Properties

Label 931.2.a.n
Level $931$
Weight $2$
Character orbit 931.a
Self dual yes
Analytic conductor $7.434$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Defining polynomial: \(x^{7} - 3 x^{6} - 6 x^{5} + 18 x^{4} + 4 x^{3} - 12 x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} -\beta_{2} q^{3} + ( 1 + \beta_{3} - \beta_{5} ) q^{4} + \beta_{6} q^{5} + ( -\beta_{1} - \beta_{3} + \beta_{4} - \beta_{6} ) q^{6} + ( 1 + \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{5} ) q^{8} + ( 2 - \beta_{4} - \beta_{5} + \beta_{6} ) q^{9} +O(q^{10})\) \( q + \beta_{3} q^{2} -\beta_{2} q^{3} + ( 1 + \beta_{3} - \beta_{5} ) q^{4} + \beta_{6} q^{5} + ( -\beta_{1} - \beta_{3} + \beta_{4} - \beta_{6} ) q^{6} + ( 1 + \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{5} ) q^{8} + ( 2 - \beta_{4} - \beta_{5} + \beta_{6} ) q^{9} + ( \beta_{1} + \beta_{2} - \beta_{3} + \beta_{6} ) q^{10} + ( 1 - \beta_{1} - \beta_{6} ) q^{11} + ( -3 - \beta_{1} - 2 \beta_{2} + \beta_{3} + \beta_{5} - 2 \beta_{6} ) q^{12} + ( 1 - \beta_{2} + \beta_{3} - \beta_{5} + \beta_{6} ) q^{13} + ( 1 - \beta_{1} - \beta_{3} + \beta_{5} ) q^{15} + ( 3 + 2 \beta_{3} + \beta_{4} - \beta_{5} ) q^{16} + ( 3 + \beta_{6} ) q^{17} + ( -3 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + \beta_{5} + \beta_{6} ) q^{18} + q^{19} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - \beta_{3} - \beta_{4} + \beta_{6} ) q^{20} + ( -1 - \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{5} - 2 \beta_{6} ) q^{22} + ( \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{23} + ( 4 - 3 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 3 \beta_{6} ) q^{24} + ( \beta_{4} + \beta_{5} ) q^{25} + ( 1 + \beta_{1} + 2 \beta_{3} + \beta_{4} - \beta_{5} ) q^{26} + ( -2 - 2 \beta_{2} - 2 \beta_{4} ) q^{27} + ( 4 - \beta_{1} + \beta_{6} ) q^{29} + ( -2 - \beta_{1} - 2 \beta_{3} + 2 \beta_{5} - \beta_{6} ) q^{30} + ( \beta_{2} + 2 \beta_{5} ) q^{31} + ( 3 - \beta_{1} - \beta_{2} + 4 \beta_{3} - \beta_{5} ) q^{32} + ( -3 + 2 \beta_{1} - \beta_{2} + 3 \beta_{3} - \beta_{5} + \beta_{6} ) q^{33} + ( \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{6} ) q^{34} + ( 6 + 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{5} + 3 \beta_{6} ) q^{36} + ( \beta_{1} - 2 \beta_{4} - \beta_{6} ) q^{37} + \beta_{3} q^{38} + ( 3 - 2 \beta_{1} - 2 \beta_{2} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{39} + ( -2 + \beta_{1} + 3 \beta_{2} - \beta_{3} - 2 \beta_{4} + 3 \beta_{6} ) q^{40} -2 \beta_{3} q^{41} + ( \beta_{1} + 2 \beta_{2} + 2 \beta_{5} ) q^{43} + ( 5 - 3 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} - 3 \beta_{6} ) q^{44} + ( 1 + 2 \beta_{1} + \beta_{3} - \beta_{5} ) q^{45} + ( -2 + \beta_{1} - \beta_{3} - 2 \beta_{4} + 3 \beta_{6} ) q^{46} + ( -\beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{47} + ( -3 - 3 \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} + 3 \beta_{5} - 4 \beta_{6} ) q^{48} + ( 3 - \beta_{1} - \beta_{2} - \beta_{3} - \beta_{5} ) q^{50} + ( 1 - \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{5} ) q^{51} + ( 4 + \beta_{1} + 4 \beta_{3} - 2 \beta_{5} - \beta_{6} ) q^{52} + ( 3 + 2 \beta_{1} - \beta_{2} - \beta_{3} - \beta_{5} + \beta_{6} ) q^{53} + ( -2 - 2 \beta_{1} + 4 \beta_{2} - 6 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} ) q^{54} + ( -4 + \beta_{1} - 2 \beta_{3} ) q^{55} -\beta_{2} q^{57} + ( -1 + \beta_{1} + 3 \beta_{3} + \beta_{5} ) q^{58} + ( -3 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} - 2 \beta_{6} ) q^{59} + ( -5 - \beta_{1} - 5 \beta_{3} + \beta_{5} - 2 \beta_{6} ) q^{60} + ( 2 - 2 \beta_{1} - 2 \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} ) q^{61} + ( 4 - \beta_{1} + 2 \beta_{2} - 3 \beta_{3} - \beta_{4} + \beta_{6} ) q^{62} + ( 3 - 2 \beta_{2} + 4 \beta_{3} - \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{64} + ( 4 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} + \beta_{6} ) q^{65} + ( 9 + \beta_{1} + 2 \beta_{2} + \beta_{4} - 5 \beta_{5} + 2 \beta_{6} ) q^{66} + ( 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} ) q^{67} + ( 1 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} ) q^{68} + ( -5 + 3 \beta_{2} - \beta_{3} + 2 \beta_{4} + 3 \beta_{5} - \beta_{6} ) q^{69} + ( 4 \beta_{1} + \beta_{2} - 2 \beta_{5} ) q^{71} + ( -2 + 5 \beta_{1} - \beta_{2} + 5 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} + 7 \beta_{6} ) q^{72} + ( 1 - 2 \beta_{1} + 2 \beta_{2} - \beta_{3} - \beta_{4} + 2 \beta_{6} ) q^{73} + ( -1 - \beta_{1} + 4 \beta_{2} - \beta_{3} + \beta_{5} ) q^{74} + ( 3 - \beta_{1} + 3 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{75} + ( 1 + \beta_{3} - \beta_{5} ) q^{76} + ( -1 - 4 \beta_{1} - \beta_{3} + 2 \beta_{4} + 3 \beta_{5} - 5 \beta_{6} ) q^{78} + ( -2 - 2 \beta_{1} - \beta_{2} + 2 \beta_{4} - 2 \beta_{6} ) q^{79} + ( 2 \beta_{1} + 4 \beta_{2} - 3 \beta_{3} - \beta_{4} + 2 \beta_{5} + 5 \beta_{6} ) q^{80} + ( 4 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} ) q^{81} + ( -6 - 2 \beta_{3} + 2 \beta_{5} ) q^{82} + ( -1 + \beta_{1} - \beta_{3} + 3 \beta_{4} - \beta_{6} ) q^{83} + ( 5 + \beta_{4} + \beta_{5} + 3 \beta_{6} ) q^{85} + ( 5 + 3 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + 3 \beta_{6} ) q^{86} + ( -1 - 4 \beta_{2} + \beta_{3} + \beta_{5} + \beta_{6} ) q^{87} + ( -4 - 2 \beta_{1} - 7 \beta_{2} + 5 \beta_{3} + 2 \beta_{4} - 4 \beta_{6} ) q^{88} + ( -2 - \beta_{1} + 2 \beta_{3} - \beta_{6} ) q^{89} + ( 3 + \beta_{1} + \beta_{2} + 4 \beta_{3} - 3 \beta_{5} + 2 \beta_{6} ) q^{90} + ( -4 + \beta_{1} + 4 \beta_{2} - 4 \beta_{3} - 2 \beta_{4} + 4 \beta_{6} ) q^{92} + ( 1 + 2 \beta_{2} - 4 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{6} ) q^{93} + ( 2 - 3 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} - 5 \beta_{6} ) q^{94} + \beta_{6} q^{95} + ( -3 \beta_{1} - 4 \beta_{2} + 2 \beta_{4} - 3 \beta_{6} ) q^{96} + ( 1 - 3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} + 2 \beta_{6} ) q^{97} + ( 4 - 3 \beta_{1} + 2 \beta_{2} - 6 \beta_{3} + \beta_{4} + \beta_{5} - 2 \beta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7q + 2q^{2} - 2q^{3} + 10q^{4} - 2q^{5} - 4q^{6} + 12q^{8} + 