Properties

Label 9300.2.g.r.3349.6
Level $9300$
Weight $2$
Character 9300.3349
Analytic conductor $74.261$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9300,2,Mod(3349,9300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9300.3349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9300.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-6,0,12,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.2608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.932935936.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 32x^{4} + 256x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1860)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.6
Root \(4.47467i\) of defining polynomial
Character \(\chi\) \(=\) 9300.3349
Dual form 9300.2.g.r.3349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.47467i q^{7} -1.00000 q^{9} +2.00000 q^{11} +4.47467i q^{13} -1.07331i q^{17} -4.00000 q^{19} -4.47467 q^{21} -1.07331i q^{23} -1.00000i q^{27} +3.54798 q^{29} -1.00000 q^{31} +2.00000i q^{33} -2.47467i q^{37} -4.47467 q^{39} +4.00000 q^{41} +2.00000i q^{43} +8.02265i q^{47} -13.0226 q^{49} +1.07331 q^{51} +10.0226i q^{53} -4.00000i q^{57} -9.54798 q^{59} -0.146623 q^{61} -4.47467i q^{63} +4.32804i q^{67} +1.07331 q^{69} +12.4973 q^{71} +15.4240i q^{73} +8.94933i q^{77} -9.87602 q^{79} +1.00000 q^{81} -2.92669i q^{83} +3.54798i q^{87} -15.4014 q^{89} -20.0226 q^{91} -1.00000i q^{93} -1.85338i q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} + 12 q^{11} - 24 q^{19} - 8 q^{29} - 6 q^{31} + 24 q^{41} - 22 q^{49} + 4 q^{51} - 28 q^{59} + 4 q^{61} + 4 q^{69} - 8 q^{71} - 8 q^{79} + 6 q^{81} - 68 q^{89} - 64 q^{91} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/9300\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\) \(4651\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.47467i 1.69127i 0.533765 + 0.845633i \(0.320777\pi\)
−0.533765 + 0.845633i \(0.679223\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 4.47467i 1.24105i 0.784187 + 0.620525i \(0.213080\pi\)
−0.784187 + 0.620525i \(0.786920\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.07331i − 0.260316i −0.991493 0.130158i \(-0.958451\pi\)
0.991493 0.130158i \(-0.0415485\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −4.47467 −0.976452
\(22\) 0 0
\(23\) − 1.07331i − 0.223801i −0.993719 0.111900i \(-0.964306\pi\)
0.993719 0.111900i \(-0.0356938\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 3.54798 0.658843 0.329422 0.944183i \(-0.393146\pi\)
0.329422 + 0.944183i \(0.393146\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.47467i − 0.406833i −0.979092 0.203416i \(-0.934795\pi\)
0.979092 0.203416i \(-0.0652045\pi\)
\(38\) 0 0
\(39\) −4.47467 −0.716520
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i 0.988304 + 0.152499i \(0.0487319\pi\)
−0.988304 + 0.152499i \(0.951268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.02265i 1.17022i 0.810953 + 0.585112i \(0.198949\pi\)
−0.810953 + 0.585112i \(0.801051\pi\)
\(48\) 0 0
\(49\) −13.0226 −1.86038
\(50\) 0 0
\(51\) 1.07331 0.150294
\(52\) 0 0
\(53\) 10.0226i 1.37672i 0.725371 + 0.688358i \(0.241668\pi\)
−0.725371 + 0.688358i \(0.758332\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 4.00000i − 0.529813i
\(58\) 0 0
\(59\) −9.54798 −1.24304 −0.621520 0.783398i \(-0.713485\pi\)
−0.621520 + 0.783398i \(0.713485\pi\)
\(60\) 0 0
\(61\) −0.146623 −0.0187731 −0.00938657 0.999956i \(-0.502988\pi\)
−0.00938657 + 0.999956i \(0.502988\pi\)
\(62\) 0 0
\(63\) − 4.47467i − 0.563755i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.32804i 0.528755i 0.964419 + 0.264377i \(0.0851664\pi\)
−0.964419 + 0.264377i \(0.914834\pi\)
\(68\) 0 0
\(69\) 1.07331 0.129212
\(70\) 0 0
\(71\) 12.4973 1.48316 0.741579 0.670865i \(-0.234077\pi\)
0.741579 + 0.670865i \(0.234077\pi\)
\(72\) 0 0
\(73\) 15.4240i 1.80524i 0.430435 + 0.902621i \(0.358360\pi\)
−0.430435 + 0.902621i \(0.641640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.94933i 1.01987i
\(78\) 0 0
