Properties

Label 931.2.a.m.1.3
Level $931$
Weight $2$
Character 931.1
Self dual yes
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(1,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,2,8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.291367\) of defining polynomial
Character \(\chi\) \(=\) 931.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.291367 q^{2} -2.43210 q^{3} -1.91511 q^{4} +2.06574 q^{5} -0.708633 q^{6} -1.14073 q^{8} +2.91511 q^{9} +0.601888 q^{10} -4.94909 q^{11} +4.65773 q^{12} -1.62374 q^{13} -5.02408 q^{15} +3.49784 q^{16} +6.99010 q^{17} +0.849365 q^{18} -1.00000 q^{19} -3.95611 q^{20} -1.44200 q^{22} -7.41294 q^{23} +2.77437 q^{24} -0.732718 q^{25} -0.473104 q^{26} +0.206472 q^{27} +3.88335 q^{29} -1.46385 q^{30} -0.808361 q^{31} +3.30062 q^{32} +12.0367 q^{33} +2.03668 q^{34} -5.58273 q^{36} +4.10674 q^{37} -0.291367 q^{38} +3.94909 q^{39} -2.35646 q^{40} +8.50709 q^{41} +7.31545 q^{43} +9.47803 q^{44} +6.02185 q^{45} -2.15989 q^{46} +5.41950 q^{47} -8.50709 q^{48} -0.213490 q^{50} -17.0006 q^{51} +3.10963 q^{52} -1.99010 q^{53} +0.0601592 q^{54} -10.2235 q^{55} +2.43210 q^{57} +1.13148 q^{58} +5.75522 q^{59} +9.62165 q^{60} +11.3812 q^{61} -0.235529 q^{62} -6.03399 q^{64} -3.35422 q^{65} +3.50709 q^{66} +13.9950 q^{67} -13.3868 q^{68} +18.0290 q^{69} +6.51969 q^{71} -3.32535 q^{72} +2.08982 q^{73} +1.19657 q^{74} +1.78204 q^{75} +1.91511 q^{76} +1.15063 q^{78} -2.31977 q^{79} +7.22563 q^{80} -9.24748 q^{81} +2.47868 q^{82} -5.01753 q^{83} +14.4397 q^{85} +2.13148 q^{86} -9.44470 q^{87} +5.64559 q^{88} -6.69441 q^{89} +1.75457 q^{90} +14.1966 q^{92} +1.96601 q^{93} +1.57906 q^{94} -2.06574 q^{95} -8.02743 q^{96} -14.0663 q^{97} -14.4271 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{4} + 8 q^{5} - 4 q^{6} + 6 q^{8} + 2 q^{9} + 10 q^{10} - 6 q^{11} + 6 q^{12} + 2 q^{13} + 4 q^{15} + 2 q^{16} + 8 q^{17} - 6 q^{18} - 4 q^{19} - 14 q^{22} - 8 q^{23} + 12 q^{24} + 20 q^{25}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.291367 0.206028 0.103014 0.994680i \(-0.467151\pi\)
0.103014 + 0.994680i \(0.467151\pi\)
\(3\) −2.43210 −1.40417 −0.702086 0.712092i \(-0.747748\pi\)
−0.702086 + 0.712092i \(0.747748\pi\)
\(4\) −1.91511 −0.957553
\(5\) 2.06574 0.923827 0.461914 0.886925i \(-0.347163\pi\)
0.461914 + 0.886925i \(0.347163\pi\)
\(6\) −0.708633 −0.289298
\(7\) 0 0
\(8\) −1.14073 −0.403310
\(9\) 2.91511 0.971702
\(10\) 0.601888 0.190334
\(11\) −4.94909 −1.49221 −0.746104 0.665830i \(-0.768078\pi\)
−0.746104 + 0.665830i \(0.768078\pi\)
\(12\) 4.65773 1.34457
\(13\) −1.62374 −0.450344 −0.225172 0.974319i \(-0.572294\pi\)
−0.225172 + 0.974319i \(0.572294\pi\)
\(14\) 0 0
\(15\) −5.02408 −1.29721
\(16\) 3.49784 0.874460
\(17\) 6.99010 1.69535 0.847674 0.530518i \(-0.178002\pi\)
0.847674 + 0.530518i \(0.178002\pi\)
\(18\) 0.849365 0.200197
\(19\) −1.00000 −0.229416
\(20\) −3.95611 −0.884613
\(21\) 0 0
\(22\) −1.44200 −0.307436
\(23\) −7.41294 −1.54571 −0.772853 0.634585i \(-0.781171\pi\)
−0.772853 + 0.634585i \(0.781171\pi\)
\(24\) 2.77437 0.566317
\(25\) −0.732718 −0.146544
\(26\) −0.473104 −0.0927833
\(27\) 0.206472 0.0397356
\(28\) 0 0
\(29\) 3.88335 0.721120 0.360560 0.932736i \(-0.382586\pi\)
0.360560 + 0.932736i \(0.382586\pi\)
\(30\) −1.46385 −0.267262
\(31\) −0.808361 −0.145186 −0.0725929 0.997362i \(-0.523127\pi\)
−0.0725929 + 0.997362i \(0.523127\pi\)
\(32\) 3.30062 0.583472
\(33\) 12.0367 2.09532
\(34\) 2.03668 0.349288
\(35\) 0 0
\(36\) −5.58273 −0.930456
\(37\) 4.10674 0.675145 0.337572 0.941300i \(-0.390394\pi\)
0.337572 + 0.941300i \(0.390394\pi\)
\(38\) −0.291367 −0.0472660
\(39\) 3.94909 0.632361
\(40\) −2.35646 −0.372588
\(41\) 8.50709 1.32858 0.664292 0.747473i \(-0.268733\pi\)
0.664292 + 0.747473i \(0.268733\pi\)
\(42\) 0 0
\(43\) 7.31545 1.11560 0.557798 0.829977i \(-0.311646\pi\)
0.557798 + 0.829977i \(0.311646\pi\)
\(44\) 9.47803 1.42887
\(45\) 6.02185 0.897684
\(46\) −2.15989 −0.318458
\(47\) 5.41950 0.790515 0.395258 0.918570i \(-0.370655\pi\)
0.395258 + 0.918570i \(0.370655\pi\)
\(48\) −8.50709 −1.22789
\(49\) 0 0
\(50\) −0.213490 −0.0301920
\(51\) −17.0006 −2.38056
\(52\) 3.10963 0.431228
\(53\) −1.99010 −0.273361 −0.136680 0.990615i \(-0.543643\pi\)
−0.136680 + 0.990615i \(0.543643\pi\)
\(54\) 0.0601592 0.00818663
\(55\) −10.2235 −1.37854
\(56\) 0 0
\(57\) 2.43210 0.322139
\(58\) 1.13148 0.148571
\(59\) 5.75522 0.749266 0.374633 0.927173i \(-0.377769\pi\)
0.374633 + 0.927173i \(0.377769\pi\)
\(60\) 9.62165 1.24215
\(61\) 11.3812 1.45721 0.728606 0.684933i \(-0.240169\pi\)
0.728606 + 0.684933i \(0.240169\pi\)
\(62\) −0.235529 −0.0299123
\(63\) 0 0
\(64\) −6.03399 −0.754248
\(65\) −3.35422 −0.416040
\(66\) 3.50709 0.431693
\(67\) 13.9950 1.70976 0.854882 0.518822i \(-0.173629\pi\)
0.854882 + 0.518822i \(0.173629\pi\)
\(68\) −13.3868 −1.62338
\(69\) 18.0290 2.17044
\(70\) 0 0
