 25.1297i 0.523535 0.906790i
\(769\) −4.34052 −0.156523 −0.0782617 0.996933i \(-0.524937\pi\)
−0.0782617 + 0.996933i \(0.524937\pi\)
\(770\) 0 0
\(771\) −19.2382 −0.692845
\(772\) 2.28924 3.96507i 0.0823914 0.142706i
\(773\) −16.7757 29.0563i −0.603379 1.04508i −0.992305 0.123814i \(-0.960487\pi\)
0.388926 0.921269i \(-0.372846\pi\)
\(774\) −7.95446 13.7775i −0.285917 0.495223i
\(775\) −29.8083 + 51.6295i −1.07075 + 1.85459i
\(776\) 5.44551 0.195483
\(777\) 0 0
\(778\) −7.98328 −0.286214
\(779\) −1.08872 + 1.88571i −0.0390074 + 0.0675627i
\(780\) −15.6157 27.0471i −0.559130 0.968442i
\(781\) −17.0607 29.5500i −0.610480 1.05738i
\(782\) −0.968225 + 1.67701i −0.0346236 + 0.0599699i
\(783\) 9.68467 0.346102
\(784\) 0 0
\(785\) 18.9333 0.675757
\(786\) 3.24570 5.62173i 0.115770 0.200520i
\(787\) 21.0285 + 36.4225i 0.749587 + 1.29832i 0.948021 + 0.318208i \(0.103081\pi\)
−0.198435 + 0.980114i \(0.563586\pi\)
\(788\) −5.92463 10.2618i −0.211056 0.365560i
\(789\) 0.816386 1.41402i 0.0290641 0.0503405i
\(790\) −27.4335 −0.976041
\(791\) 0 0
\(792\) 25.7662 0.915562
\(793\) −2.65774 + 4.60335i −0.0943793 + 0.163470i
\(794\) 4.78830 + 8.29358i 0.169930 + 0.294328i
\(795\) −21.9283 37.9810i −0.777718 1.34705i
\(796\) −14.0742 + 24.3772i −0.498845 + 0.864025i
\(797\) 2.71101 0.0960289 0.0480145 0.998847i \(-0.484711\pi\)
0.0480145 + 0.998847i \(0.484711\pi\)
\(798\) 0 0
\(799\) −6.98214 −0.247010
\(800\) 38.6738 66.9849i 1.36732 2.36827i
\(801\) −4.61749 7.99774i −0.163151 0.282586i
\(802\) 7.22912 + 12.5212i 0.255269 + 0.442139i
\(803\) 21.8876 37.9104i 0.772395 1.33783i
\(804\) 18.9277 0.667528
\(805\) 0 0
\(806\) 7.42155 0.261413
\(807\) 16.2800 28.1978i 0.573084 0.992611i
\(808\) −19.4319 33.6571i −0.683612 1.18405i
\(809\) −6.65791 11.5318i −0.234079 0.405438i 0.724925 0.688828i \(-0.241874\pi\)
−0.959005 + 0.283390i \(0.908541\pi\)
\(810\) −16.6162 + 28.7801i −0.583834 + 1.01123i
\(811\) −15.1310 −0.531320 −0.265660 0.964067i \(-0.585590\pi\)
−0.265660 + 0.964067i \(0.585590\pi\)
\(812\) 0 0
\(813\) 19.4115 0.680791
\(814\) 13.7829 23.8727i 0.483091 0.836737i
\(815\) 0.313309 + 0.542667i 0.0109747 + 0.0190088i
\(816\) −0.642389 1.11265i −0.0224881 0.0389506i
\(817\) −4.34797 + 7.53090i −0.152116 + 0.263473i
\(818\) −2.35807 −0.0824478
\(819\) 0 0
\(820\) 13.3368 0.465741
\(821\) 12.1867 21.1080i 0.425319 0.736675i −0.571131 0.820859i \(-0.693495\pi\)
0.996450 + 0.0841843i \(0.0268285\pi\)
\(822\) 1.01645 + 1.76055i 0.0354529 + 0.0614062i
\(823\) −5.89383 10.2084i −0.205446 0.355843i 0.744829 0.667256i \(-0.232531\pi\)
−0.950275 + 0.311413i \(0.899198\pi\)
\(824\) −6.31425 + 10.9366i −0.219967 + 0.380994i
\(825\) 126.092 4.38997
\(826\) 0 0
\(827\) 17.5429 0.610028 0.305014 0.952348i \(-0.401339\pi\)
0.305014 + 0.952348i \(0.401339\pi\)
\(828\) −7.64281 + 13.2377i −0.265606 + 0.460043i