\(79\) −9.87602 −1.11114 −0.555570 0.831470i \(-0.687500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 2.92669i − 0.321246i −0.987016 0.160623i \(-0.948650\pi\)
0.987016 0.160623i \(-0.0513503\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.54798i 0.380383i
\(88\) 0 0
\(89\) −15.4014 −1.63254 −0.816270 0.577670i \(-0.803962\pi\)
−0.816270 + 0.577670i \(0.803962\pi\)
\(90\) 0 0
\(91\) −20.0226 −2.09894
\(92\) 0 0
\(93\) − 1.00000i − 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.85338i − 0.188182i −0.995564 0.0940910i \(-0.970006\pi\)
0.995564 0.0940910i \(-0.0299945\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −1.85338 −0.184418 −0.0922090 0.995740i \(-0.529393\pi\)
−0.0922090 + 0.995740i \(0.529393\pi\)
\(102\) 0 0
\(103\) − 15.4240i − 1.51977i −0.650056 0.759886i \(-0.725255\pi\)
0.650056 0.759886i \(-0.274745\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.21993i 0.117935i 0.998260 + 0.0589677i \(0.0187809\pi\)
−0.998260 + 0.0589677i \(0.981219\pi\)
\(108\) 0 0
\(109\) −5.07331 −0.485935 −0.242968 0.970034i \(-0.578121\pi\)
−0.242968 + 0.970034i \(0.578121\pi\)
\(110\) 0 0
\(111\) 2.47467 0.234885
\(112\) 0 0
\(113\) 1.05067i 0.0988383i 0.998778 + 0.0494192i \(0.0157370\pi\)
−0.998778 + 0.0494192i \(0.984263\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.47467i − 0.413683i
\(118\) 0 0
\(119\) 4.80271 0.440264
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.05067i 0.270703i 0.990798 + 0.135351i \(0.0432163\pi\)
−0.990798 + 0.135351i \(0.956784\pi\)
\(128\) 0 0
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) 7.40136 0.646659 0.323330 0.946286i \(-0.395198\pi\)
0.323330 + 0.946286i \(0.395198\pi\)
\(132\) 0 0
\(133\) − 17.8987i − 1.55201i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.9720i 1.27914i 0.768732 + 0.639571i \(0.220888\pi\)
−0.768732 + 0.639571i \(0.779112\pi\)
\(138\) 0 0
\(139\) 14.8027 1.25555 0.627775 0.778395i \(-0.283966\pi\)
0.627775 + 0.778395i \(0.283966\pi\)
\(140\) 0 0
\(141\) −8.02265 −0.675629
\(142\) 0 0
\(143\) 8.94933i 0.748381i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 13.0226i − 1.07409i
\(148\) 0 0
\(149\) 9.89867 0.810931 0.405465 0.914110i \(-0.367110\pi\)
0.405465 + 0.914110i \(0.367110\pi\)
\(150\) 0 0
\(151\) −4.92669 −0.400928 −0.200464 0.979701i \(-0.564245\pi\)
−0.200464 + 0.979701i \(0.564245\pi\)
\(152\) 0 0
\(153\) 1.07331i 0.0867721i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000i 0.319235i 0.987179 + 0.159617i \(0.0510260\pi\)
−0.987179 + 0.159617i \(0.948974\pi\)
\(158\) 0 0
\(159\) −10.0226 −0.794848
\(160\) 0 0
\(161\) 4.80271 0.378507
\(162\) 0 0
\(163\) − 14.4747i − 1.13374i −0.823806 0.566872i \(-0.808154\pi\)
0.823806 0.566872i \(-0.191846\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 17.2426i − 1.33427i −0.744936 0.667135i \(-0.767520\pi\)
0.744936 0.667135i \(-0.232480\pi\)
\(168\) 0 0
\(169\) −7.02265 −0.540204
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) − 6.94933i − 0.528348i −0.964475 0.264174i \(-0.914901\pi\)
0.964475 0.264174i \(-0.0850993\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 9.54798i − 0.717670i
\(178\) 0 0
\(179\) −5.85338 −0.437502 −0.218751 0.975781i \(-0.570198\pi\)
−0.218751 + 0.975781i \(0.570198\pi\)
\(180\) 0 0
\(181\) −17.7520 −1.31950 −0.659750 0.751486i \(-0.729338\pi\)
−0.659750 + 0.751486i \(0.729338\pi\)
\(182\) 0 0
\(183\) − 0.146623i − 0.0108387i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.14662i − 0.156977i
\(188\) 0 0
\(189\) 4.47467 0.325484
\(190\) 0 0
\(191\) 8.35069 0.604235 0.302117 0.953271i \(-0.402307\pi\)
0.302117 + 0.953271i \(0.402307\pi\)
\(192\) 0 0
\(193\) − 8.00000i − 0.575853i −0.957653 0.287926i \(-0.907034\pi\)
0.957653 0.287926i \(-0.0929658\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 6.97198i − 0.496733i −0.968666 0.248366i \(-0.920106\pi\)
0.968666 0.248366i \(-0.0798937\pi\)
\(198\) 0 0
\(199\) 5.21993 0.370031 0.185016 0.982736i \(-0.440766\pi\)
0.185016 + 0.982736i \(0.440766\pi\)
\(200\) 0 0
\(201\) −4.32804 −0.305277
\(202\) 0 0