\(71\) 6.51969 0.773745 0.386872 0.922133i \(-0.373555\pi\)
0.386872 + 0.922133i \(0.373555\pi\)
\(72\) −3.32535 −0.391897
\(73\) 2.08982 0.244595 0.122298 0.992493i \(-0.460974\pi\)
0.122298 + 0.992493i \(0.460974\pi\)
\(74\) 1.19657 0.139098
\(75\) 1.78204 0.205772
\(76\) 1.91511 0.219678
\(77\) 0 0
\(78\) 1.15063 0.130284
\(79\) −2.31977 −0.260995 −0.130497 0.991449i \(-0.541657\pi\)
−0.130497 + 0.991449i \(0.541657\pi\)
\(80\) 7.22563 0.807850
\(81\) −9.24748 −1.02750
\(82\) 2.47868 0.273725
\(83\) −5.01753 −0.550745 −0.275373 0.961338i \(-0.588801\pi\)
−0.275373 + 0.961338i \(0.588801\pi\)
\(84\) 0 0
\(85\) 14.4397 1.56621
\(86\) 2.13148 0.229843
\(87\) −9.44470 −1.01258
\(88\) 5.64559 0.601822
\(89\) −6.69441 −0.709606 −0.354803 0.934941i \(-0.615452\pi\)
−0.354803 + 0.934941i \(0.615452\pi\)
\(90\) 1.75457 0.184948
\(91\) 0 0
\(92\) 14.1966 1.48009
\(93\) 1.96601 0.203866
\(94\) 1.57906 0.162868
\(95\) −2.06574 −0.211940
\(96\) −8.02743 −0.819296
\(97\) −14.0663 −1.42822 −0.714111 0.700033i \(-0.753169\pi\)
−0.714111 + 0.700033i \(0.753169\pi\)
\(98\) 0 0
\(99\) −14.4271 −1.44998
\(100\) 1.40323 0.140323
\(101\) −1.79414 −0.178523 −0.0892616 0.996008i \(-0.528451\pi\)
−0.0892616 + 0.996008i \(0.528451\pi\)
\(102\) −4.95341 −0.490461
\(103\) 16.9009 1.66529 0.832647 0.553805i \(-0.186825\pi\)
0.832647 + 0.553805i \(0.186825\pi\)
\(104\) 1.85225 0.181628
\(105\) 0 0
\(106\) −0.579848 −0.0563199
\(107\) 9.00925 0.870957 0.435479 0.900199i \(-0.356579\pi\)
0.435479 + 0.900199i \(0.356579\pi\)
\(108\) −0.395416 −0.0380489
\(109\) 7.00925 0.671365 0.335682 0.941975i \(-0.391033\pi\)
0.335682 + 0.941975i \(0.391033\pi\)
\(110\) −2.97880 −0.284018
\(111\) −9.98801 −0.948020
\(112\) 0 0
\(113\) −0.261701 −0.0246188 −0.0123094 0.999924i \(-0.503918\pi\)
−0.0123094 + 0.999924i \(0.503918\pi\)
\(114\) 0.708633 0.0663696
\(115\) −15.3132 −1.42796
\(116\) −7.43703 −0.690511
\(117\) −4.73337 −0.437600
\(118\) 1.67688 0.154369
\(119\) 0 0
\(120\) 5.73113 0.523179
\(121\) 13.4935 1.22668
\(122\) 3.31610 0.300226
\(123\) −20.6901 −1.86556
\(124\) 1.54810 0.139023
\(125\) −11.8423 −1.05921
\(126\) 0 0
\(127\) −8.07337 −0.716395 −0.358198 0.933646i \(-0.616609\pi\)
−0.358198 + 0.933646i \(0.616609\pi\)
\(128\) −8.35934 −0.738868
\(129\) −17.7919 −1.56649
\(130\) −0.977309 −0.0857157
\(131\) −19.4327 −1.69784 −0.848922 0.528519i \(-0.822748\pi\)
−0.848922 + 0.528519i \(0.822748\pi\)
\(132\) −23.0515 −2.00638
\(133\) 0 0
\(134\) 4.07769 0.352259
\(135\) 0.426518 0.0367088
\(136\) −7.97383 −0.683750
\(137\) −6.28146 −0.536662 −0.268331 0.963327i \(-0.586472\pi\)
−0.268331 + 0.963327i \(0.586472\pi\)
\(138\) 5.25306 0.447170
\(139\) 18.1959 1.54336 0.771679 0.636012i \(-0.219417\pi\)
0.771679 + 0.636012i \(0.219417\pi\)
\(140\) 0 0
\(141\) −13.1808 −1.11002
\(142\) 1.89962 0.159413
\(143\) 8.03603 0.672007
\(144\) 10.1966 0.849714
\(145\) 8.02200 0.666191
\(146\) 0.608906 0.0503934
\(147\) 0 0
\(148\) −7.86485 −0.646487
\(149\) 8.75806 0.717488 0.358744 0.933436i \(-0.383205\pi\)
0.358744 + 0.933436i \(0.383205\pi\)
\(150\) 0.519228 0.0423948
\(151\) −12.0445 −0.980167 −0.490084 0.871675i \(-0.663034\pi\)
−0.490084 + 0.871675i \(0.663034\pi\)
\(152\) 1.14073 0.0925256
\(153\) 20.3769 1.64737
\(154\) 0 0
\(155\) −1.66986 −0.134127
\(156\) −7.56293 −0.605519
\(157\) −4.27588 −0.341253 −0.170626 0.985336i \(-0.554579\pi\)
−0.170626 + 0.985336i \(0.554579\pi\)
\(158\) −0.675905 −0.0537721
\(159\) 4.84011 0.383846
\(160\) 6.81822 0.539028
\(161\) 0 0
\(162\) −2.69441 −0.211693
\(163\) −9.02678 −0.707032 −0.353516 0.935428i \(-0.615014\pi\)
−0.353516 + 0.935428i \(0.615014\pi\)
\(164\) −16.2920 −1.27219
\(165\) 24.8647 1.93571
\(166\) −1.46194 −0.113469
\(167\) 21.2318 1.64297 0.821484 0.570232i \(-0.193147\pi\)
0.821484 + 0.570232i \(0.193147\pi\)
\(168\) 0 0
\(169\) −10.3635 −0.797190
\(170\) 4.20726 0.322682
\(171\) −2.91511 −0.222924
\(172\) −14.0099 −1.06824
\(173\) −6.80069 −0.517047 −0.258524 0.966005i \(-0.583236\pi\)
−0.258524 + 0.966005i \(0.583236\pi\)
\(174\) −2.75187 −0.208619
\(175\) 0 0
\(176\) −17.3111 −1.30488
\(177\) −13.9973 −1.05210
\(178\) −1.95053 −0.146198
\(179\) 19.2722 1.44047 0.720235 0.693730i \(-0.244034\pi\)
0.720235 + 0.693730i \(0.244034\pi\)
\(180\) −11.5325 −0.859580
\(181\) 20.5508 1.52753 0.763764 0.645495i \(-0.223349\pi\)
0.763764 + 0.645495i \(0.223349\pi\)
\(182\) 0 0
\(183\) −27.6802 −2.04618
\(184\) 8.45618 0.623398
\(185\) 8.48347 0.623717
\(186\) 0.572831 0.0420020
\(187\) −34.5946 −2.52981
\(188\) −10.3789 −0.756960
\(189\) 0 0
\(190\) −0.601888 −0.0436656
\(191\) −4.48366 −0.324426 −0.162213 0.986756i \(-0.551863\pi\)
−0.162213 + 0.986756i \(0.551863\pi\)
\(192\) 14.6753 1.05910
\(193\) −25.0290 −1.80163 −0.900814 0.434205i \(-0.857029\pi\)
−0.900814 + 0.434205i \(0.857029\pi\)
\(194\) −4.09847 −0.294253
\(195\) 8.15780 0.584192
