Properties

Label 9300.2.g.p.3349.6
Level $9300$
Weight $2$
Character 9300.3349
Analytic conductor $74.261$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9300,2,Mod(3349,9300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9300.3349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9300.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-6,0,-4,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.2608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1860)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.6
Root \(0.675970 + 0.675970i\) of defining polynomial
Character \(\chi\) \(=\) 9300.3349
Dual form 9300.2.g.p.3349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.43807i q^{7} -1.00000 q^{9} +4.17226 q^{11} -4.43807i q^{13} -1.35194i q^{17} -2.70388 q^{19} -4.43807 q^{21} +1.35194i q^{23} -1.00000i q^{27} +7.25839 q^{29} -1.00000 q^{31} +4.17226i q^{33} -10.7826i q^{37} +4.43807 q^{39} +2.17226 q^{41} -9.46838i q^{43} -4.11644i q^{47} -12.6965 q^{49} +1.35194 q^{51} -12.8203i q^{53} -2.70388i q^{57} -5.25839 q^{59} +6.00000 q^{61} -4.43807i q^{63} -1.14195i q^{67} -1.35194 q^{69} -10.7268 q^{71} -10.4381i q^{73} +18.5168i q^{77} +2.05582 q^{79} +1.00000 q^{81} +6.99258i q^{83} +7.25839i q^{87} +2.55451 q^{89} +19.6965 q^{91} -1.00000i q^{93} -15.9245i q^{97} -4.17226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} - 4 q^{11} - 8 q^{19} - 8 q^{21} - 6 q^{31} + 8 q^{39} - 16 q^{41} - 14 q^{49} + 4 q^{51} + 12 q^{59} + 36 q^{61} - 4 q^{69} + 6 q^{81} - 20 q^{89} + 56 q^{91} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/9300\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\) \(4651\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.43807i 1.67743i 0.544569 + 0.838716i \(0.316693\pi\)
−0.544569 + 0.838716i \(0.683307\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.17226 1.25798 0.628992 0.777412i \(-0.283468\pi\)
0.628992 + 0.777412i \(0.283468\pi\)
\(12\) 0 0
\(13\) − 4.43807i − 1.23090i −0.788176 0.615449i \(-0.788975\pi\)
0.788176 0.615449i \(-0.211025\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.35194i − 0.327893i −0.986469 0.163947i \(-0.947577\pi\)
0.986469 0.163947i \(-0.0524225\pi\)
\(18\) 0 0
\(19\) −2.70388 −0.620312 −0.310156 0.950686i \(-0.600381\pi\)
−0.310156 + 0.950686i \(0.600381\pi\)
\(20\) 0 0
\(21\) −4.43807 −0.968466
\(22\) 0 0
\(23\) 1.35194i 0.281899i 0.990017 + 0.140949i \(0.0450155\pi\)
−0.990017 + 0.140949i \(0.954985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 7.25839 1.34785 0.673925 0.738800i \(-0.264607\pi\)
0.673925 + 0.738800i \(0.264607\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 4.17226i 0.726297i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.7826i − 1.77265i −0.463067 0.886323i \(-0.653251\pi\)
0.463067 0.886323i \(-0.346749\pi\)
\(38\) 0 0
\(39\) 4.43807 0.710660
\(40\) 0 0
\(41\) 2.17226 0.339250 0.169625 0.985509i \(-0.445744\pi\)
0.169625 + 0.985509i \(0.445744\pi\)
\(42\) 0 0
\(43\) − 9.46838i − 1.44391i −0.691938 0.721957i \(-0.743243\pi\)
0.691938 0.721957i \(-0.256757\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 4.11644i − 0.600445i −0.953869 0.300222i \(-0.902939\pi\)