\(203\) 15.8760i 1.11428i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.07331i 0.0746003i
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −15.0960 −1.03925 −0.519624 0.854395i \(-0.673928\pi\)
−0.519624 + 0.854395i \(0.673928\pi\)
\(212\) 0 0
\(213\) 12.4973i 0.856302i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 4.47467i − 0.303760i
\(218\) 0 0
\(219\) −15.4240 −1.04226
\(220\) 0 0
\(221\) 4.80271 0.323065
\(222\) 0 0
\(223\) − 18.9493i − 1.26894i −0.772947 0.634471i \(-0.781218\pi\)
0.772947 0.634471i \(-0.218782\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.07331i 0.469472i 0.972059 + 0.234736i \(0.0754226\pi\)
−0.972059 + 0.234736i \(0.924577\pi\)
\(228\) 0 0
\(229\) 5.09596 0.336750 0.168375 0.985723i \(-0.446148\pi\)
0.168375 + 0.985723i \(0.446148\pi\)
\(230\) 0 0
\(231\) −8.94933 −0.588823
\(232\) 0 0
\(233\) 13.8760i 0.909048i 0.890734 + 0.454524i \(0.150191\pi\)
−0.890734 + 0.454524i \(0.849809\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 9.87602i − 0.641517i
\(238\) 0 0
\(239\) 1.09596 0.0708916 0.0354458 0.999372i \(-0.488715\pi\)
0.0354458 + 0.999372i \(0.488715\pi\)
\(240\) 0 0
\(241\) 11.2426 0.724198 0.362099 0.932140i \(-0.382060\pi\)
0.362099 + 0.932140i \(0.382060\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 17.8987i − 1.13886i
\(248\) 0 0
\(249\) 2.92669 0.185471
\(250\) 0 0
\(251\) 16.0453 1.01277 0.506385 0.862308i \(-0.330982\pi\)
0.506385 + 0.862308i \(0.330982\pi\)
\(252\) 0 0
\(253\) − 2.14662i − 0.134957i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4.02265i − 0.250926i −0.992098 0.125463i \(-0.959958\pi\)
0.992098 0.125463i \(-0.0400416\pi\)
\(258\) 0 0
\(259\) 11.0733 0.688062
\(260\) 0 0
\(261\) −3.54798 −0.219614
\(262\) 0 0
\(263\) − 27.0960i − 1.67081i −0.549636 0.835404i \(-0.685234\pi\)
0.549636 0.835404i \(-0.314766\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 15.4014i − 0.942548i
\(268\) 0 0
\(269\) −0.745267 −0.0454397 −0.0227199 0.999742i \(-0.507233\pi\)
−0.0227199 + 0.999742i \(0.507233\pi\)
\(270\) 0 0
\(271\) 20.9946 1.27533 0.637666 0.770313i \(-0.279900\pi\)
0.637666 + 0.770313i \(0.279900\pi\)
\(272\) 0 0
\(273\) − 20.0226i − 1.21183i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.47467i 0.389025i 0.980900 + 0.194513i \(0.0623125\pi\)
−0.980900 + 0.194513i \(0.937688\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 1.05067 0.0626775 0.0313387 0.999509i \(-0.490023\pi\)
0.0313387 + 0.999509i \(0.490023\pi\)
\(282\) 0 0
\(283\) 7.57062i 0.450027i 0.974356 + 0.225013i \(0.0722426\pi\)
−0.974356 + 0.225013i \(0.927757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.8987i 1.05652i
\(288\) 0 0
\(289\) 15.8480 0.932235
\(290\) 0 0
\(291\) 1.85338 0.108647
\(292\) 0 0
\(293\) − 5.87602i − 0.343281i −0.985160 0.171640i \(-0.945093\pi\)
0.985160 0.171640i \(-0.0549067\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.00000i − 0.116052i
\(298\) 0 0
\(299\) 4.80271 0.277748
\(300\) 0 0
\(301\) −8.94933 −0.515831
\(302\) 0 0
\(303\) − 1.85338i − 0.106474i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.7172i 1.01118i 0.862775 + 0.505588i \(0.168725\pi\)
−0.862775 + 0.505588i \(0.831275\pi\)
\(308\) 0 0
\(309\) 15.4240 0.877441
\(310\) 0 0
\(311\) −14.3507 −0.813753 −0.406876 0.913483i \(-0.633382\pi\)
−0.406876 + 0.913483i \(0.633382\pi\)
\(312\) 0 0
\(313\) 19.3227i 1.09218i 0.837726 + 0.546091i \(0.183885\pi\)
−0.837726 + 0.546091i \(0.816115\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32.0226i 1.79857i 0.437362 + 0.899285i \(0.355913\pi\)
−0.437362 + 0.899285i \(0.644087\pi\)
\(318\) 0 0
\(319\) 7.09596 0.397297
\(320\) 0 0
\(321\) −1.21993 −0.0680901
\(322\) 0 0
\(323\) 4.29325i 0.238883i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 5.07331i − 0.280555i
\(328\) 0 0
\(329\) −35.8987 −1.97916
\(330\) 0 0
\(331\) −29.8760 −1.64213 −0.821067 0.570831i \(-0.806621\pi\)
−0.821067 + 0.570831i \(0.806621\pi\)
\(332\) 0 0
\(333\) 2.47467i 0.135611i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 6.47467i − 0.352698i −0.984328 0.176349i \(-0.943571\pi\)
