Properties

Label 931.2.a
Level $931$
Weight $2$
Character orbit 931.a
Rep. character $\chi_{931}(1,\cdot)$
Character field $\Q$
Dimension $62$
Newform subspaces $17$
Sturm bound $186$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(186\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\), \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(931))\).

Total New Old
Modular forms 100 62 38
Cusp forms 85 62 23
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(21\)\(14\)\(7\)\(18\)\(14\)\(4\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(29\)\(18\)\(11\)\(25\)\(18\)\(7\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(27\)\(18\)\(9\)\(23\)\(18\)\(5\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(23\)\(12\)\(11\)\(19\)\(12\)\(7\)\(4\)\(0\)\(4\)
Plus space\(+\)\(44\)\(26\)\(18\)\(37\)\(26\)\(11\)\(7\)\(0\)\(7\)
Minus space\(-\)\(56\)\(36\)\(20\)\(48\)\(36\)\(12\)\(8\)\(0\)\(8\)

Trace form

\( 62 q - q^{2} + 2 q^{3} + 61 q^{4} + 3 q^{5} + 3 q^{8} + 58 q^{9} + 10 q^{10} - 3 q^{11} + 12 q^{12} + 10 q^{13} + 2 q^{15} + 51 q^{16} + 5 q^{17} - 17 q^{18} - 2 q^{19} - 20 q^{22} - 4 q^{23} - 20 q^{24}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(931))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 19
931.2.a.a 931.a 1.a $1$ $7.434$ \(\Q\) None 19.2.a.a \(0\) \(2\) \(-3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{4}-3q^{5}+q^{9}+3q^{11}+\cdots\)
931.2.a.b 931.a 1.a $1$ $7.434$ \(\Q\) None 133.2.f.a \(2\) \(-2\) \(-3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-2q^{3}+2q^{4}-3q^{5}-4q^{6}+\cdots\)
931.2.a.c 931.a 1.a $1$ $7.434$ \(\Q\) None 133.2.f.a \(2\) \(2\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+2q^{4}+3q^{5}+4q^{6}+\cdots\)
931.2.a.d 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{5}) \) None 133.2.a.a \(-3\) \(3\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(1+\beta )q^{3}+3\beta q^{4}+\cdots\)
931.2.a.e 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{2}) \) None 133.2.f.c \(-2\) \(0\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+\beta q^{3}+(1-2\beta )q^{4}+\cdots\)
931.2.a.f 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{2}) \) None 133.2.f.c \(-2\) \(0\) \(2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-\beta q^{3}+(1-2\beta )q^{4}+\cdots\)
931.2.a.g 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{13}) \) None 133.2.a.b \(-1\) \(3\) \(6\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(2-\beta )q^{3}+(1+\beta )q^{4}+3q^{5}+\cdots\)
931.2.a.h 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{2}) \) None 133.2.f.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-\beta q^{3}+2\beta q^{5}-2q^{6}-2\beta q^{8}+\cdots\)
931.2.a.i 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{2}) \) None 133.2.f.b \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+\beta q^{3}-2\beta q^{5}+2q^{6}-2\beta q^{8}+\cdots\)
931.2.a.j 931.a 1.a $2$ $7.434$ \(\Q(\sqrt{5}) \) None 133.2.a.c \(1\) \(-3\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-2+\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
931.2.a.k 931.a 1.a $3$ $7.434$ 3.3.229.1 None 133.2.a.d \(2\) \(-3\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}+(-1+\beta _{1})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\)
931.2.a.l 931.a 1.a $4$ $7.434$ 4.4.5744.1 None 931.2.a.l \(0\) \(-2\) \(-8\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+(\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
931.2.a.m 931.a 1.a $4$ $7.434$ 4.4.5744.1 None 931.2.a.l \(0\) \(2\) \(8\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{2}q^{3}+(\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
931.2.a.n 931.a 1.a $7$ $7.434$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 133.2.f.d \(2\) \(-2\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}-\beta _{2}q^{3}+(1+\beta _{3}-\beta _{5})q^{4}+\cdots\)
931.2.a.o 931.a 1.a $7$ $7.434$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 133.2.f.d \(2\) \(2\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}+\beta _{2}q^{3}+(1+\beta _{3}-\beta _{5})q^{4}+\cdots\)
931.2.a.p 931.a 1.a $10$ $7.434$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 931.2.a.p \(-2\) \(-4\) \(-16\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(-2+\cdots)q^{5}+\cdots\)
931.2.a.q 931.a 1.a $10$ $7.434$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 931.2.a.p \(-2\) \(4\) \(16\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(2+\beta _{9})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(931))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(931)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 2}\)