15q^{9} + O(q^{10}) \) \( 7q + 2q^{2} - 2q^{3} + 10q^{4} - 2q^{5} - 4q^{6} + 12q^{8} + 15q^{9} + 7q^{11} - 22q^{12} + 6q^{13} + 2q^{15} + 24q^{16} + 19q^{17} - 12q^{18} + 7q^{19} - 8q^{20} - 6q^{22} - q^{23} + 20q^{24} - 3q^{25} + 12q^{26} - 14q^{27} + 24q^{29} - 20q^{30} + 26q^{32} - 14q^{33} + 6q^{34} + 46q^{36} + 8q^{37} + 2q^{38} + 16q^{39} - 10q^{40} - 4q^{41} + 4q^{43} + 26q^{44} + 14q^{45} - 16q^{46} + 5q^{47} - 28q^{48} + 16q^{50} - 4q^{51} + 42q^{52} + 20q^{53} - 24q^{54} - 30q^{55} - 2q^{57} - 16q^{59} - 44q^{60} + 5q^{61} + 24q^{62} + 32q^{64} + 26q^{65} + 68q^{66} - 4q^{67} + 22q^{68} - 36q^{69} + 12q^{71} + 3q^{73} - 4q^{74} + 18q^{75} + 10q^{76} - 14q^{78} - 20q^{79} - 4q^{80} + 27q^{81} - 48q^{82} - 11q^{83} + 26q^{85} + 36q^{86} - 16q^{87} - 32q^{88} - 10q^{89} + 32q^{90} - 30q^{92} - 4q^{93} + 16q^{94} - 2q^{95} - 12q^{96} - 4q^{97} + 15q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{7} - 3 x^{6} - 6 x^{5} + 18 x^{4} + 4 x^{3} - 12 x^{2} - x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{6} - 3 \nu^{5} - 5 \nu^{4} + 16 \nu^{3} - \nu^{2} - 3 \nu - 1 \)\()/2\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{6} + 3 \nu^{5} + 5 \nu^{4} - 16 \nu^{3} + 3 \nu^{2} + \nu - 3 \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{6} - 4 \nu^{5} - 3 \nu^{4} + 23 \nu^{3} - 12 \nu^{2} - 11 \nu + 4 \)\()/2\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{6} + 2 \nu^{5} + 9 \nu^{4} - 11 \nu^{3} - 22 \nu^{2} + \nu + 8 \)\()/2\)
\(\beta_{5}\)\(=\)\((\)\( -\nu^{6} + 2 \nu^{5} + 9 \nu^{4} - 13 \nu^{3} - 20 \nu^{2} + 15 \nu + 4 \)\()/2\)
\(\beta_{6}\)\(=\)\( -\nu^{6} + 3 \nu^{5} + 6 \nu^{4} - 18 \nu^{3} - 4 \nu^{2} + 11 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{6} + \beta_{5} - \beta_{3} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{6} + \beta_{5} - \beta_{3} + 2 \beta_{2} + 2 \beta_{1} + 5\)\()/2\)
\(\nu^{3}\)\(=\)\(-4 \beta_{6} + 3 \beta_{5} + \beta_{4} - 4 \beta_{3} + \beta_{2} + \beta_{1} + 4\)
\(\nu^{4}\)\(=\)\((\)\(-11 \beta_{6} + 9 \beta_{5} + 4 \beta_{4} - 13 \beta_{3} + 14 \beta_{2} + 18 \beta_{1} + 33\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-59 \beta_{6} + 41 \beta_{5} + 22 \beta_{4} - 67 \beta_{3} + 20 \beta_{2} + 32 \beta_{1} + 69\)\()/2\)
\(\nu^{6}\)\(=\)\(-54 \beta_{6} + 38 \beta_{5} + 27 \beta_{4} - 71 \beta_{3} + 50 \beta_{2} + 80 \beta_{1} + 127\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.770405
0.862998
3.00704
0.273704
2.27137
−2.29398
−0.350729
−2.46342 −3.03216 4.06842 −0.527614 7.46948 0 −5.09539 6.19401 1.29973
1.2 −1.40650 3.19504 −0.0217491 0.295752 −4.49383 0 2.84360 7.20828 −0.415977
1.3 −0.812652 0.415454 −1.33960 −2.67449 −0.337619 0 2.71393 −2.82740 2.17343
1.4 0.269662 1.39869 −1.92728 3.37987 0.377172 0 −1.05904 −1.04367 0.911422
1.5 1.13506 −2.19453 −0.711632 −1.83111 −2.49093 0 −3.07787 1.81594 −2.07842
1.6 2.59421 −2.89925 4.72991 1.85806 −7.52126 0 7.08194 5.40568 4.82019
1.7 2.68364 1.11676 5.20193 −2.50047 2.99699 0 8.59284 −1.75284 −6.71038
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 931.2.a.n 7
3.b odd 2 1 8379.2.a.cl 7