\(196\) 0 0
\(197\) −0.100378 −0.00715167 −0.00357583 0.999994i \(-0.501138\pi\)
−0.00357583 + 0.999994i \(0.501138\pi\)
\(198\) −4.20359 −0.298736
\(199\) −26.9299 −1.90901 −0.954506 0.298191i \(-0.903617\pi\)
−0.954506 + 0.298191i \(0.903617\pi\)
\(200\) 0.835834 0.0591024
\(201\) −34.0373 −2.40081
\(202\) −0.522752 −0.0367807
\(203\) 0 0
\(204\) 32.5580 2.27951
\(205\) 17.5734 1.22738
\(206\) 4.92436 0.343096
\(207\) −21.6095 −1.50197
\(208\) −5.67958 −0.393808
\(209\) 4.94909 0.342336
\(210\) 0 0
\(211\) 14.5345 1.00060 0.500299 0.865853i \(-0.333223\pi\)
0.500299 + 0.865853i \(0.333223\pi\)
\(212\) 3.81125 0.261757
\(213\) −15.8565 −1.08647
\(214\) 2.62500 0.179441
\(215\) 15.1118 1.03062
\(216\) −0.235529 −0.0160258
\(217\) 0 0
\(218\) 2.04226 0.138320
\(219\) −5.08266 −0.343454
\(220\) 19.5792 1.32003
\(221\) −11.3501 −0.763490
\(222\) −2.91018 −0.195318
\(223\) −2.30829 −0.154574 −0.0772872 0.997009i \(-0.524626\pi\)
−0.0772872 + 0.997009i \(0.524626\pi\)
\(224\) 0 0
\(225\) −2.13595 −0.142397
\(226\) −0.0762511 −0.00507215
\(227\) 19.8522 1.31764 0.658819 0.752302i \(-0.271056\pi\)
0.658819 + 0.752302i \(0.271056\pi\)
\(228\) −4.65773 −0.308465
\(229\) 17.4271 1.15162 0.575808 0.817585i \(-0.304687\pi\)
0.575808 + 0.817585i \(0.304687\pi\)
\(230\) −4.46176 −0.294200
\(231\) 0 0
\(232\) −4.42986 −0.290835
\(233\) 8.89228 0.582553 0.291276 0.956639i \(-0.405920\pi\)
0.291276 + 0.956639i \(0.405920\pi\)
\(234\) −1.37915 −0.0901577
\(235\) 11.1953 0.730300
\(236\) −11.0219 −0.717461
\(237\) 5.64192 0.366482
\(238\) 0 0
\(239\) −10.9234 −0.706575 −0.353287 0.935515i \(-0.614936\pi\)
−0.353287 + 0.935515i \(0.614936\pi\)
\(240\) −17.5734 −1.13436
\(241\) 5.18397 0.333929 0.166964 0.985963i \(-0.446603\pi\)
0.166964 + 0.985963i \(0.446603\pi\)
\(242\) 3.93156 0.252731
\(243\) 21.8714 1.40305
\(244\) −21.7962 −1.39536
\(245\) 0 0
\(246\) −6.02841 −0.384357
\(247\) 1.62374 0.103316
\(248\) 0.922123 0.0585549
\(249\) 12.2031 0.773342
\(250\) −3.45046 −0.218226
\(251\) 12.2672 0.774301 0.387151 0.922016i \(-0.373459\pi\)
0.387151 + 0.922016i \(0.373459\pi\)
\(252\) 0 0
\(253\) 36.6873 2.30651
\(254\) −2.35231 −0.147597
\(255\) −35.1188 −2.19923
\(256\) 9.63234 0.602021
\(257\) −22.3740 −1.39565 −0.697825 0.716268i \(-0.745849\pi\)
−0.697825 + 0.716268i \(0.745849\pi\)
\(258\) −5.18397 −0.322740
\(259\) 0 0
\(260\) 6.42369 0.398380
\(261\) 11.3204 0.700714
\(262\) −5.66205 −0.349802
\(263\) 9.07625 0.559666 0.279833 0.960049i \(-0.409721\pi\)
0.279833 + 0.960049i \(0.409721\pi\)
\(264\) −13.7306 −0.845062
\(265\) −4.11102 −0.252538
\(266\) 0 0
\(267\) 16.2815 0.996409
\(268\) −26.8020 −1.63719
\(269\) 18.8198 1.14747 0.573733 0.819042i \(-0.305495\pi\)
0.573733 + 0.819042i \(0.305495\pi\)
\(270\) 0.124273 0.00756303
\(271\) 24.9815 1.51752 0.758758 0.651373i \(-0.225807\pi\)
0.758758 + 0.651373i \(0.225807\pi\)
\(272\) 24.4502 1.48251
\(273\) 0 0
\(274\) −1.83021 −0.110567
\(275\) 3.62629 0.218673
\(276\) −34.5275 −2.07831
\(277\) 20.8741 1.25420 0.627100 0.778939i \(-0.284242\pi\)
0.627100 + 0.778939i \(0.284242\pi\)
\(278\) 5.30169 0.317974
\(279\) −2.35646 −0.141077
\(280\) 0 0
\(281\) 29.3117 1.74859 0.874296 0.485393i \(-0.161324\pi\)
0.874296 + 0.485393i \(0.161324\pi\)
\(282\) −3.84044 −0.228695
\(283\) 0.566275 0.0336616 0.0168308 0.999858i \(-0.494642\pi\)
0.0168308 + 0.999858i \(0.494642\pi\)
\(284\) −12.4859 −0.740901
\(285\) 5.02408 0.297601
\(286\) 2.34143 0.138452
\(287\) 0 0
\(288\) 9.62165 0.566961
\(289\) 31.8615 1.87420
\(290\) 2.33734 0.137254
\(291\) 34.2108 2.00547
\(292\) −4.00223 −0.234213
\(293\) 25.2701 1.47630 0.738148 0.674639i \(-0.235700\pi\)
0.738148 + 0.674639i \(0.235700\pi\)
\(294\) 0 0
\(295\) 11.8888 0.692192
\(296\) −4.68470 −0.272292
\(297\) −1.02185 −0.0592938
\(298\) 2.55181 0.147822
\(299\) 12.0367 0.696099
\(300\) −3.41280 −0.197038
\(301\) 0 0
\(302\) −3.50937 −0.201941
\(303\) 4.36352 0.250677
\(304\) −3.49784 −0.200615
\(305\) 23.5106 1.34621
\(306\) 5.93715 0.339404
\(307\) −6.37114 −0.363620 −0.181810 0.983334i \(-0.558196\pi\)
−0.181810 + 0.983334i \(0.558196\pi\)
\(308\) 0 0
\(309\) −41.1046 −2.33836
\(310\) −0.486543 −0.0276338
\(311\) 0.295689 0.0167670 0.00838348 0.999965i \(-0.497331\pi\)
0.00838348 + 0.999965i \(0.497331\pi\)
\(312\) −4.50486 −0.255037
\(313\) −20.3679 −1.15126 −0.575632 0.817709i \(-0.695244\pi\)
−0.575632 + 0.817709i \(0.695244\pi\)
\(314\) −1.24585 −0.0703074
\(315\) 0 0
\(316\) 4.44261 0.249916
\(317\) −30.5160 −1.71395 −0.856974 0.515360i \(-0.827658\pi\)
−0.856974 + 0.515360i \(0.827658\pi\)
\(318\) 1.41025 0.0790828
\(319\) −19.2191 −1.07606
\(320\) −12.4646 −0.696795
\(321\) −21.9114 −1.22297
\(322\) 0 0
\(323\) −6.99010 −0.388939
\(324\) 17.7099 0.983883
\(325\) 1.18974 0.0659950
\(326\) −2.63010 −0.145668
\(327\) −17.0472 −0.942712
\(328\) −9.70431 −0.535831
\(329\) 0 0