0.984328 0.176349i \(-0.0564287\pi\)
\(338\) 0 0
\(339\) −1.05067 −0.0570643
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) − 26.9493i − 1.45513i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9.24258i − 0.496168i −0.968739 0.248084i \(-0.920199\pi\)
0.968739 0.248084i \(-0.0798008\pi\)
\(348\) 0 0
\(349\) −6.92669 −0.370777 −0.185389 0.982665i \(-0.559354\pi\)
−0.185389 + 0.982665i \(0.559354\pi\)
\(350\) 0 0
\(351\) 4.47467 0.238840
\(352\) 0 0
\(353\) 0.780066i 0.0415187i 0.999785 + 0.0207594i \(0.00660838\pi\)
−0.999785 + 0.0207594i \(0.993392\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.80271i 0.254186i
\(358\) 0 0
\(359\) −32.3960 −1.70979 −0.854897 0.518797i \(-0.826380\pi\)
−0.854897 + 0.518797i \(0.826380\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) − 7.00000i − 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.89867i − 0.0991097i −0.998771 0.0495548i \(-0.984220\pi\)
0.998771 0.0495548i \(-0.0157803\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) −44.8480 −2.32839
\(372\) 0 0
\(373\) − 29.0960i − 1.50653i −0.657716 0.753266i \(-0.728477\pi\)
0.657716 0.753266i \(-0.271523\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.8760i 0.817657i
\(378\) 0 0
\(379\) 29.8987 1.53579 0.767896 0.640575i \(-0.221304\pi\)
0.767896 + 0.640575i \(0.221304\pi\)
\(380\) 0 0
\(381\) −3.05067 −0.156290
\(382\) 0 0
\(383\) − 32.8254i − 1.67730i −0.544673 0.838649i \(-0.683346\pi\)
0.544673 0.838649i \(-0.316654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.00000i − 0.101666i
\(388\) 0 0
\(389\) −33.5480 −1.70095 −0.850475 0.526015i \(-0.823685\pi\)
−0.850475 + 0.526015i \(0.823685\pi\)
\(390\) 0 0
\(391\) −1.15200 −0.0582590
\(392\) 0 0
\(393\) 7.40136i 0.373349i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 10.0453i − 0.504159i −0.967707 0.252079i \(-0.918886\pi\)
0.967707 0.252079i \(-0.0811144\pi\)
\(398\) 0 0
\(399\) 17.8987 0.896054
\(400\) 0 0
\(401\) −29.5933 −1.47782 −0.738909 0.673806i \(-0.764659\pi\)
−0.738909 + 0.673806i \(0.764659\pi\)
\(402\) 0 0
\(403\) − 4.47467i − 0.222899i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.94933i − 0.245329i
\(408\) 0 0
\(409\) −5.75205 −0.284420 −0.142210 0.989836i \(-0.545421\pi\)
−0.142210 + 0.989836i \(0.545421\pi\)
\(410\) 0 0
\(411\) −14.9720 −0.738513
\(412\) 0 0
\(413\) − 42.7240i − 2.10231i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.8027i 0.724892i
\(418\) 0 0
\(419\) 24.5426 1.19898 0.599492 0.800380i \(-0.295369\pi\)
0.599492 + 0.800380i \(0.295369\pi\)
\(420\) 0 0
\(421\) −22.0679 −1.07553 −0.537763 0.843096i \(-0.680730\pi\)
−0.537763 + 0.843096i \(0.680730\pi\)
\(422\) 0 0
\(423\) − 8.02265i − 0.390074i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 0.656088i − 0.0317503i
\(428\) 0 0
\(429\) −8.94933 −0.432078
\(430\) 0 0
\(431\) −26.3507 −1.26927 −0.634634 0.772813i \(-0.718849\pi\)
−0.634634 + 0.772813i \(0.718849\pi\)
\(432\) 0 0
\(433\) 29.6159i 1.42325i 0.702559 + 0.711625i \(0.252040\pi\)
−0.702559 + 0.711625i \(0.747960\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.29325i 0.205374i
\(438\) 0 0
\(439\) −27.7973 −1.32669 −0.663347 0.748312i \(-0.730865\pi\)
−0.663347 + 0.748312i \(0.730865\pi\)
\(440\) 0 0
\(441\) 13.0226 0.620126
\(442\) 0 0
\(443\) − 17.2199i − 0.818144i −0.912502 0.409072i \(-0.865853\pi\)
0.912502 0.409072i \(-0.134147\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.89867i 0.468191i
\(448\) 0 0
\(449\) −4.30540 −0.203184 −0.101592 0.994826i \(-0.532394\pi\)
−0.101592 + 0.994826i \(0.532394\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) − 4.92669i − 0.231476i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 11.3787i − 0.532274i −0.963935 0.266137i \(-0.914253\pi\)
0.963935 0.266137i \(-0.0857473\pi\)
\(458\) 0 0
\(459\) −1.07331 −0.0500979
\(460\) 0 0
\(461\) 3.54798 0.165246 0.0826229 0.996581i \(-0.473670\pi\)
0.0826229 + 0.996581i \(0.473670\pi\)
\(462\) 0 0
\(463\) − 41.7520i − 1.94038i −0.242341 0.970191i \(-0.577915\pi\)