0.953869 0.300222i \(-0.0970609\pi\)
\(48\) 0 0
\(49\) −12.6965 −1.81378
\(50\) 0 0
\(51\) 1.35194 0.189309
\(52\) 0 0
\(53\) − 12.8203i − 1.76101i −0.474040 0.880503i \(-0.657205\pi\)
0.474040 0.880503i \(-0.342795\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.70388i − 0.358137i
\(58\) 0 0
\(59\) −5.25839 −0.684584 −0.342292 0.939594i \(-0.611203\pi\)
−0.342292 + 0.939594i \(0.611203\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) − 4.43807i − 0.559144i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.14195i − 0.139511i −0.997564 0.0697556i \(-0.977778\pi\)
0.997564 0.0697556i \(-0.0222219\pi\)
\(68\) 0 0
\(69\) −1.35194 −0.162754
\(70\) 0 0
\(71\) −10.7268 −1.27303 −0.636517 0.771263i \(-0.719625\pi\)
−0.636517 + 0.771263i \(0.719625\pi\)
\(72\) 0 0
\(73\) − 10.4381i − 1.22168i −0.791753 0.610842i \(-0.790831\pi\)
0.791753 0.610842i \(-0.209169\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.5168i 2.11018i
\(78\) 0 0
\(79\) 2.05582 0.231298 0.115649 0.993290i \(-0.463105\pi\)
0.115649 + 0.993290i \(0.463105\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.99258i 0.767536i 0.923430 + 0.383768i \(0.125374\pi\)
−0.923430 + 0.383768i \(0.874626\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.25839i 0.778181i
\(88\) 0 0
\(89\) 2.55451 0.270778 0.135389 0.990793i \(-0.456772\pi\)
0.135389 + 0.990793i \(0.456772\pi\)
\(90\) 0 0
\(91\) 19.6965 2.06475
\(92\) 0 0
\(93\) − 1.00000i − 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 15.9245i − 1.61689i −0.588570 0.808446i \(-0.700309\pi\)
0.588570 0.808446i \(-0.299691\pi\)
\(98\) 0 0
\(99\) −4.17226 −0.419328
\(100\) 0 0
\(101\) −0.876139 −0.0871791 −0.0435895 0.999050i \(-0.513879\pi\)
−0.0435895 + 0.999050i \(0.513879\pi\)
\(102\) 0 0
\(103\) − 6.43807i − 0.634362i −0.948365 0.317181i \(-0.897264\pi\)
0.948365 0.317181i \(-0.102736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.6965i 1.13074i 0.824838 + 0.565370i \(0.191267\pi\)
−0.824838 + 0.565370i \(0.808733\pi\)
\(108\) 0 0
\(109\) −11.5242 −1.10382 −0.551909 0.833904i \(-0.686100\pi\)
−0.551909 + 0.833904i \(0.686100\pi\)
\(110\) 0 0
\(111\) 10.7826 1.02344
\(112\) 0 0
\(113\) − 17.5800i − 1.65379i −0.562357 0.826894i \(-0.690105\pi\)
0.562357 0.826894i \(-0.309895\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.43807i 0.410300i
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 6.40776 0.582523
\(122\) 0 0
\(123\) 2.17226i 0.195866i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.8129i 1.40317i 0.712587 + 0.701584i \(0.247524\pi\)
−0.712587 + 0.701584i \(0.752476\pi\)
\(128\) 0 0
\(129\) 9.46838 0.833645
\(130\) 0 0
\(131\) −10.1345 −0.885458 −0.442729 0.896655i \(-0.645990\pi\)
−0.442729 + 0.896655i \(0.645990\pi\)
\(132\) 0 0
\(133\) − 12.0000i − 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15.1042i − 1.29044i −0.763997 0.645220i \(-0.776766\pi\)
0.763997 0.645220i \(-0.223234\pi\)
\(138\) 0 0
\(139\) 17.2207 1.46064 0.730319 0.683107i \(-0.239372\pi\)
0.730319 + 0.683107i \(0.239372\pi\)
\(140\) 0 0
\(141\) 4.11644 0.346667