\(330\) 7.24474 0.398810
\(331\) −28.2814 −1.55449 −0.777244 0.629200i \(-0.783383\pi\)
−0.777244 + 0.629200i \(0.783383\pi\)
\(332\) 9.60910 0.527368
\(333\) 11.9716 0.656039
\(334\) 6.18625 0.338496
\(335\) 28.9101 1.57953
\(336\) 0 0
\(337\) 0.0981441 0.00534625 0.00267312 0.999996i \(-0.499149\pi\)
0.00267312 + 0.999996i \(0.499149\pi\)
\(338\) −3.01957 −0.164243
\(339\) 0.636484 0.0345691
\(340\) −27.6536 −1.49973
\(341\) 4.00065 0.216647
\(342\) −0.849365 −0.0459284
\(343\) 0 0
\(344\) −8.34497 −0.449931
\(345\) 37.2433 2.00511
\(346\) −1.98150 −0.106526
\(347\) −1.07373 −0.0576410 −0.0288205 0.999585i \(-0.509175\pi\)
−0.0288205 + 0.999585i \(0.509175\pi\)
\(348\) 18.0876 0.969597
\(349\) −7.94431 −0.425249 −0.212625 0.977134i \(-0.568201\pi\)
−0.212625 + 0.977134i \(0.568201\pi\)
\(350\) 0 0
\(351\) −0.335257 −0.0178947
\(352\) −16.3351 −0.870662
\(353\) 8.75810 0.466147 0.233073 0.972459i \(-0.425122\pi\)
0.233073 + 0.972459i \(0.425122\pi\)
\(354\) −4.07834 −0.216761
\(355\) 13.4680 0.714806
\(356\) 12.8205 0.679485
\(357\) 0 0
\(358\) 5.61527 0.296776
\(359\) 8.88559 0.468963 0.234482 0.972121i \(-0.424661\pi\)
0.234482 + 0.972121i \(0.424661\pi\)
\(360\) −6.86932 −0.362045
\(361\) 1.00000 0.0526316
\(362\) 5.98782 0.314713
\(363\) −32.8176 −1.72248
\(364\) 0 0
\(365\) 4.31703 0.225964
\(366\) −8.06509 −0.421569
\(367\) −14.0644 −0.734158 −0.367079 0.930190i \(-0.619642\pi\)
−0.367079 + 0.930190i \(0.619642\pi\)
\(368\) −25.9293 −1.35166
\(369\) 24.7991 1.29099
\(370\) 2.47180 0.128503
\(371\) 0 0
\(372\) −3.76512 −0.195212
\(373\) −36.8568 −1.90837 −0.954187 0.299212i \(-0.903276\pi\)
−0.954187 + 0.299212i \(0.903276\pi\)
\(374\) −10.0797 −0.521211
\(375\) 28.8017 1.48731
\(376\) −6.18220 −0.318823
\(377\) −6.30555 −0.324752
\(378\) 0 0
\(379\) −17.2907 −0.888164 −0.444082 0.895986i \(-0.646470\pi\)
−0.444082 + 0.895986i \(0.646470\pi\)
\(380\) 3.95611 0.202944
\(381\) 19.6352 1.00594
\(382\) −1.30639 −0.0668407
\(383\) 23.6224 1.20705 0.603525 0.797344i \(-0.293762\pi\)
0.603525 + 0.797344i \(0.293762\pi\)
\(384\) 20.3307 1.03750
\(385\) 0 0
\(386\) −7.29263 −0.371185
\(387\) 21.3253 1.08403
\(388\) 26.9385 1.36760
\(389\) −2.81761 −0.142859 −0.0714293 0.997446i \(-0.522756\pi\)
−0.0714293 + 0.997446i \(0.522756\pi\)
\(390\) 2.37691 0.120360
\(391\) −51.8172 −2.62051
\(392\) 0 0
\(393\) 47.2623 2.38407
\(394\) −0.0292469 −0.00147344
\(395\) −4.79205 −0.241114
\(396\) 27.6295 1.38843
\(397\) −24.0012 −1.20459 −0.602293 0.798275i \(-0.705746\pi\)
−0.602293 + 0.798275i \(0.705746\pi\)
\(398\) −7.84649 −0.393309
\(399\) 0 0
\(400\) −2.56293 −0.128146
\(401\) 33.3740 1.66662 0.833309 0.552808i \(-0.186444\pi\)
0.833309 + 0.552808i \(0.186444\pi\)
\(402\) −9.91734 −0.494632
\(403\) 1.31257 0.0653836
\(404\) 3.43596 0.170945
\(405\) −19.1029 −0.949230
\(406\) 0 0
\(407\) −20.3247 −1.00746
\(408\) 19.3931 0.960103
\(409\) 28.4148 1.40502 0.702511 0.711673i \(-0.252062\pi\)
0.702511 + 0.711673i \(0.252062\pi\)
\(410\) 5.12032 0.252874
\(411\) 15.2771 0.753566
\(412\) −32.3670 −1.59461
\(413\) 0 0
\(414\) −6.29630 −0.309446
\(415\) −10.3649 −0.508793
\(416\) −5.35934 −0.262763
\(417\) −44.2543 −2.16714
\(418\) 1.44200 0.0705306
\(419\) −5.95276 −0.290812 −0.145406 0.989372i \(-0.546449\pi\)
−0.145406 + 0.989372i \(0.546449\pi\)
\(420\) 0 0
\(421\) −2.95244 −0.143893 −0.0719465 0.997408i \(-0.522921\pi\)
−0.0719465 + 0.997408i \(0.522921\pi\)
\(422\) 4.23488 0.206151
\(423\) 15.7984 0.768145
\(424\) 2.27017 0.110249
\(425\) −5.12177 −0.248442
\(426\) −4.62007 −0.223843
\(427\) 0 0
\(428\) −17.2537 −0.833987
\(429\) −19.5444 −0.943614
\(430\) 4.40308 0.212336
\(431\) 9.97033 0.480254 0.240127 0.970741i \(-0.422811\pi\)
0.240127 + 0.970741i \(0.422811\pi\)
\(432\) 0.722207 0.0347472
\(433\) 19.1090 0.918319 0.459159 0.888354i \(-0.348151\pi\)
0.459159 + 0.888354i \(0.348151\pi\)
\(434\) 0 0
\(435\) −19.5103 −0.935447
\(436\) −13.4235 −0.642867
\(437\) 7.41294 0.354609
\(438\) −1.48092 −0.0707610
\(439\) −7.30681 −0.348735 −0.174367 0.984681i \(-0.555788\pi\)
−0.174367 + 0.984681i \(0.555788\pi\)
\(440\) 11.6623 0.555979
\(441\) 0 0
\(442\) −3.30704 −0.157300
\(443\) −16.4639 −0.782221 −0.391111 0.920344i \(-0.627909\pi\)
−0.391111 + 0.920344i \(0.627909\pi\)
\(444\) 19.1281 0.907779
\(445\) −13.8289 −0.655553
\(446\) −0.672558 −0.0318466
\(447\) −21.3005 −1.00748
\(448\) 0 0
\(449\) −9.71849 −0.458644 −0.229322 0.973351i \(-0.573651\pi\)
−0.229322 + 0.973351i \(0.573651\pi\)
\(450\) −0.622345 −0.0293376
\(451\) −42.1024 −1.98252
\(452\) 0.501186 0.0235738
\(453\) 29.2934 1.37632
\(454\) 5.78428 0.271470
\(455\) 0 0
\(456\) −2.77437 −0.129922
\(457\) −11.0016 −0.514632 −0.257316 0.966327i \(-0.582838\pi\)
−0.257316 + 0.966327i \(0.582838\pi\)
\(458\) 5.07769 0.237265
\(459\) 1.44326 0.0673657
\(460\) 29.3264 1.36735
\(461\) 28.6779 1.33567 0.667833 0.744311i \(-0.267222\pi\)