0.242341 0.970191i \(-0.422085\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 29.6281i − 1.37102i −0.728062 0.685512i \(-0.759579\pi\)
0.728062 0.685512i \(-0.240421\pi\)
\(468\) 0 0
\(469\) −19.3666 −0.894265
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 4.00000i 0.183920i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 10.0226i − 0.458905i
\(478\) 0 0
\(479\) 33.4466 1.52822 0.764108 0.645088i \(-0.223179\pi\)
0.764108 + 0.645088i \(0.223179\pi\)
\(480\) 0 0
\(481\) 11.0733 0.504900
\(482\) 0 0
\(483\) 4.80271i 0.218531i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 23.3892i − 1.05987i −0.848040 0.529933i \(-0.822217\pi\)
0.848040 0.529933i \(-0.177783\pi\)
\(488\) 0 0
\(489\) 14.4747 0.654567
\(490\) 0 0
\(491\) 32.7014 1.47579 0.737896 0.674914i \(-0.235819\pi\)
0.737896 + 0.674914i \(0.235819\pi\)
\(492\) 0 0
\(493\) − 3.80809i − 0.171508i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 55.9213i 2.50841i
\(498\) 0 0
\(499\) −18.1919 −0.814382 −0.407191 0.913343i \(-0.633492\pi\)
−0.407191 + 0.913343i \(0.633492\pi\)
\(500\) 0 0
\(501\) 17.2426 0.770342
\(502\) 0 0
\(503\) 36.0679i 1.60819i 0.594501 + 0.804095i \(0.297350\pi\)
−0.594501 + 0.804095i \(0.702650\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 7.02265i − 0.311887i
\(508\) 0 0
\(509\) −42.5426 −1.88567 −0.942834 0.333263i \(-0.891850\pi\)
−0.942834 + 0.333263i \(0.891850\pi\)
\(510\) 0 0
\(511\) −69.0173 −3.05314
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0453i 0.705671i
\(518\) 0 0
\(519\) 6.94933 0.305042
\(520\) 0 0
\(521\) 8.29325 0.363334 0.181667 0.983360i \(-0.441851\pi\)
0.181667 + 0.983360i \(0.441851\pi\)
\(522\) 0 0
\(523\) − 5.19729i − 0.227262i −0.993523 0.113631i \(-0.963752\pi\)
0.993523 0.113631i \(-0.0362481\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.07331i 0.0467542i
\(528\) 0 0
\(529\) 21.8480 0.949913
\(530\) 0 0
\(531\) 9.54798 0.414347
\(532\) 0 0
\(533\) 17.8987i 0.775277i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 5.85338i − 0.252592i
\(538\) 0 0
\(539\) −26.0453 −1.12185
\(540\) 0 0
\(541\) 43.6281 1.87572 0.937859 0.347018i \(-0.112806\pi\)
0.937859 + 0.347018i \(0.112806\pi\)
\(542\) 0 0
\(543\) − 17.7520i − 0.761813i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.52533i − 0.236246i −0.992999 0.118123i \(-0.962312\pi\)
0.992999 0.118123i \(-0.0376877\pi\)
\(548\) 0 0
\(549\) 0.146623 0.00625771
\(550\) 0 0
\(551\) −14.1919 −0.604596
\(552\) 0 0
\(553\) − 44.1919i − 1.87923i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.0733i 0.723419i 0.932291 + 0.361710i \(0.117807\pi\)
−0.932291 + 0.361710i \(0.882193\pi\)
\(558\) 0 0
\(559\) −8.94933 −0.378517
\(560\) 0 0
\(561\) 2.14662 0.0906305
\(562\) 0 0
\(563\) − 11.0733i − 0.466684i −0.972395 0.233342i \(-0.925034\pi\)
0.972395 0.233342i \(-0.0749662\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.47467i 0.187918i
\(568\) 0 0
\(569\) −35.5933 −1.49215 −0.746074 0.665863i \(-0.768063\pi\)
−0.746074 + 0.665863i \(0.768063\pi\)
\(570\) 0 0
\(571\) 34.8933 1.46024 0.730119 0.683320i \(-0.239464\pi\)
0.730119 + 0.683320i \(0.239464\pi\)
\(572\) 0 0
\(573\) 8.35069i 0.348855i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 46.8933i 1.95219i 0.217337 + 0.976097i \(0.430263\pi\)
−0.217337 + 0.976097i \(0.569737\pi\)
\(578\) 0 0
\(579\) 8.00000 0.332469
\(580\) 0 0
\(581\) 13.0960 0.543312
\(582\) 0 0
\(583\) 20.0453i 0.830191i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7.09596i − 0.292881i −0.989219 0.146441i \(-0.953218\pi\)
0.989219 0.146441i \(-0.0467818\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 6.97198 0.286789
\(592\) 0 0
\(593\) 18.9946i 0.780016i 0.920812 + 0.390008i \(0.127528\pi\)
−0.920812 + 0.390008i \(0.872472\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.21993i 0.213638i
\(598\) 0 0
\(599\) −21.4014 −0.874436 −0.437218 0.899356i \(-0.644036\pi\)
−0.437218 + 0.899356i \(0.644036\pi\)
\(600\) 0 0
\(601\) 17.0507 0.695511 0.347756 0.937585i \(-0.386944\pi\)
0.347756 + 0.937585i \(0.386944\pi\)
\(602\) 0 0