\(142\) 0 0
\(143\) − 18.5168i − 1.54845i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 12.6965i − 1.04719i
\(148\) 0 0
\(149\) −1.82774 −0.149734 −0.0748671 0.997194i \(-0.523853\pi\)
−0.0748671 + 0.997194i \(0.523853\pi\)
\(150\) 0 0
\(151\) −16.4610 −1.33957 −0.669787 0.742553i \(-0.733615\pi\)
−0.669787 + 0.742553i \(0.733615\pi\)
\(152\) 0 0
\(153\) 1.35194i 0.109298i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.53162i 0.361662i 0.983514 + 0.180831i \(0.0578788\pi\)
−0.983514 + 0.180831i \(0.942121\pi\)
\(158\) 0 0
\(159\) 12.8203 1.01672
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 2.78259i 0.217949i 0.994045 + 0.108975i \(0.0347567\pi\)
−0.994045 + 0.108975i \(0.965243\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 12.7645i − 0.987747i −0.869534 0.493873i \(-0.835581\pi\)
0.869534 0.493873i \(-0.164419\pi\)
\(168\) 0 0
\(169\) −6.69646 −0.515112
\(170\) 0 0
\(171\) 2.70388 0.206771
\(172\) 0 0
\(173\) − 25.5800i − 1.94481i −0.233294 0.972406i \(-0.574950\pi\)
0.233294 0.972406i \(-0.425050\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 5.25839i − 0.395245i
\(178\) 0 0
\(179\) −5.64064 −0.421601 −0.210801 0.977529i \(-0.567607\pi\)
−0.210801 + 0.977529i \(0.567607\pi\)
\(180\) 0 0
\(181\) 8.93676 0.664264 0.332132 0.943233i \(-0.392232\pi\)
0.332132 + 0.943233i \(0.392232\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.64064i − 0.412485i
\(188\) 0 0
\(189\) 4.43807 0.322822
\(190\) 0 0
\(191\) −2.32163 −0.167987 −0.0839935 0.996466i \(-0.526767\pi\)
−0.0839935 + 0.996466i \(0.526767\pi\)
\(192\) 0 0
\(193\) 5.22066i 0.375791i 0.982189 + 0.187896i \(0.0601667\pi\)
−0.982189 + 0.187896i \(0.939833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 9.58482i − 0.682890i −0.939902 0.341445i \(-0.889084\pi\)
0.939902 0.341445i \(-0.110916\pi\)
\(198\) 0 0
\(199\) −12.9171 −0.915670 −0.457835 0.889037i \(-0.651375\pi\)
−0.457835 + 0.889037i \(0.651375\pi\)
\(200\) 0 0
\(201\) 1.14195 0.0805468
\(202\) 0 0
\(203\) 32.2132i 2.26093i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1.35194i − 0.0939663i
\(208\) 0 0
\(209\) −11.2813 −0.780343
\(210\) 0 0
\(211\) 5.82774 0.401198 0.200599 0.979673i \(-0.435711\pi\)
0.200599 + 0.979673i \(0.435711\pi\)
\(212\) 0 0
\(213\) − 10.7268i − 0.734986i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 4.43807i − 0.301276i
\(218\) 0 0
\(219\) 10.4381 0.705339
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 25.7933i 1.71196i 0.517010 + 0.855979i \(0.327045\pi\)
−0.517010 + 0.855979i \(0.672955\pi\)
\(228\) 0 0
\(229\) 7.93937 0.524649 0.262324 0.964980i \(-0.415511\pi\)
0.262324 + 0.964980i \(0.415511\pi\)
\(230\) 0 0
\(231\) −18.5168 −1.21831
\(232\) 0 0
\(233\) − 24.4610i − 1.60249i −0.598336 0.801246i \(-0.704171\pi\)
0.598336 0.801246i \(-0.295829\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.05582i 0.133540i
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −2.64325 −0.170267 −0.0851335 0.996370i \(-0.527132\pi\)
−0.0851335 + 0.996370i \(0.527132\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000i 0.763542i
\(248\) 0 0