7.b odd 2 1 931.2.a.o 7
7.c even 3 2 133.2.f.d 14
7.d odd 6 2 931.2.f.p 14
21.c even 2 1 8379.2.a.ck 7
21.h odd 6 2 1197.2.j.l 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
133.2.f.d 14 7.c even 3 2
931.2.a.n 7 1.a even 1 1 trivial
931.2.a.o 7 7.b odd 2 1
931.2.f.p 14 7.d odd 6 2
1197.2.j.l 14 21.h odd 6 2
8379.2.a.ck 7 21.c even 2 1
8379.2.a.cl 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(931))\):

\( T_{2}^{7} - 2 T_{2}^{6} - 10 T_{2}^{5} + 16 T_{2}^{4} + 27 T_{2}^{3} - 24 T_{2}^{2} - 18 T_{2} + 6 \)
\( T_{3}^{7} + 2 T_{3}^{6} - 16 T_{3}^{5} - 26 T_{3}^{4} + 72 T_{3}^{3} + 52 T_{3}^{2} - 128 T_{3} + 40 \)
\( T_{5}^{7} + 2 T_{5}^{6} - 14 T_{5}^{5} - 32 T_{5}^{4} + 33 T_{5}^{3} + 90 T_{5}^{2} + 12 T_{5} - 12 \)
\( T_{13}^{7} - 6 T_{13}^{6} - 24 T_{13}^{5} + 210 T_{13}^{4} - 104 T_{13}^{3} - 1620 T_{13}^{2} + 3200 T_{13} - 1208 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 6 - 18 T - 24 T^{2} + 27 T^{3} + 16 T^{4} - 10 T^{5} - 2 T^{6} + T^{7} \)
$3$ \( 40 - 128 T + 52 T^{2} + 72 T^{3} - 26 T^{4} - 16 T^{5} + 2 T^{6} + T^{7} \)
$5$ \( -12 + 12 T + 90 T^{2} + 33 T^{3} - 32 T^{4} - 14 T^{5} + 2 T^{6} + T^{7} \)
$7$ \( T^{7} \)
$11$ \( -135 - 567 T - 549 T^{2} + 51 T^{3} + 131 T^{4} - 13 T^{5} - 7 T^{6} + T^{7} \)
$13$ \( -1208 + 3200 T - 1620 T^{2} - 104 T^{3} + 210 T^{4} - 24 T^{5} - 6 T^{6} + T^{7} \)
$17$ \( -48 + 336 T - 828 T^{2} + 912 T^{3} - 497 T^{4} + 139 T^{5} - 19 T^{6} + T^{7} \)
$19$ \( ( -1 + T )^{7} \)
$23$ \( 3165 - 183 T - 3429 T^{2} + 1659 T^{3} + 7 T^{4} - 85 T^{5} + T^{6} + T^{7} \)
$29$ \( 12480 - 17184 T + 7536 T^{2} - 348 T^{3} - 668 T^{4} + 206 T^{5} - 24 T^{6} + T^{7} \)
$31$ \( 8632 - 14512 T - 204 T^{2} + 2296 T^{3} + 6 T^{4} - 96 T^{5} + T^{7} \)
$37$ \( 155776 - 62208 T - 31744 T^{2} + 5252 T^{3} + 1180 T^{4} - 154 T^{5} - 8 T^{6} + T^{7} \)
$41$ \( -768 - 1152 T + 768 T^{2} + 432 T^{3} - 128 T^{4} - 40 T^{5} + 4 T^{6} + T^{7} \)
$43$ \( 303284 - 99252 T - 23308 T^{2} + 6787 T^{3} + 556 T^{4} - 148 T^{5} - 4 T^{6} + T^{7} \)
$47$ \( -56193 - 54807 T - 4791 T^{2} + 5595 T^{3} + 413 T^{4} - 149 T^{5} - 5 T^{6} + T^{7} \)
$53$ \( -408 + 3264 T + 9300 T^{2} - 6648 T^{3} + 1006 T^{4} + 56 T^{5} - 20 T^{6} + T^{7} \)
$59$ \( 124032 + 68544 T - 288 T^{2} - 6552 T^{3} - 1234 T^{4} - 2 T^{5} + 16 T^{6} + T^{7} \)
$61$ \( 1281545 - 224009 T - 62887 T^{2} + 11331 T^{3} + 995 T^{4} - 187 T^{5} - 5 T^{6} + T^{7} \)
$67$ \( -8192 - 86016 T + 81920 T^{2} + 16448 T^{3} - 1184 T^{4} - 256 T^{5} + 4 T^{6} + T^{7} \)
$71$ \( 6648 - 15120 T - 35676 T^{2} + 19416 T^{3} + 2014 T^{4} - 256 T^{5} - 12 T^{6} + T^{7} \)
$73$ \( 164299 + 48035 T - 92889 T^{2} + 19435 T^{3} + 945 T^{4} - 303 T^{5} - 3 T^{6} + T^{7} \)
$79$ \( -151672 + 178416 T + 64652 T^{2} - 6632 T^{3} - 2774 T^{4} - 64 T^{5} + 20 T^{6} + T^{7} \)
$83$ \( 142371 - 203715 T + 8721 T^{2} + 15507 T^{3} - 1295 T^{4} - 209 T^{5} + 11 T^{6} + T^{7} \)
$89$ \( 10464 + 13200 T + 3432 T^{2} - 1020 T^{3} - 488 T^{4} - 22 T^{5} + 10 T^{6} + T^{7} \)
$97$ \( 32 + 608 T + 2784 T^{2} + 3168 T^{3} - 642 T^{4} - 258 T^{5} + 4 T^{6} + T^{7} \)
show more
show less