\(603\) − 4.32804i − 0.176252i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 47.2213i 1.91665i 0.285672 + 0.958327i \(0.407783\pi\)
−0.285672 + 0.958327i \(0.592217\pi\)
\(608\) 0 0
\(609\) −15.8760 −0.643329
\(610\) 0 0
\(611\) −35.8987 −1.45230
\(612\) 0 0
\(613\) 13.1308i 0.530346i 0.964201 + 0.265173i \(0.0854291\pi\)
−0.964201 + 0.265173i \(0.914571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.6054i 1.27239i 0.771530 + 0.636193i \(0.219492\pi\)
−0.771530 + 0.636193i \(0.780508\pi\)
\(618\) 0 0
\(619\) −6.16927 −0.247964 −0.123982 0.992284i \(-0.539566\pi\)
−0.123982 + 0.992284i \(0.539566\pi\)
\(620\) 0 0
\(621\) −1.07331 −0.0430705
\(622\) 0 0
\(623\) − 68.9159i − 2.76106i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 8.00000i − 0.319489i
\(628\) 0 0
\(629\) −2.65609 −0.105905
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) − 15.0960i − 0.600010i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 58.2720i − 2.30882i
\(638\) 0 0
\(639\) −12.4973 −0.494386
\(640\) 0 0
\(641\) 35.5933 1.40585 0.702925 0.711264i \(-0.251877\pi\)
0.702925 + 0.711264i \(0.251877\pi\)
\(642\) 0 0
\(643\) 0.904043i 0.0356520i 0.999841 + 0.0178260i \(0.00567449\pi\)
−0.999841 + 0.0178260i \(0.994326\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.24795i 0.167004i 0.996508 + 0.0835022i \(0.0266105\pi\)
−0.996508 + 0.0835022i \(0.973389\pi\)
\(648\) 0 0
\(649\) −19.0960 −0.749582
\(650\) 0 0
\(651\) 4.47467 0.175376
\(652\) 0 0
\(653\) 12.0679i 0.472255i 0.971722 + 0.236127i \(0.0758783\pi\)
−0.971722 + 0.236127i \(0.924122\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 15.4240i − 0.601748i
\(658\) 0 0
\(659\) −21.6946 −0.845102 −0.422551 0.906339i \(-0.638865\pi\)
−0.422551 + 0.906339i \(0.638865\pi\)
\(660\) 0 0
\(661\) 5.05067 0.196448 0.0982241 0.995164i \(-0.468684\pi\)
0.0982241 + 0.995164i \(0.468684\pi\)
\(662\) 0 0
\(663\) 4.80271i 0.186522i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 3.80809i − 0.147450i
\(668\) 0 0
\(669\) 18.9493 0.732624
\(670\) 0 0
\(671\) −0.293246 −0.0113206
\(672\) 0 0
\(673\) − 33.7625i − 1.30145i −0.759313 0.650725i \(-0.774465\pi\)
0.759313 0.650725i \(-0.225535\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.8760i 1.37883i 0.724368 + 0.689414i \(0.242132\pi\)
−0.724368 + 0.689414i \(0.757868\pi\)
\(678\) 0 0
\(679\) 8.29325 0.318266
\(680\) 0 0
\(681\) −7.07331 −0.271050
\(682\) 0 0
\(683\) 16.6787i 0.638194i 0.947722 + 0.319097i \(0.103380\pi\)
−0.947722 + 0.319097i \(0.896620\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.09596i 0.194423i
\(688\) 0 0
\(689\) −44.8480 −1.70857
\(690\) 0 0
\(691\) −26.8027 −1.01962 −0.509812 0.860286i \(-0.670285\pi\)
−0.509812 + 0.860286i \(0.670285\pi\)
\(692\) 0 0
\(693\) − 8.94933i − 0.339957i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.29325i − 0.162618i
\(698\) 0 0
\(699\) −13.8760 −0.524839
\(700\) 0 0
\(701\) 12.9493 0.489090 0.244545 0.969638i \(-0.421361\pi\)
0.244545 + 0.969638i \(0.421361\pi\)
\(702\) 0 0
\(703\) 9.89867i 0.373335i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 8.29325i − 0.311900i
\(708\) 0 0
\(709\) 19.6054 0.736297 0.368149 0.929767i \(-0.379992\pi\)
0.368149 + 0.929767i \(0.379992\pi\)
\(710\) 0 0
\(711\) 9.87602 0.370380
\(712\) 0 0
\(713\) 1.07331i 0.0401958i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.09596i 0.0409293i
\(718\) 0 0
\(719\) 22.0906 0.823840 0.411920 0.911220i \(-0.364858\pi\)
0.411920 + 0.911220i \(0.364858\pi\)
\(720\) 0 0
\(721\) 69.0173 2.57034
\(722\) 0 0
\(723\) 11.2426i 0.418116i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 12.3280i 0.457222i 0.973518 + 0.228611i \(0.0734184\pi\)
−0.973518 + 0.228611i \(0.926582\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.14662 0.0793957
\(732\) 0 0
\(733\) − 25.7973i − 0.952846i −0.879216 0.476423i \(-0.841933\pi\)
0.879216 0.476423i \(-0.158067\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.65609i 0.318851i
\(738\) 0 0
\(739\) 11.1186 0.409004 0.204502 0.978866i \(-0.434442\pi\)
0.204502 + 0.978866i \(0.434442\pi\)
\(740\) 0 0
\(741\) 17.8987 0.657524