0.667833 + 0.744311i \(0.267222\pi\)
\(462\) 0 0
\(463\) −33.7722 −1.56953 −0.784765 0.619794i \(-0.787216\pi\)
−0.784765 + 0.619794i \(0.787216\pi\)
\(464\) 13.5833 0.630591
\(465\) 4.06127 0.188337
\(466\) 2.59092 0.120022
\(467\) 16.8477 0.779620 0.389810 0.920895i \(-0.372541\pi\)
0.389810 + 0.920895i \(0.372541\pi\)
\(468\) 9.06490 0.419025
\(469\) 0 0
\(470\) 3.26193 0.150462
\(471\) 10.3994 0.479178
\(472\) −6.56516 −0.302186
\(473\) −36.2048 −1.66470
\(474\) 1.64387 0.0755054
\(475\) 0.732718 0.0336194
\(476\) 0 0
\(477\) −5.80134 −0.265625
\(478\) −3.18271 −0.145574
\(479\) 23.0450 1.05295 0.526476 0.850190i \(-0.323513\pi\)
0.526476 + 0.850190i \(0.323513\pi\)
\(480\) −16.5826 −0.756888
\(481\) −6.66828 −0.304047
\(482\) 1.51044 0.0687985
\(483\) 0 0
\(484\) −25.8415 −1.17461
\(485\) −29.0574 −1.31943
\(486\) 6.37259 0.289067
\(487\) −21.9468 −0.994505 −0.497253 0.867606i \(-0.665658\pi\)
−0.497253 + 0.867606i \(0.665658\pi\)
\(488\) −12.9829 −0.587708
\(489\) 21.9540 0.992795
\(490\) 0 0
\(491\) 10.1883 0.459791 0.229896 0.973215i \(-0.426162\pi\)
0.229896 + 0.973215i \(0.426162\pi\)
\(492\) 39.6237 1.78637
\(493\) 27.1450 1.22255
\(494\) 0.473104 0.0212859
\(495\) −29.8027 −1.33953
\(496\) −2.82752 −0.126959
\(497\) 0 0
\(498\) 3.55559 0.159330
\(499\) 16.4300 0.735508 0.367754 0.929923i \(-0.380127\pi\)
0.367754 + 0.929923i \(0.380127\pi\)
\(500\) 22.6793 1.01425
\(501\) −51.6379 −2.30701
\(502\) 3.57427 0.159527
\(503\) −2.13595 −0.0952373 −0.0476186 0.998866i \(-0.515163\pi\)
−0.0476186 + 0.998866i \(0.515163\pi\)
\(504\) 0 0
\(505\) −3.70622 −0.164925
\(506\) 10.6895 0.475205
\(507\) 25.2050 1.11939
\(508\) 15.4613 0.685986
\(509\) 24.2247 1.07374 0.536869 0.843665i \(-0.319607\pi\)
0.536869 + 0.843665i \(0.319607\pi\)
\(510\) −10.2325 −0.453101
\(511\) 0 0
\(512\) 19.5252 0.862901
\(513\) −0.206472 −0.00911597
\(514\) −6.51904 −0.287542
\(515\) 34.9128 1.53844
\(516\) 34.0734 1.50000
\(517\) −26.8216 −1.17961
\(518\) 0 0
\(519\) 16.5400 0.726023
\(520\) 3.82627 0.167793
\(521\) 7.56441 0.331403 0.165701 0.986176i \(-0.447011\pi\)
0.165701 + 0.986176i \(0.447011\pi\)
\(522\) 3.29838 0.144366
\(523\) 11.7441 0.513532 0.256766 0.966474i \(-0.417343\pi\)
0.256766 + 0.966474i \(0.417343\pi\)
\(524\) 37.2157 1.62577
\(525\) 0 0
\(526\) 2.64452 0.115307
\(527\) −5.65052 −0.246140
\(528\) 42.1024 1.83227
\(529\) 31.9517 1.38921
\(530\) −1.19782 −0.0520298
\(531\) 16.7771 0.728063
\(532\) 0 0
\(533\) −13.8133 −0.598320
\(534\) 4.74388 0.205288
\(535\) 18.6108 0.804614
\(536\) −15.9646 −0.689565
\(537\) −46.8718 −2.02267
\(538\) 5.48348 0.236410
\(539\) 0 0
\(540\) −0.816827 −0.0351506
\(541\) −4.44391 −0.191059 −0.0955293 0.995427i \(-0.530454\pi\)
−0.0955293 + 0.995427i \(0.530454\pi\)
\(542\) 7.27877 0.312650
\(543\) −49.9816 −2.14491
\(544\) 23.0716 0.989189
\(545\) 14.4793 0.620225
\(546\) 0 0
\(547\) −8.15542 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(548\) 12.0297 0.513882
\(549\) 33.1774 1.41598
\(550\) 1.05658 0.0450527
\(551\) −3.88335 −0.165436
\(552\) −20.5663 −0.875359
\(553\) 0 0
\(554\) 6.08201 0.258400
\(555\) −20.6326 −0.875806
\(556\) −34.8471 −1.47785
\(557\) 5.23473 0.221803 0.110901 0.993831i \(-0.464626\pi\)
0.110901 + 0.993831i \(0.464626\pi\)
\(558\) −0.686593 −0.0290658
\(559\) −11.8784 −0.502402
\(560\) 0 0
\(561\) 84.1376 3.55229
\(562\) 8.54047 0.360258
\(563\) −25.3904 −1.07008 −0.535040 0.844827i \(-0.679703\pi\)
−0.535040 + 0.844827i \(0.679703\pi\)
\(564\) 25.2425 1.06290
\(565\) −0.540607 −0.0227435
\(566\) 0.164994 0.00693521
\(567\) 0 0
\(568\) −7.43722 −0.312059
\(569\) −7.18156 −0.301067 −0.150533 0.988605i \(-0.548099\pi\)
−0.150533 + 0.988605i \(0.548099\pi\)
\(570\) 1.46385 0.0613140
\(571\) 8.94189 0.374206 0.187103 0.982340i \(-0.440090\pi\)
0.187103 + 0.982340i \(0.440090\pi\)
\(572\) −15.3898 −0.643482
\(573\) 10.9047 0.455550
\(574\) 0 0
\(575\) 5.43159 0.226513
\(576\) −17.5897 −0.732905
\(577\) −12.7644 −0.531390 −0.265695 0.964057i \(-0.585601\pi\)
−0.265695 + 0.964057i \(0.585601\pi\)
\(578\) 9.28337 0.386137
\(579\) 60.8730 2.52980
\(580\) −15.3630 −0.637913
\(581\) 0 0
\(582\) 9.96788 0.413182
\(583\) 9.84918 0.407911
\(584\) −2.38393 −0.0986477
\(585\) −9.77791 −0.404267
\(586\) 7.36288 0.304158
\(587\) −24.2518 −1.00098 −0.500489 0.865743i \(-0.666847\pi\)
−0.500489 + 0.865743i \(0.666847\pi\)
\(588\) 0 0
\(589\) 0.808361 0.0333079
\(590\) 3.46400 0.142611
\(591\) 0.244130 0.0100422
\(592\) 14.3647 0.590387
\(593\) 3.85095 0.158140 0.0790698 0.996869i \(-0.474805\pi\)
0.0790698 + 0.996869i \(0.474805\pi\)
\(594\) −0.297733 −0.0122161
\(595\) 0 0
\(596\) −16.7726 −0.687033
\(597\) 65.4963 2.68058
\(598\) 3.50709 0.143416
\(599\) 37.2717 1.52288 0.761440 0.648235i \(-0.224493\pi\)
0.761440 + 0.648235i \(0.224493\pi\)
\(600\) −2.03283 −0.0829900