\(249\) −6.99258 −0.443137
\(250\) 0 0
\(251\) −16.4562 −1.03870 −0.519352 0.854561i \(-0.673827\pi\)
−0.519352 + 0.854561i \(0.673827\pi\)
\(252\) 0 0
\(253\) 5.64064i 0.354624i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.16484i 0.446931i 0.974712 + 0.223465i \(0.0717369\pi\)
−0.974712 + 0.223465i \(0.928263\pi\)
\(258\) 0 0
\(259\) 47.8539 2.97350
\(260\) 0 0
\(261\) −7.25839 −0.449283
\(262\) 0 0
\(263\) 8.87614i 0.547326i 0.961826 + 0.273663i \(0.0882353\pi\)
−0.961826 + 0.273663i \(0.911765\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.55451i 0.156334i
\(268\) 0 0
\(269\) −3.90164 −0.237887 −0.118944 0.992901i \(-0.537951\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(270\) 0 0
\(271\) −4.87614 −0.296204 −0.148102 0.988972i \(-0.547316\pi\)
−0.148102 + 0.988972i \(0.547316\pi\)
\(272\) 0 0
\(273\) 19.6965i 1.19208i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 29.5981i 1.77838i 0.457540 + 0.889189i \(0.348731\pi\)
−0.457540 + 0.889189i \(0.651269\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −15.2207 −0.907988 −0.453994 0.891005i \(-0.650001\pi\)
−0.453994 + 0.891005i \(0.650001\pi\)
\(282\) 0 0
\(283\) 20.0181i 1.18995i 0.803744 + 0.594976i \(0.202838\pi\)
−0.803744 + 0.594976i \(0.797162\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.64064i 0.569069i
\(288\) 0 0
\(289\) 15.1723 0.892486
\(290\) 0 0
\(291\) 15.9245 0.933513
\(292\) 0 0
\(293\) 8.46096i 0.494295i 0.968978 + 0.247147i \(0.0794932\pi\)
−0.968978 + 0.247147i \(0.920507\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.17226i − 0.242099i
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 42.0213 2.42207
\(302\) 0 0
\(303\) − 0.876139i − 0.0503329i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 8.43807i − 0.481586i −0.970576 0.240793i \(-0.922592\pi\)
0.970576 0.240793i \(-0.0774075\pi\)
\(308\) 0 0
\(309\) 6.43807 0.366249
\(310\) 0 0
\(311\) −20.6661 −1.17187 −0.585935 0.810358i \(-0.699273\pi\)
−0.585935 + 0.810358i \(0.699273\pi\)
\(312\) 0 0
\(313\) − 21.3142i − 1.20475i −0.798213 0.602375i \(-0.794221\pi\)
0.798213 0.602375i \(-0.205779\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.5242i 0.759595i 0.925070 + 0.379797i \(0.124006\pi\)
−0.925070 + 0.379797i \(0.875994\pi\)
\(318\) 0 0
\(319\) 30.2839 1.69557
\(320\) 0 0
\(321\) −11.6965 −0.652833
\(322\) 0 0
\(323\) 3.65548i 0.203396i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 11.5242i − 0.637290i
\(328\) 0 0
\(329\) 18.2691 1.00721
\(330\) 0 0
\(331\) 12.9926 0.714137 0.357068 0.934078i \(-0.383776\pi\)
0.357068 + 0.934078i \(0.383776\pi\)
\(332\) 0 0
\(333\) 10.7826i 0.590882i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.5955i 1.23085i 0.788194 + 0.615427i \(0.211017\pi\)
−0.788194 + 0.615427i \(0.788983\pi\)
\(338\) 0 0
\(339\) 17.5800 0.954815
\(340\) 0 0
\(341\) −4.17226 −0.225941
\(342\) 0 0
\(343\) − 25.2813i − 1.36506i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 0.419983i − 0.0225459i −0.999936 0.0112729i \(-0.996412\pi\)
0.999936 0.0112729i \(-0.00358836\pi\)
\(348\) 0 0
\(349\) 11.8687 0.635318 0.317659 0.948205i \(-0.397103\pi\)