\(742\) 0 0
\(743\) − 22.8027i − 0.836550i −0.908320 0.418275i \(-0.862635\pi\)
0.908320 0.418275i \(-0.137365\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.92669i 0.107082i
\(748\) 0 0
\(749\) −5.45880 −0.199460
\(750\) 0 0
\(751\) −0.949334 −0.0346417 −0.0173208 0.999850i \(-0.505514\pi\)
−0.0173208 + 0.999850i \(0.505514\pi\)
\(752\) 0 0
\(753\) 16.0453i 0.584723i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 36.8132i − 1.33800i −0.743263 0.668999i \(-0.766723\pi\)
0.743263 0.668999i \(-0.233277\pi\)
\(758\) 0 0
\(759\) 2.14662 0.0779175
\(760\) 0 0
\(761\) 35.5480 1.28861 0.644307 0.764767i \(-0.277146\pi\)
0.644307 + 0.764767i \(0.277146\pi\)
\(762\) 0 0
\(763\) − 22.7014i − 0.821845i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 42.7240i − 1.54268i
\(768\) 0 0
\(769\) 25.4118 0.916375 0.458187 0.888856i \(-0.348499\pi\)
0.458187 + 0.888856i \(0.348499\pi\)
\(770\) 0 0
\(771\) 4.02265 0.144872
\(772\) 0 0
\(773\) − 30.7240i − 1.10507i −0.833491 0.552533i \(-0.813661\pi\)
0.833491 0.552533i \(-0.186339\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 11.0733i 0.397253i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) 24.9946 0.894378
\(782\) 0 0
\(783\) − 3.54798i − 0.126794i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 24.8933i 0.887350i 0.896188 + 0.443675i \(0.146326\pi\)
−0.896188 + 0.443675i \(0.853674\pi\)
\(788\) 0 0
\(789\) 27.0960 0.964642
\(790\) 0 0
\(791\) −4.70138 −0.167162
\(792\) 0 0
\(793\) − 0.656088i − 0.0232984i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.0733i 0.604768i 0.953186 + 0.302384i \(0.0977824\pi\)
−0.953186 + 0.302384i \(0.902218\pi\)
\(798\) 0 0
\(799\) 8.61080 0.304628
\(800\) 0 0
\(801\) 15.4014 0.544180
\(802\) 0 0
\(803\) 30.8480i 1.08860i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 0.745267i − 0.0262346i
\(808\) 0 0
\(809\) −2.45202 −0.0862085 −0.0431042 0.999071i \(-0.513725\pi\)
−0.0431042 + 0.999071i \(0.513725\pi\)
\(810\) 0 0
\(811\) −15.1412 −0.531681 −0.265841 0.964017i \(-0.585649\pi\)
−0.265841 + 0.964017i \(0.585649\pi\)
\(812\) 0 0
\(813\) 20.9946i 0.736314i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.00000i − 0.279885i
\(818\) 0 0
\(819\) 20.0226 0.699648
\(820\) 0 0
\(821\) −2.45202 −0.0855761 −0.0427881 0.999084i \(-0.513624\pi\)
−0.0427881 + 0.999084i \(0.513624\pi\)
\(822\) 0 0
\(823\) 30.0453i 1.04731i 0.851929 + 0.523657i \(0.175432\pi\)
−0.851929 + 0.523657i \(0.824568\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.9159i 1.97916i 0.143980 + 0.989581i \(0.454010\pi\)
−0.143980 + 0.989581i \(0.545990\pi\)
\(828\) 0 0
\(829\) 32.8933 1.14243 0.571216 0.820800i \(-0.306472\pi\)
0.571216 + 0.820800i \(0.306472\pi\)
\(830\) 0 0
\(831\) −6.47467 −0.224604
\(832\) 0 0
\(833\) 13.9774i 0.484287i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000i 0.0345651i
\(838\) 0 0
\(839\) −38.7906 −1.33920 −0.669599 0.742722i \(-0.733534\pi\)
−0.669599 + 0.742722i \(0.733534\pi\)
\(840\) 0 0
\(841\) −16.4118 −0.565926
\(842\) 0 0
\(843\) 1.05067i 0.0361869i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 31.3227i − 1.07626i
\(848\) 0 0
\(849\) −7.57062 −0.259823
\(850\) 0 0
\(851\) −2.65609 −0.0910495
\(852\) 0 0
\(853\) 48.9493i 1.67599i 0.545675 + 0.837997i \(0.316273\pi\)
−0.545675 + 0.837997i \(0.683727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 56.6453i − 1.93497i −0.252932 0.967484i \(-0.581395\pi\)
0.252932 0.967484i \(-0.418605\pi\)
\(858\) 0 0
\(859\) −37.8987 −1.29309 −0.646543 0.762878i \(-0.723786\pi\)
−0.646543 + 0.762878i \(0.723786\pi\)
\(860\) 0 0
\(861\) −17.8987 −0.609985
\(862\) 0 0
\(863\) − 10.1013i − 0.343853i −0.985110 0.171927i \(-0.945001\pi\)
0.985110 0.171927i \(-0.0549992\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 15.8480i 0.538226i
\(868\) 0 0
\(869\) −19.7520 −0.670042
\(870\) 0 0
\(871\) −19.3666 −0.656211
\(872\) 0 0
\(873\) 1.85338i 0.0627273i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.7014i 0.428895i 0.976736 + 0.214448i \(0.0687951\pi\)