\(601\) 2.99633 0.122223 0.0611114 0.998131i \(-0.480536\pi\)
0.0611114 + 0.998131i \(0.480536\pi\)
\(602\) 0 0
\(603\) 40.7970 1.66138
\(604\) 23.0665 0.938562
\(605\) 27.8741 1.13324
\(606\) 1.27138 0.0516465
\(607\) −25.3423 −1.02861 −0.514306 0.857607i \(-0.671950\pi\)
−0.514306 + 0.857607i \(0.671950\pi\)
\(608\) −3.30062 −0.133858
\(609\) 0 0
\(610\) 6.85021 0.277357
\(611\) −8.79985 −0.356004
\(612\) −39.0239 −1.57745
\(613\) 11.2393 0.453953 0.226976 0.973900i \(-0.427116\pi\)
0.226976 + 0.973900i \(0.427116\pi\)
\(614\) −1.85634 −0.0749158
\(615\) −42.7403 −1.72346
\(616\) 0 0
\(617\) −16.1879 −0.651701 −0.325851 0.945421i \(-0.605651\pi\)
−0.325851 + 0.945421i \(0.605651\pi\)
\(618\) −11.9765 −0.481766
\(619\) −14.6528 −0.588944 −0.294472 0.955660i \(-0.595144\pi\)
−0.294472 + 0.955660i \(0.595144\pi\)
\(620\) 3.19796 0.128433
\(621\) −1.53057 −0.0614195
\(622\) 0.0861539 0.00345446
\(623\) 0 0
\(624\) 13.8133 0.552974
\(625\) −20.7995 −0.831981
\(626\) −5.93454 −0.237192
\(627\) −12.0367 −0.480699
\(628\) 8.18877 0.326767
\(629\) 28.7065 1.14460
\(630\) 0 0
\(631\) −23.3309 −0.928790 −0.464395 0.885628i \(-0.653728\pi\)
−0.464395 + 0.885628i \(0.653728\pi\)
\(632\) 2.64624 0.105262
\(633\) −35.3494 −1.40501
\(634\) −8.89134 −0.353120
\(635\) −16.6775 −0.661825
\(636\) −9.26933 −0.367553
\(637\) 0 0
\(638\) −5.59980 −0.221698
\(639\) 19.0056 0.751849
\(640\) −17.2682 −0.682587
\(641\) 15.1832 0.599699 0.299850 0.953986i \(-0.403063\pi\)
0.299850 + 0.953986i \(0.403063\pi\)
\(642\) −6.38425 −0.251966
\(643\) 31.7842 1.25345 0.626723 0.779242i \(-0.284396\pi\)
0.626723 + 0.779242i \(0.284396\pi\)
\(644\) 0 0
\(645\) −36.7534 −1.44717
\(646\) −2.03668 −0.0801322
\(647\) 13.3767 0.525893 0.262947 0.964810i \(-0.415306\pi\)
0.262947 + 0.964810i \(0.415306\pi\)
\(648\) 10.5489 0.414400
\(649\) −28.4831 −1.11806
\(650\) 0.346651 0.0135968
\(651\) 0 0
\(652\) 17.2872 0.677020
\(653\) −27.3705 −1.07109 −0.535544 0.844507i \(-0.679894\pi\)
−0.535544 + 0.844507i \(0.679894\pi\)
\(654\) −4.96699 −0.194225
\(655\) −40.1429 −1.56851
\(656\) 29.7564 1.16179
\(657\) 6.09206 0.237674
\(658\) 0 0
\(659\) 47.6905 1.85776 0.928879 0.370383i \(-0.120774\pi\)
0.928879 + 0.370383i \(0.120774\pi\)
\(660\) −47.6184 −1.85355
\(661\) −16.8217 −0.654289 −0.327144 0.944974i \(-0.606086\pi\)
−0.327144 + 0.944974i \(0.606086\pi\)
\(662\) −8.24027 −0.320267
\(663\) 27.6045 1.07207
\(664\) 5.72366 0.222121
\(665\) 0 0
\(666\) 3.48813 0.135162
\(667\) −28.7871 −1.11464
\(668\) −40.6612 −1.57323
\(669\) 5.61398 0.217049
\(670\) 8.42344 0.325426
\(671\) −56.3266 −2.17446
\(672\) 0 0
\(673\) 14.1611 0.545870 0.272935 0.962032i \(-0.412006\pi\)
0.272935 + 0.962032i \(0.412006\pi\)
\(674\) 0.0285959 0.00110147
\(675\) −0.151286 −0.00582299
\(676\) 19.8471 0.763352
\(677\) −5.05314 −0.194208 −0.0971040 0.995274i \(-0.530958\pi\)
−0.0971040 + 0.995274i \(0.530958\pi\)
\(678\) 0.185450 0.00712218
\(679\) 0 0
\(680\) −16.4719 −0.631667
\(681\) −48.2825 −1.85019
\(682\) 1.16566 0.0446353
\(683\) 20.3359 0.778130 0.389065 0.921210i \(-0.372798\pi\)
0.389065 + 0.921210i \(0.372798\pi\)
\(684\) 5.58273 0.213461
\(685\) −12.9759 −0.495783
\(686\) 0 0
\(687\) −42.3845 −1.61707
\(688\) 25.5883 0.975544
\(689\) 3.23140 0.123106
\(690\) 10.8515 0.413108
\(691\) −23.1140 −0.879300 −0.439650 0.898169i \(-0.644897\pi\)
−0.439650 + 0.898169i \(0.644897\pi\)
\(692\) 13.0240 0.495100
\(693\) 0 0
\(694\) −0.312850 −0.0118756
\(695\) 37.5880 1.42580
\(696\) 10.7739 0.408382
\(697\) 59.4654 2.25241
\(698\) −2.31471 −0.0876130
\(699\) −21.6269 −0.818005
\(700\) 0 0
\(701\) −50.1400 −1.89376 −0.946882 0.321583i \(-0.895785\pi\)
−0.946882 + 0.321583i \(0.895785\pi\)
\(702\) −0.0976828 −0.00368680
\(703\) −4.10674 −0.154889
\(704\) 29.8628 1.12550
\(705\) −27.2280 −1.02547
\(706\) 2.55182 0.0960391
\(707\) 0 0
\(708\) 26.8062 1.00744
\(709\) −3.80739 −0.142989 −0.0714947 0.997441i \(-0.522777\pi\)
−0.0714947 + 0.997441i \(0.522777\pi\)
\(710\) 3.92412 0.147270
\(711\) −6.76238 −0.253609
\(712\) 7.63653 0.286191
\(713\) 5.99233 0.224415
\(714\) 0 0
\(715\) 16.6004 0.620818
\(716\) −36.9082 −1.37933
\(717\) 26.5667 0.992153
\(718\) 2.58897 0.0966193
\(719\) −10.7018 −0.399108 −0.199554 0.979887i \(-0.563949\pi\)
−0.199554 + 0.979887i \(0.563949\pi\)
\(720\) 21.0635 0.784989
\(721\) 0 0
\(722\) 0.291367 0.0108436
\(723\) −12.6079 −0.468894
\(724\) −39.3569 −1.46269
\(725\) −2.84540 −0.105676
\(726\) −9.56195 −0.354877
\(727\) −22.1589 −0.821829 −0.410914 0.911674i \(-0.634790\pi\)
−0.410914 + 0.911674i \(0.634790\pi\)
\(728\) 0 0
\(729\) −25.4509 −0.942625
\(730\) 1.25784 0.0465548
\(731\) 51.1357 1.89132
\(732\) 53.0105 1.95932
\(733\) 37.3419 1.37925 0.689627 0.724165i \(-0.257775\pi\)
0.689627 + 0.724165i \(0.257775\pi\)
\(734\) −4.09791 −0.151257
\(735\) 0 0
\(736\) −24.4673 −0.901877
\(737\) −69.2627 −2.55132