0.317659 + 0.948205i \(0.397103\pi\)
\(350\) 0 0
\(351\) −4.43807 −0.236887
\(352\) 0 0
\(353\) 1.69646i 0.0902935i 0.998980 + 0.0451467i \(0.0143755\pi\)
−0.998980 + 0.0451467i \(0.985624\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.00000i 0.317554i
\(358\) 0 0
\(359\) 4.80223 0.253452 0.126726 0.991938i \(-0.459553\pi\)
0.126726 + 0.991938i \(0.459553\pi\)
\(360\) 0 0
\(361\) −11.6890 −0.615213
\(362\) 0 0
\(363\) 6.40776i 0.336320i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 31.6258i − 1.65085i −0.564509 0.825427i \(-0.690935\pi\)
0.564509 0.825427i \(-0.309065\pi\)
\(368\) 0 0
\(369\) −2.17226 −0.113083
\(370\) 0 0
\(371\) 56.8975 2.95397
\(372\) 0 0
\(373\) − 17.9245i − 0.928097i −0.885810 0.464049i \(-0.846396\pi\)
0.885810 0.464049i \(-0.153604\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 32.2132i − 1.65907i
\(378\) 0 0
\(379\) −32.8007 −1.68486 −0.842429 0.538808i \(-0.818875\pi\)
−0.842429 + 0.538808i \(0.818875\pi\)
\(380\) 0 0
\(381\) −15.8129 −0.810120
\(382\) 0 0
\(383\) 29.8081i 1.52312i 0.648093 + 0.761561i \(0.275567\pi\)
−0.648093 + 0.761561i \(0.724433\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.46838i 0.481305i
\(388\) 0 0
\(389\) 32.7629 1.66115 0.830574 0.556909i \(-0.188013\pi\)
0.830574 + 0.556909i \(0.188013\pi\)
\(390\) 0 0
\(391\) 1.82774 0.0924328
\(392\) 0 0
\(393\) − 10.1345i − 0.511219i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 34.4562i 1.72930i 0.502371 + 0.864652i \(0.332461\pi\)
−0.502371 + 0.864652i \(0.667539\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) 29.7145 1.48387 0.741937 0.670470i \(-0.233907\pi\)
0.741937 + 0.670470i \(0.233907\pi\)
\(402\) 0 0
\(403\) 4.43807i 0.221076i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 44.9878i − 2.22996i
\(408\) 0 0
\(409\) 28.0968 1.38930 0.694649 0.719349i \(-0.255560\pi\)
0.694649 + 0.719349i \(0.255560\pi\)
\(410\) 0 0
\(411\) 15.1042 0.745036
\(412\) 0 0
\(413\) − 23.3371i − 1.14834i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 17.2207i 0.843299i
\(418\) 0 0
\(419\) −6.83841 −0.334078 −0.167039 0.985950i \(-0.553421\pi\)
−0.167039 + 0.985950i \(0.553421\pi\)
\(420\) 0 0
\(421\) −5.24030 −0.255397 −0.127698 0.991813i \(-0.540759\pi\)
−0.127698 + 0.991813i \(0.540759\pi\)
\(422\) 0 0
\(423\) 4.11644i 0.200148i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 26.6284i 1.28864i
\(428\) 0 0
\(429\) 18.5168 0.893999
\(430\) 0 0
\(431\) 6.83841 0.329395 0.164697 0.986344i \(-0.447335\pi\)
0.164697 + 0.986344i \(0.447335\pi\)
\(432\) 0 0
\(433\) 11.3142i 0.543726i 0.962336 + 0.271863i \(0.0876398\pi\)
−0.962336 + 0.271863i \(0.912360\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 3.65548i − 0.174865i
\(438\) 0 0
\(439\) 10.8155 0.516196 0.258098 0.966119i \(-0.416904\pi\)
0.258098 + 0.966119i \(0.416904\pi\)
\(440\) 0 0
\(441\) 12.6965 0.604593
\(442\) 0 0
\(443\) 17.4487i 0.829015i 0.910046 + 0.414507i \(0.136046\pi\)
−0.910046 + 0.414507i \(0.863954\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 1.82774i − 0.0864491i
\(448\) 0 0
\(449\) −3.96227 −0.186991 −0.0934955 0.995620i \(-0.529804\pi\)