−0.976736 + 0.214448i \(0.931205\pi\)
\(878\) 0 0
\(879\) 5.87602 0.198193
\(880\) 0 0
\(881\) −38.5426 −1.29853 −0.649267 0.760561i \(-0.724924\pi\)
−0.649267 + 0.760561i \(0.724924\pi\)
\(882\) 0 0
\(883\) − 15.1973i − 0.511429i −0.966752 0.255715i \(-0.917689\pi\)
0.966752 0.255715i \(-0.0823108\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 11.7294i − 0.393835i −0.980420 0.196917i \(-0.936907\pi\)
0.980420 0.196917i \(-0.0630931\pi\)
\(888\) 0 0
\(889\) −13.6507 −0.457830
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) − 32.0906i − 1.07387i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.80271i 0.160358i
\(898\) 0 0
\(899\) −3.54798 −0.118332
\(900\) 0 0
\(901\) 10.7574 0.358382
\(902\) 0 0
\(903\) − 8.94933i − 0.297815i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 42.3280i − 1.40548i −0.711447 0.702740i \(-0.751960\pi\)
0.711447 0.702740i \(-0.248040\pi\)
\(908\) 0 0
\(909\) 1.85338 0.0614726
\(910\) 0 0
\(911\) −15.8987 −0.526746 −0.263373 0.964694i \(-0.584835\pi\)
−0.263373 + 0.964694i \(0.584835\pi\)
\(912\) 0 0
\(913\) − 5.85338i − 0.193719i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 33.1186i 1.09367i
\(918\) 0 0
\(919\) 51.5494 1.70046 0.850229 0.526414i \(-0.176464\pi\)
0.850229 + 0.526414i \(0.176464\pi\)
\(920\) 0 0
\(921\) −17.7172 −0.583803
\(922\) 0 0
\(923\) 55.9213i 1.84067i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 15.4240i 0.506591i
\(928\) 0 0
\(929\) 27.2547 0.894199 0.447099 0.894484i \(-0.352457\pi\)
0.447099 + 0.894484i \(0.352457\pi\)
\(930\) 0 0
\(931\) 52.0906 1.70720
\(932\) 0 0
\(933\) − 14.3507i − 0.469820i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 51.5494i 1.68404i 0.539442 + 0.842022i \(0.318635\pi\)
−0.539442 + 0.842022i \(0.681365\pi\)
\(938\) 0 0
\(939\) −19.3227 −0.630571
\(940\) 0 0
\(941\) −38.2946 −1.24837 −0.624185 0.781277i \(-0.714569\pi\)
−0.624185 + 0.781277i \(0.714569\pi\)
\(942\) 0 0
\(943\) − 4.29325i − 0.139807i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 25.0280i − 0.813301i −0.913584 0.406651i \(-0.866697\pi\)
0.913584 0.406651i \(-0.133303\pi\)
\(948\) 0 0
\(949\) −69.0173 −2.24040
\(950\) 0 0
\(951\) −32.0226 −1.03841
\(952\) 0 0
\(953\) − 0.825357i − 0.0267359i −0.999911 0.0133680i \(-0.995745\pi\)
0.999911 0.0133680i \(-0.00425528\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 7.09596i 0.229380i
\(958\) 0 0
\(959\) −66.9946 −2.16337
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) − 1.21993i − 0.0393118i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.9493i 0.352107i 0.984381 + 0.176053i \(0.0563331\pi\)
−0.984381 + 0.176053i \(0.943667\pi\)
\(968\) 0 0
\(969\) −4.29325 −0.137919
\(970\) 0 0
\(971\) 35.3000 1.13283 0.566416 0.824120i \(-0.308330\pi\)
0.566416 + 0.824120i \(0.308330\pi\)
\(972\) 0 0
\(973\) 66.2372i 2.12347i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 39.6054i − 1.26709i −0.773706 0.633545i \(-0.781599\pi\)
0.773706 0.633545i \(-0.218401\pi\)
\(978\) 0 0
\(979\) −30.8027 −0.984459
\(980\) 0 0
\(981\) 5.07331 0.161978
\(982\) 0 0
\(983\) 43.5494i 1.38901i 0.719488 + 0.694505i \(0.244376\pi\)
−0.719488 + 0.694505i \(0.755624\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 35.8987i − 1.14267i
\(988\) 0 0
\(989\) 2.14662 0.0682586
\(990\) 0 0
\(991\) 38.8933 1.23549 0.617743 0.786380i \(-0.288047\pi\)
0.617743 + 0.786380i \(0.288047\pi\)
\(992\) 0 0
\(993\) − 29.8760i − 0.948087i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 39.2879i − 1.24426i −0.782914 0.622130i \(-0.786268\pi\)
0.782914 0.622130i \(-0.213732\pi\)
\(998\) 0 0
\(999\) −2.47467 −0.0782950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9300.2.g.r.3349.6 6
5.2 odd 4 1860.2.a.h.1.1 3
5.3 odd 4 9300.2.a.t.1.3 3
5.4 even 2 inner 9300.2.g.r.3349.1 6
15.2 even 4 5580.2.a.i.1.1 3
20.7 even 4 7440.2.a.bq.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.h.1.1 3 5.2 odd 4
5580.2.a.i.1.1 3 15.2 even 4
7440.2.a.bq.1.3 3 20.7 even 4
9300.2.a.t.1.3 3 5.3 odd 4
9300.2.g.r.3349.1 6 5.4 even 2 inner
9300.2.g.r.3349.6 6 1.1 even 1 trivial