\(738\) 7.22563 0.265979
\(739\) −16.0538 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(740\) −16.2467 −0.597242
\(741\) −3.94909 −0.145074
\(742\) 0 0
\(743\) 24.6993 0.906131 0.453065 0.891477i \(-0.350330\pi\)
0.453065 + 0.891477i \(0.350330\pi\)
\(744\) −2.24269 −0.0822211
\(745\) 18.0919 0.662835
\(746\) −10.7389 −0.393177
\(747\) −14.6266 −0.535160
\(748\) 66.2524 2.42243
\(749\) 0 0
\(750\) 8.39185 0.306427
\(751\) 26.1921 0.955762 0.477881 0.878425i \(-0.341405\pi\)
0.477881 + 0.878425i \(0.341405\pi\)
\(752\) 18.9565 0.691274
\(753\) −29.8351 −1.08725
\(754\) −1.83723 −0.0669079
\(755\) −24.8808 −0.905505
\(756\) 0 0
\(757\) 23.2718 0.845826 0.422913 0.906170i \(-0.361008\pi\)
0.422913 + 0.906170i \(0.361008\pi\)
\(758\) −5.03794 −0.182986
\(759\) −89.2273 −3.23874
\(760\) 2.35646 0.0854776
\(761\) 34.5434 1.25220 0.626099 0.779744i \(-0.284651\pi\)
0.626099 + 0.779744i \(0.284651\pi\)
\(762\) 5.72105 0.207252
\(763\) 0 0
\(764\) 8.58668 0.310655
\(765\) 42.0933 1.52189
\(766\) 6.88280 0.248686
\(767\) −9.34497 −0.337427
\(768\) −23.4268 −0.845342
\(769\) 11.1106 0.400659 0.200329 0.979729i \(-0.435799\pi\)
0.200329 + 0.979729i \(0.435799\pi\)
\(770\) 0 0
\(771\) 54.4157 1.95974
\(772\) 47.9332 1.72515
\(773\) 8.30414 0.298679 0.149340 0.988786i \(-0.452285\pi\)
0.149340 + 0.988786i \(0.452285\pi\)
\(774\) 6.21349 0.223339
\(775\) 0.592300 0.0212760
\(776\) 16.0459 0.576015
\(777\) 0 0
\(778\) −0.820959 −0.0294328
\(779\) −8.50709 −0.304798
\(780\) −15.6230 −0.559395
\(781\) −32.2665 −1.15459
\(782\) −15.0978 −0.539897
\(783\) 0.801804 0.0286542
\(784\) 0 0
\(785\) −8.83286 −0.315258
\(786\) 13.7707 0.491183
\(787\) −16.6191 −0.592407 −0.296203 0.955125i \(-0.595721\pi\)
−0.296203 + 0.955125i \(0.595721\pi\)
\(788\) 0.192235 0.00684810
\(789\) −22.0743 −0.785867
\(790\) −1.39624 −0.0496761
\(791\) 0 0
\(792\) 16.4575 0.584791
\(793\) −18.4801 −0.656247
\(794\) −6.99316 −0.248178
\(795\) 9.99842 0.354607
\(796\) 51.5737 1.82798
\(797\) 24.5479 0.869532 0.434766 0.900543i \(-0.356831\pi\)
0.434766 + 0.900543i \(0.356831\pi\)
\(798\) 0 0
\(799\) 37.8828 1.34020
\(800\) −2.41842 −0.0855041
\(801\) −19.5149 −0.689525
\(802\) 9.72407 0.343369
\(803\) −10.3427 −0.364987
\(804\) 65.1850 2.29890
\(805\) 0 0
\(806\) 0.382438 0.0134708
\(807\) −45.7717 −1.61124
\(808\) 2.04663 0.0720001
\(809\) −3.99029 −0.140291 −0.0701455 0.997537i \(-0.522346\pi\)
−0.0701455 + 0.997537i \(0.522346\pi\)
\(810\) −5.56595 −0.195567
\(811\) 41.1357 1.44447 0.722235 0.691648i \(-0.243115\pi\)
0.722235 + 0.691648i \(0.243115\pi\)
\(812\) 0 0
\(813\) −60.7574 −2.13085
\(814\) −5.92193 −0.207564
\(815\) −18.6470 −0.653175
\(816\) −59.4654 −2.08171
\(817\) −7.31545 −0.255935
\(818\) 8.27914 0.289473
\(819\) 0 0
\(820\) −33.6550 −1.17528
\(821\) −2.43814 −0.0850917 −0.0425459 0.999095i \(-0.513547\pi\)
−0.0425459 + 0.999095i \(0.513547\pi\)
\(822\) 4.45125 0.155255
\(823\) 35.8018 1.24797 0.623985 0.781436i \(-0.285512\pi\)
0.623985 + 0.781436i \(0.285512\pi\)
\(824\) −19.2794 −0.671629
\(825\) −8.81949 −0.307055
\(826\) 0 0
\(827\) 3.66665 0.127502 0.0637510 0.997966i \(-0.479694\pi\)
0.0637510 + 0.997966i \(0.479694\pi\)
\(828\) 41.3845 1.43821
\(829\) 48.5906 1.68762 0.843811 0.536640i \(-0.180307\pi\)
0.843811 + 0.536640i \(0.180307\pi\)
\(830\) −3.01999 −0.104825
\(831\) −50.7678 −1.76111
\(832\) 9.79762 0.339671
\(833\) 0 0
\(834\) −12.8942 −0.446491
\(835\) 43.8594 1.51782
\(836\) −9.47803 −0.327805
\(837\) −0.166904 −0.00576905
\(838\) −1.73444 −0.0599152
\(839\) −9.11600 −0.314719 −0.157360 0.987541i \(-0.550298\pi\)
−0.157360 + 0.987541i \(0.550298\pi\)
\(840\) 0 0
\(841\) −13.9196 −0.479985
\(842\) −0.860243 −0.0296459
\(843\) −71.2890 −2.45533
\(844\) −27.8351 −0.958125
\(845\) −21.4082 −0.736466
\(846\) 4.60314 0.158259
\(847\) 0 0
\(848\) −6.96104 −0.239043
\(849\) −1.37724 −0.0472666
\(850\) −1.49231 −0.0511859
\(851\) −30.4431 −1.04358
\(852\) 30.3669 1.04035
\(853\) −1.01631 −0.0347979 −0.0173989 0.999849i \(-0.505539\pi\)
−0.0173989 + 0.999849i \(0.505539\pi\)
\(854\) 0 0
\(855\) −6.02185 −0.205943
\(856\) −10.2771 −0.351265
\(857\) −15.8851 −0.542626 −0.271313 0.962491i \(-0.587458\pi\)
−0.271313 + 0.962491i \(0.587458\pi\)
\(858\) −5.69460 −0.194410
\(859\) −5.72412 −0.195304 −0.0976522 0.995221i \(-0.531133\pi\)
−0.0976522 + 0.995221i \(0.531133\pi\)
\(860\) −28.9407 −0.986871
\(861\) 0 0
\(862\) 2.90503 0.0989456
\(863\) 13.8950 0.472990 0.236495 0.971633i \(-0.424001\pi\)
0.236495 + 0.971633i \(0.424001\pi\)
\(864\) 0.681486 0.0231846
\(865\) −14.0485 −0.477662
\(866\) 5.56772 0.189199
\(867\) −77.4902 −2.63171
\(868\) 0 0
\(869\) 11.4808 0.389459
\(870\) −5.68465 −0.192728
\(871\) −22.7243 −0.769982
\(872\) −7.99568 −0.270768
\(873\) −41.0049 −1.38781
\(874\) 2.15989 0.0730593
\(875\) 0 0
\(876\) 9.73383 0.328876