−0.0934955 + 0.995620i \(0.529804\pi\)
\(450\) 0 0
\(451\) 9.06324 0.426771
\(452\) 0 0
\(453\) − 16.4610i − 0.773404i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.8310i 1.58255i 0.611462 + 0.791273i \(0.290582\pi\)
−0.611462 + 0.791273i \(0.709418\pi\)
\(458\) 0 0
\(459\) −1.35194 −0.0631031
\(460\) 0 0
\(461\) −7.55712 −0.351970 −0.175985 0.984393i \(-0.556311\pi\)
−0.175985 + 0.984393i \(0.556311\pi\)
\(462\) 0 0
\(463\) − 28.7401i − 1.33566i −0.744312 0.667832i \(-0.767223\pi\)
0.744312 0.667832i \(-0.232777\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 7.16484i − 0.331549i −0.986164 0.165775i \(-0.946988\pi\)
0.986164 0.165775i \(-0.0530124\pi\)
\(468\) 0 0
\(469\) 5.06804 0.234021
\(470\) 0 0
\(471\) −4.53162 −0.208806
\(472\) 0 0
\(473\) − 39.5046i − 1.81642i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.8203i 0.587002i
\(478\) 0 0
\(479\) 30.8384 1.40904 0.704521 0.709683i \(-0.251162\pi\)
0.704521 + 0.709683i \(0.251162\pi\)
\(480\) 0 0
\(481\) −47.8539 −2.18195
\(482\) 0 0
\(483\) − 6.00000i − 0.273009i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 6.17226i − 0.279692i −0.990173 0.139846i \(-0.955339\pi\)
0.990173 0.139846i \(-0.0446607\pi\)
\(488\) 0 0
\(489\) −2.78259 −0.125833
\(490\) 0 0
\(491\) 1.10902 0.0500496 0.0250248 0.999687i \(-0.492034\pi\)
0.0250248 + 0.999687i \(0.492034\pi\)
\(492\) 0 0
\(493\) − 9.81290i − 0.441951i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 47.6062i − 2.13543i
\(498\) 0 0
\(499\) 30.2180 1.35275 0.676373 0.736559i \(-0.263551\pi\)
0.676373 + 0.736559i \(0.263551\pi\)
\(500\) 0 0
\(501\) 12.7645 0.570276
\(502\) 0 0
\(503\) 15.2765i 0.681144i 0.940218 + 0.340572i \(0.110621\pi\)
−0.940218 + 0.340572i \(0.889379\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.69646i − 0.297400i
\(508\) 0 0
\(509\) 7.08613 0.314087 0.157044 0.987592i \(-0.449804\pi\)
0.157044 + 0.987592i \(0.449804\pi\)
\(510\) 0 0
\(511\) 46.3249 2.04929
\(512\) 0 0
\(513\) 2.70388i 0.119379i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 17.1749i − 0.755350i
\(518\) 0 0
\(519\) 25.5800 1.12284
\(520\) 0 0
\(521\) 16.7645 0.734466 0.367233 0.930129i \(-0.380305\pi\)
0.367233 + 0.930129i \(0.380305\pi\)
\(522\) 0 0
\(523\) 20.9878i 0.917731i 0.888506 + 0.458866i \(0.151744\pi\)
−0.888506 + 0.458866i \(0.848256\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.35194i 0.0588914i
\(528\) 0 0
\(529\) 21.1723 0.920533
\(530\) 0 0
\(531\) 5.25839 0.228195
\(532\) 0 0
\(533\) − 9.64064i − 0.417583i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 5.64064i − 0.243412i
\(538\) 0 0
\(539\) −52.9729 −2.28171
\(540\) 0 0
\(541\) −24.4003 −1.04905 −0.524526 0.851394i \(-0.675758\pi\)
−0.524526 + 0.851394i \(0.675758\pi\)
\(542\) 0 0
\(543\) 8.93676i 0.383513i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 23.4355i 1.00203i 0.865439 + 0.501014i \(0.167039\pi\)
−0.865439 + 0.501014i \(0.832961\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) −19.6258 −0.836087
\(552\) 0 0
\(553\) 9.12386i 0.387986i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 26.1526i − 1.10812i −0.832476 0.554061i \(-0.813077\pi\)
