Defining parameters
| Level: | \( N \) | \(=\) | \( 931 = 7^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 931.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 17 \) | ||
| Sturm bound: | \(186\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(931))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 100 | 62 | 38 |
| Cusp forms | 85 | 62 | 23 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(21\) | \(14\) | \(7\) | \(18\) | \(14\) | \(4\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(29\) | \(18\) | \(11\) | \(25\) | \(18\) | \(7\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(27\) | \(18\) | \(9\) | \(23\) | \(18\) | \(5\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(23\) | \(12\) | \(11\) | \(19\) | \(12\) | \(7\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(44\) | \(26\) | \(18\) | \(37\) | \(26\) | \(11\) | \(7\) | \(0\) | \(7\) | ||||
| Minus space | \(-\) | \(56\) | \(36\) | \(20\) | \(48\) | \(36\) | \(12\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(931))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(931))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(931)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 2}\)