\(829\) −25.4864 44.1438i −0.885180 1.53318i −0.845508 0.533963i \(-0.820702\pi\)
−0.0396720 0.999213i \(-0.512631\pi\)
\(830\) −6.82054 11.8135i −0.236744 0.410053i
\(831\) 17.6613 30.5903i 0.612664 1.06117i
\(832\) −5.54391 −0.192201
\(833\) 0 0
\(834\) 7.43542 0.257468
\(835\) −1.88882 + 3.27153i −0.0653653 + 0.113216i
\(836\) −2.94300 5.09743i −0.101786 0.176298i
\(837\) 2.97105 + 5.14602i 0.102695 + 0.177872i
\(838\) 4.68944 8.12235i 0.161994 0.280582i
\(839\) −5.84311 −0.201727 −0.100863 0.994900i \(-0.532160\pi\)
−0.100863 + 0.994900i \(0.532160\pi\)
\(840\) 0 0
\(841\) 25.2347 0.870163
\(842\) −5.45023 + 9.44008i −0.187827 + 0.325327i
\(843\) 11.8952 + 20.6030i 0.409691 + 0.709606i
\(844\) 6.81420 + 11.8025i 0.234555 + 0.406260i
\(845\) 17.5247 30.3537i 0.602868 1.04420i
\(846\) 21.6486 0.744295
\(847\) 0 0
\(848\) 4.11852 0.141431
\(849\) −7.33397 + 12.7028i −0.251701 + 0.435959i
\(850\) 2.92334 + 5.06338i 0.100270 + 0.173672i
\(851\) 19.5650 + 33.8875i 0.670678 + 1.16165i
\(852\) 13.9348 24.1358i 0.477399 0.826879i
\(853\) −37.0096 −1.26719 −0.633593 0.773667i \(-0.718421\pi\)
−0.633593 + 0.773667i \(0.718421\pi\)
\(854\) 0 0
\(855\) −10.3904 −0.355345
\(856\) −1.14658 + 1.98593i −0.0391892 + 0.0678776i
\(857\) −20.0635 34.7509i −0.685355 1.18707i −0.973325 0.229430i \(-0.926314\pi\)
0.287970 0.957639i \(-0.407020\pi\)
\(858\) −7.84848 13.5940i −0.267943 0.464090i
\(859\) 7.21938 12.5043i 0.246322 0.426643i −0.716180 0.697915i \(-0.754111\pi\)
0.962503 + 0.271273i \(0.0874445\pi\)
\(860\) 53.2626 1.81624
\(861\) 0 0
\(862\) −17.7746 −0.605405
\(863\) −15.3092 + 26.5162i −0.521130 + 0.902623i 0.478568 + 0.878050i \(0.341156\pi\)
−0.999698 + 0.0245728i \(0.992177\pi\)
\(864\) −3.85469 6.67652i −0.131139 0.227140i
\(865\) −51.7478 89.6298i −1.75948 3.04750i
\(866\) 1.73454 3.00431i 0.0589420 0.102090i
\(867\) −38.8240 −1.31853
\(868\) 0 0
\(869\) 35.1028 1.19078
\(870\) −27.5020 + 47.6348i −0.932404 + 1.61497i
\(871\) −6.18204 10.7076i −0.209471 0.362814i
\(872\) 1.43391 + 2.48361i 0.0485585 + 0.0841057i
\(873\) −2.57026 + 4.45182i −0.0869901 + 0.150671i
\(874\) −3.28188 −0.111011
\(875\) 0 0
\(876\) 35.7546 1.20804
\(877\) 8.03427 13.9158i 0.271298 0.469902i −0.697897 0.716199i \(-0.745880\pi\)
0.969194 + 0.246297i \(0.0792138\pi\)
\(878\) 7.11981 + 12.3319i 0.240282 + 0.416181i
\(879\) −1.72865 2.99411i −0.0583059 0.100989i
\(880\) −8.16426 + 14.1409i −0.275217 + 0.476690i
\(881\) −40.2468 −1.35595 −0.677975 0.735085i \(-0.737142\pi\)
−0.677975 + 0.735085i \(0.737142\pi\)
\(882\) 0 0
\(883\) −0.564426 −0.0189944 −0.00949722 0.999955i \(-0.503023\pi\)
−0.00949722 + 0.999955i \(0.503023\pi\)
\(884\) −0.926494 + 1.60473i −0.0311614 + 0.0539730i
\(885\) −53.2940 92.3080i −1.79146 3.10290i
\(886\) −8.43733 14.6139i −0.283458 0.490963i
\(887\) 17.7918 30.8163i 0.597390 1.03471i −0.395814 0.918331i \(-0.629538\pi\)