0.832476 0.554061i \(-0.186923\pi\)
\(558\) 0 0
\(559\) −42.0213 −1.77731
\(560\) 0 0
\(561\) 5.64064 0.238148
\(562\) 0 0
\(563\) − 37.9049i − 1.59750i −0.601663 0.798750i \(-0.705495\pi\)
0.601663 0.798750i \(-0.294505\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.43807i 0.186381i
\(568\) 0 0
\(569\) 9.19777 0.385590 0.192795 0.981239i \(-0.438245\pi\)
0.192795 + 0.981239i \(0.438245\pi\)
\(570\) 0 0
\(571\) 29.2207 1.22285 0.611423 0.791304i \(-0.290597\pi\)
0.611423 + 0.791304i \(0.290597\pi\)
\(572\) 0 0
\(573\) − 2.32163i − 0.0969873i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 18.2084i − 0.758027i −0.925391 0.379014i \(-0.876263\pi\)
0.925391 0.379014i \(-0.123737\pi\)
\(578\) 0 0
\(579\) −5.22066 −0.216963
\(580\) 0 0
\(581\) −31.0336 −1.28749
\(582\) 0 0
\(583\) − 53.4897i − 2.21532i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 40.3807i − 1.66669i −0.552754 0.833345i \(-0.686423\pi\)
0.552754 0.833345i \(-0.313577\pi\)
\(588\) 0 0
\(589\) 2.70388 0.111411
\(590\) 0 0
\(591\) 9.58482 0.394267
\(592\) 0 0
\(593\) 36.7497i 1.50913i 0.656226 + 0.754564i \(0.272152\pi\)
−0.656226 + 0.754564i \(0.727848\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 12.9171i − 0.528663i
\(598\) 0 0
\(599\) 12.5545 0.512963 0.256482 0.966549i \(-0.417437\pi\)
0.256482 + 0.966549i \(0.417437\pi\)
\(600\) 0 0
\(601\) −30.0362 −1.22520 −0.612601 0.790393i \(-0.709877\pi\)
−0.612601 + 0.790393i \(0.709877\pi\)
\(602\) 0 0
\(603\) 1.14195i 0.0465037i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 10.1297i − 0.411153i −0.978641 0.205576i \(-0.934093\pi\)
0.978641 0.205576i \(-0.0659069\pi\)
\(608\) 0 0
\(609\) −32.2132 −1.30535
\(610\) 0 0
\(611\) −18.2691 −0.739087
\(612\) 0 0
\(613\) 38.8794i 1.57032i 0.619291 + 0.785162i \(0.287420\pi\)
−0.619291 + 0.785162i \(0.712580\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 27.4078i − 1.10339i −0.834044 0.551697i \(-0.813980\pi\)
0.834044 0.551697i \(-0.186020\pi\)
\(618\) 0 0
\(619\) −26.2887 −1.05663 −0.528316 0.849048i \(-0.677176\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(620\) 0 0
\(621\) 1.35194 0.0542515
\(622\) 0 0
\(623\) 11.3371i 0.454211i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 11.2813i − 0.450531i
\(628\) 0 0
\(629\) −14.5774 −0.581239
\(630\) 0 0
\(631\) −3.87875 −0.154411 −0.0772053 0.997015i \(-0.524600\pi\)
−0.0772053 + 0.997015i \(0.524600\pi\)
\(632\) 0 0
\(633\) 5.82774i 0.231632i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 56.3478i 2.23258i
\(638\) 0 0
\(639\) 10.7268 0.424345
\(640\) 0 0
\(641\) 4.08874 0.161496 0.0807478 0.996735i \(-0.474269\pi\)
0.0807478 + 0.996735i \(0.474269\pi\)
\(642\) 0 0
\(643\) − 15.2355i − 0.600829i −0.953809 0.300415i \(-0.902875\pi\)
0.953809 0.300415i \(-0.0971251\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 21.6406i − 0.850781i −0.905010 0.425391i \(-0.860137\pi\)
0.905010 0.425391i \(-0.139863\pi\)
\(648\) 0 0
\(649\) −21.9394 −0.861196
\(650\) 0 0
\(651\) 4.43807 0.173942
\(652\) 0 0
\(653\) 0.228078i 0.00892538i 0.999990 + 0.00446269i \(0.00142052\pi\)