\(877\) −40.0210 −1.35141 −0.675707 0.737170i \(-0.736162\pi\)
−0.675707 + 0.737170i \(0.736162\pi\)
\(878\) −2.12896 −0.0718490
\(879\) −61.4594 −2.07298
\(880\) −35.7603 −1.20548
\(881\) 8.38440 0.282478 0.141239 0.989976i \(-0.454891\pi\)
0.141239 + 0.989976i \(0.454891\pi\)
\(882\) 0 0
\(883\) −20.0109 −0.673421 −0.336711 0.941608i \(-0.609314\pi\)
−0.336711 + 0.941608i \(0.609314\pi\)
\(884\) 21.7366 0.731082
\(885\) −28.9147 −0.971957
\(886\) −4.79702 −0.161159
\(887\) −29.1581 −0.979032 −0.489516 0.871994i \(-0.662827\pi\)
−0.489516 + 0.871994i \(0.662827\pi\)
\(888\) 11.3936 0.382346
\(889\) 0 0
\(890\) −4.02929 −0.135062
\(891\) 45.7666 1.53324
\(892\) 4.42061 0.148013
\(893\) −5.41950 −0.181357
\(894\) −6.20625 −0.207568
\(895\) 39.8113 1.33074
\(896\) 0 0
\(897\) −29.2744 −0.977444
\(898\) −2.83165 −0.0944933
\(899\) −3.13915 −0.104696
\(900\) 4.09057 0.136352
\(901\) −13.9110 −0.463442
\(902\) −12.2672 −0.408454
\(903\) 0 0
\(904\) 0.298531 0.00992900
\(905\) 42.4526 1.41117
\(906\) 8.53513 0.283561
\(907\) 50.6610 1.68217 0.841086 0.540902i \(-0.181917\pi\)
0.841086 + 0.540902i \(0.181917\pi\)
\(908\) −38.0191 −1.26171
\(909\) −5.23010 −0.173471
\(910\) 0 0
\(911\) −28.9746 −0.959970 −0.479985 0.877277i \(-0.659358\pi\)
−0.479985 + 0.877277i \(0.659358\pi\)
\(912\) 8.50709 0.281698
\(913\) 24.8322 0.821826
\(914\) −3.20550 −0.106028
\(915\) −57.1801 −1.89031
\(916\) −33.3748 −1.10273
\(917\) 0 0
\(918\) 0.420518 0.0138792
\(919\) 50.1894 1.65559 0.827797 0.561028i \(-0.189594\pi\)
0.827797 + 0.561028i \(0.189594\pi\)
\(920\) 17.4683 0.575912
\(921\) 15.4952 0.510586
\(922\) 8.35581 0.275184
\(923\) −10.5863 −0.348451
\(924\) 0 0
\(925\) −3.00908 −0.0989381
\(926\) −9.84011 −0.323366
\(927\) 49.2678 1.61817
\(928\) 12.8175 0.420754
\(929\) 33.9101 1.11255 0.556277 0.830997i \(-0.312229\pi\)
0.556277 + 0.830997i \(0.312229\pi\)
\(930\) 1.18332 0.0388026
\(931\) 0 0
\(932\) −17.0297 −0.557825
\(933\) −0.719144 −0.0235437
\(934\) 4.90887 0.160623
\(935\) −71.4635 −2.33711
\(936\) 5.39951 0.176488
\(937\) −17.4372 −0.569648 −0.284824 0.958580i \(-0.591935\pi\)
−0.284824 + 0.958580i \(0.591935\pi\)
\(938\) 0 0
\(939\) 49.5369 1.61657
\(940\) −21.4401 −0.699300
\(941\) 0.598364 0.0195061 0.00975306 0.999952i \(-0.496895\pi\)
0.00975306 + 0.999952i \(0.496895\pi\)
\(942\) 3.03003 0.0987238
\(943\) −63.0626 −2.05360
\(944\) 20.1308 0.655203
\(945\) 0 0
\(946\) −10.5489 −0.342974
\(947\) 33.3136 1.08255 0.541274 0.840846i \(-0.317942\pi\)
0.541274 + 0.840846i \(0.317942\pi\)
\(948\) −10.8049 −0.350926
\(949\) −3.39333 −0.110152
\(950\) 0.213490 0.00692652
\(951\) 74.2179 2.40668
\(952\) 0 0
\(953\) 8.41792 0.272683 0.136342 0.990662i \(-0.456466\pi\)
0.136342 + 0.990662i \(0.456466\pi\)
\(954\) −1.69032 −0.0547261
\(955\) −9.26207 −0.299714
\(956\) 20.9194 0.676583
\(957\) 46.7427 1.51098
\(958\) 6.71454 0.216937
\(959\) 0 0
\(960\) 30.3153 0.978421
\(961\) −30.3466 −0.978921
\(962\) −1.94292 −0.0626421
\(963\) 26.2629 0.846311
\(964\) −9.92785 −0.319755
\(965\) −51.7034 −1.66439
\(966\) 0 0
\(967\) −17.5459 −0.564237 −0.282118 0.959380i \(-0.591037\pi\)
−0.282118 + 0.959380i \(0.591037\pi\)
\(968\) −15.3925 −0.494733
\(969\) 17.0006 0.546138
\(970\) −8.46637 −0.271839
\(971\) −9.87266 −0.316829 −0.158414 0.987373i \(-0.550638\pi\)
−0.158414 + 0.987373i \(0.550638\pi\)
\(972\) −41.8860 −1.34349
\(973\) 0 0
\(974\) −6.39458 −0.204895
\(975\) −2.89357 −0.0926684
\(976\) 39.8096 1.27427
\(977\) −14.9641 −0.478743 −0.239371 0.970928i \(-0.576941\pi\)
−0.239371 + 0.970928i \(0.576941\pi\)
\(978\) 6.39668 0.204543
\(979\) 33.1312 1.05888
\(980\) 0 0
\(981\) 20.4327 0.652366
\(982\) 2.96853 0.0947296
\(983\) −6.58111 −0.209905 −0.104952 0.994477i \(-0.533469\pi\)
−0.104952 + 0.994477i \(0.533469\pi\)
\(984\) 23.6018 0.752399
\(985\) −0.207356 −0.00660690
\(986\) 7.90916 0.251879
\(987\) 0 0
\(988\) −3.10963 −0.0989305
\(989\) −54.2290 −1.72438
\(990\) −8.68352 −0.275980
\(991\) 15.1300 0.480621 0.240311 0.970696i \(-0.422751\pi\)
0.240311 + 0.970696i \(0.422751\pi\)
\(992\) −2.66809 −0.0847119
\(993\) 68.7832 2.18277
\(994\) 0 0
\(995\) −55.6303 −1.76360
\(996\) −23.3703 −0.740515
\(997\) −28.4545 −0.901164 −0.450582 0.892735i \(-0.648783\pi\)
−0.450582 + 0.892735i \(0.648783\pi\)
\(998\) 4.78716 0.151535
\(999\) 0.847929 0.0268273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.a.m.1.3 yes 4
3.2 odd 2 8379.2.a.bu.1.2 4
7.2 even 3 931.2.f.n.704.2 8
7.3 odd 6 931.2.f.o.324.2 8
7.4 even 3 931.2.f.n.324.2 8
7.5 odd 6 931.2.f.o.704.2 8
7.6 odd 2 931.2.a.l.1.3 4
21.20 even 2 8379.2.a.bv.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
931.2.a.l.1.3 4 7.6 odd 2
931.2.a.m.1.3 yes 4 1.1 even 1 trivial
931.2.f.n.324.2 8 7.4 even 3
931.2.f.n.704.2 8 7.2 even 3
931.2.f.o.324.2 8 7.3 odd 6
931.2.f.o.704.2 8 7.5 odd 6
8379.2.a.bu.1.2 4 3.2 odd 2
8379.2.a.bv.1.2 4 21.20 even 2