0.993205 0.116380i \(-0.0371291\pi\)
\(888\) 53.8741 1.80790
\(889\) 0 0
\(890\) −12.1446 −0.407087
\(891\) 21.2614 36.8259i 0.712284 1.23371i
\(892\) −13.5576 23.4824i −0.453942 0.786250i
\(893\) −5.91665 10.2479i −0.197993 0.342934i
\(894\) −21.0063 + 36.3840i −0.702557 + 1.21686i
\(895\) −55.2229 −1.84590
\(896\) 0 0
\(897\) 22.2820 0.743973
\(898\) 5.90906 10.2348i 0.197188 0.341540i
\(899\) 16.6381 + 28.8180i 0.554911 + 0.961134i
\(900\) 23.0758 + 39.9684i 0.769193 + 1.33228i
\(901\) −1.30103 + 2.25345i −0.0433436 + 0.0750733i
\(902\) 6.70311 0.223189
\(903\) 0 0
\(904\) −33.3299 −1.10854
\(905\) −39.6758 + 68.7205i −1.31887 + 2.28435i
\(906\) 7.44246 + 12.8907i 0.247259 + 0.428265i
\(907\) −15.1841 26.2996i −0.504179 0.873264i −0.999988 0.00483233i \(-0.998462\pi\)
0.495809 0.868431i \(-0.334872\pi\)
\(908\) −14.7477 + 25.5438i −0.489419 + 0.847699i
\(909\) 36.6871 1.21684
\(910\) 0 0
\(911\) 17.9947 0.596191 0.298096 0.954536i \(-0.403649\pi\)
0.298096 + 0.954536i \(0.403649\pi\)
\(912\) 1.08872 1.88571i 0.0360510 0.0624422i
\(913\) 8.72728 + 15.1161i 0.288831 + 0.500270i
\(914\) 8.58295 + 14.8661i 0.283899 + 0.491727i
\(915\) 12.0856 20.9329i 0.399537 0.692019i
\(916\) 10.0302 0.331407
\(917\) 0 0
\(918\) 0.582751 0.0192336
\(919\) −20.9784 + 36.3357i −0.692014 + 1.19860i 0.279163 + 0.960244i \(0.409943\pi\)
−0.971177 + 0.238360i \(0.923390\pi\)
\(920\) 24.0494 + 41.6548i 0.792885 + 1.37332i
\(921\) 34.9289 + 60.4986i 1.15095 + 1.99350i
\(922\) 9.76411 16.9119i 0.321564 0.556965i
\(923\) −18.2052 −0.599232
\(924\) 0 0
\(925\) 118.144 3.88456
\(926\) 7.64094 13.2345i 0.251097 0.434913i
\(927\) −5.96060 10.3241i −0.195772 0.339087i
\(928\) −21.5865 37.3889i −0.708612 1.22735i
\(929\) 9.55726 16.5537i 0.313563 0.543108i −0.665568 0.746338i \(-0.731810\pi\)
0.979131 + 0.203230i \(0.0651438\pi\)
\(930\) −33.7481 −1.10664
\(931\) 0 0
\(932\) −28.0393 −0.918458
\(933\) −5.10736 + 8.84620i −0.167207 + 0.289612i
\(934\) 5.68157 + 9.84076i 0.185907 + 0.322000i
\(935\) −5.15814 8.93416i −0.168689 0.292178i
\(936\) 6.87368 11.9056i 0.224673 0.389145i
\(937\) 44.3779 1.44976 0.724881 0.688874i \(-0.241895\pi\)
0.724881 + 0.688874i \(0.241895\pi\)
\(938\) 0 0
\(939\) 47.6879 1.55623
\(940\) −36.2394 + 62.7686i −1.18200 + 2.04728i
\(941\) 18.8086 + 32.5774i 0.613142 + 1.06199i 0.990707 + 0.136010i \(0.0434280\pi\)
−0.377565 + 0.925983i \(0.623239\pi\)
\(942\) 3.88620 + 6.73109i 0.126619 + 0.219311i
\(943\) −4.75756 + 8.24034i −0.154928 + 0.268342i
\(944\) 10.0096 0.325783
\(945\) 0 0
\(946\) 26.7699 0.870366
\(947\) −14.5848 + 25.2616i −0.473942 + 0.820891i −0.999555 0.0298325i \(-0.990503\pi\)
0.525613 + 0.850724i \(0.323836\pi\)
\(948\) 14.3356 + 24.8300i 0.465599 + 0.806441i
\(949\) −11.6779 20.2268i −0.379082 0.656590i
\(950\) −4.95446 + 8.58138i −0.160744 + 0.278417i
\(951\) −20.5558 −0.666566
\(952\) 0 0
\(953\) 25.0234 0.810586 0.405293 0.914187i \(-0.367170\pi\)
0.405293 + 0.914187i \(0.367170\pi\)
\(954\) 4.03394 6.98698i 0.130603 0.226212i
\(955\) 49.6683 + 86.0281i 1.60723 + 2.78380i
\(956\) −12.7841 22.1427i −0.413466 0.716145i
\(957\) 35.1904 60.9515i 1.13754 1.97028i
\(958\) −20.9735 −0.677622
\(959\) 0 0
\(960\) 25.2099 0.813647
\(961\) 5.29157 9.16527i 0.170696 0.295654i
\(962\) −7.35376 12.7371i −0.237095 0.410660i
\(963\) −1.08236 1.87470i −0.0348785 0.0604114i
\(964\) −10.9326 + 18.9357i −0.352114 + 0.609879i
\(965\) 13.6000 0.437801
\(966\) 0 0
\(967\) −28.8469 −0.927655 −0.463828 0.885926i \(-0.653524\pi\)
−0.463828 + 0.885926i \(0.653524\pi\)
\(968\) −7.48567 + 12.9656i −0.240599 + 0.416729i
\(969\) 0.687846 + 1.19138i 0.0220968 + 0.0382728i
\(970\) 3.38005 + 5.85442i 0.108527 + 0.187974i
\(971\) −1.59964 + 2.77065i −0.0513348 + 0.0889145i −0.890551 0.454883i \(-0.849681\pi\)
0.839216 + 0.543798i \(0.183014\pi\)
\(972\) 29.0666 0.932312
\(973\) 0 0
\(974\) −0.496166 −0.0158982
\(975\) 33.6378 58.2623i 1.07727 1.86589i
\(976\) 1.13494 + 1.96578i 0.0363286 + 0.0629231i
\(977\) 27.2484 + 47.1957i 0.871755 + 1.50992i 0.860180 + 0.509990i \(0.170351\pi\)
0.0115745 + 0.999933i \(0.496316\pi\)
\(978\) −0.128618 + 0.222773i −0.00411276 + 0.00712350i
\(979\) 15.5397 0.496651
\(980\) 0 0
\(981\) −2.70721 −0.0864345
\(982\) −1.91309 + 3.31358i −0.0610493 + 0.105740i
\(983\) 2.72880 + 4.72642i 0.0870352 + 0.150749i 0.906257 0.422728i \(-0.138927\pi\)
−0.819221 + 0.573477i \(0.805594\pi\)
\(984\) 6.55022 + 11.3453i 0.208813 + 0.361675i
\(985\) 17.5987 30.4818i 0.560741 0.971232i
\(986\) 3.26344 0.103929
\(987\) 0 0
\(988\) −3.14043 −0.0999104
\(989\) −19.0001 + 32.9091i −0.604168 + 1.04645i
\(990\) 15.9932 + 27.7010i 0.508296 + 0.880395i
\(991\) −17.1455 29.6970i −0.544646 0.943355i −0.998629 0.0523446i \(-0.983331\pi\)
0.453983 0.891010i \(-0.350003\pi\)
\(992\) 13.2446 22.9403i 0.420516 0.728355i
\(993\) 28.1134 0.892151
\(994\) 0 0
\(995\) −83.6127 −2.65070
\(996\) −7.12825 + 12.3465i −0.225867 + 0.391214i
\(997\) −11.6069 20.1037i −0.367594 0.636691i 0.621595 0.783339i \(-0.286485\pi\)
−0.989189 + 0.146648i \(0.953152\pi\)
\(998\) −4.80619 8.32456i −0.152137 0.263509i
\(999\) 5.88784 10.1980i 0.186283 0.322651i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.f.n.324.3 8
7.2 even 3 931.2.a.m.1.2 yes 4
7.3 odd 6 931.2.f.o.704.3 8
7.4 even 3 inner 931.2.f.n.704.3 8
7.5 odd 6 931.2.a.l.1.2 4
7.6 odd 2 931.2.f.o.324.3 8
21.2 odd 6 8379.2.a.bu.1.3 4
21.5 even 6 8379.2.a.bv.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.2 4 7.5 odd 6
931.2.a.m.1.2 yes 4 7.2 even 3
931.2.f.n.324.3 8 1.1 even 1 trivial
931.2.f.n.704.3 8 7.4 even 3 inner
931.2.f.o.324.3 8 7.6 odd 2
931.2.f.o.704.3 8 7.3 odd 6
8379.2.a.bu.1.3 4 21.2 odd 6
8379.2.a.bv.1.3 4 21.5 even 6