−0.999990 + 0.00446269i \(0.998579\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.4381i 0.407228i
\(658\) 0 0
\(659\) −50.9500 −1.98473 −0.992366 0.123328i \(-0.960643\pi\)
−0.992366 + 0.123328i \(0.960643\pi\)
\(660\) 0 0
\(661\) −7.82774 −0.304464 −0.152232 0.988345i \(-0.548646\pi\)
−0.152232 + 0.988345i \(0.548646\pi\)
\(662\) 0 0
\(663\) − 6.00000i − 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.81290i 0.379957i
\(668\) 0 0
\(669\) −2.00000 −0.0773245
\(670\) 0 0
\(671\) 25.0336 0.966410
\(672\) 0 0
\(673\) 45.3962i 1.74989i 0.484219 + 0.874947i \(0.339104\pi\)
−0.484219 + 0.874947i \(0.660896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 51.9507i 1.99663i 0.0580539 + 0.998313i \(0.481510\pi\)
−0.0580539 + 0.998313i \(0.518490\pi\)
\(678\) 0 0
\(679\) 70.6742 2.71223
\(680\) 0 0
\(681\) −25.7933 −0.988400
\(682\) 0 0
\(683\) − 47.0894i − 1.80183i −0.434001 0.900913i \(-0.642898\pi\)
0.434001 0.900913i \(-0.357102\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.93937i 0.302906i
\(688\) 0 0
\(689\) −56.8975 −2.16762
\(690\) 0 0
\(691\) −29.9097 −1.13782 −0.568909 0.822400i \(-0.692634\pi\)
−0.568909 + 0.822400i \(0.692634\pi\)
\(692\) 0 0
\(693\) − 18.5168i − 0.703394i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.93676i − 0.111238i
\(698\) 0 0
\(699\) 24.4610 0.925199
\(700\) 0 0
\(701\) 40.4562 1.52801 0.764004 0.645212i \(-0.223231\pi\)
0.764004 + 0.645212i \(0.223231\pi\)
\(702\) 0 0
\(703\) 29.1548i 1.09959i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3.88836i − 0.146237i
\(708\) 0 0
\(709\) 52.7858 1.98241 0.991207 0.132321i \(-0.0422430\pi\)
0.991207 + 0.132321i \(0.0422430\pi\)
\(710\) 0 0
\(711\) −2.05582 −0.0770992
\(712\) 0 0
\(713\) − 1.35194i − 0.0506305i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 18.0000i 0.672222i
\(718\) 0 0
\(719\) −3.82774 −0.142751 −0.0713753 0.997450i \(-0.522739\pi\)
−0.0713753 + 0.997450i \(0.522739\pi\)
\(720\) 0 0
\(721\) 28.5726 1.06410
\(722\) 0 0
\(723\) − 2.64325i − 0.0983036i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 11.8554i − 0.439694i −0.975534 0.219847i \(-0.929444\pi\)
0.975534 0.219847i \(-0.0705558\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −12.8007 −0.473450
\(732\) 0 0
\(733\) 5.16003i 0.190590i 0.995449 + 0.0952951i \(0.0303795\pi\)
−0.995449 + 0.0952951i \(0.969621\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.76450i − 0.175503i
\(738\) 0 0
\(739\) 9.52420 0.350353 0.175177 0.984537i \(-0.443950\pi\)
0.175177 + 0.984537i \(0.443950\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) 33.7885i 1.23958i 0.784768 + 0.619789i \(0.212782\pi\)
−0.784768 + 0.619789i \(0.787218\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.99258i − 0.255845i
\(748\) 0 0
\(749\) −51.9097 −1.89674
\(750\) 0 0
\(751\) 41.1090 1.50009 0.750045 0.661387i \(-0.230032\pi\)
0.750045 + 0.661387i \(0.230032\pi\)
\(752\) 0 0
\(753\) − 16.4562i − 0.599696i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 24.3626i − 0.885474i −0.896652 0.442737i \(-0.854008\pi\)
0.896652 0.442737i \(-0.145992\pi\)
\(758\) 0 0
\(759\) −5.64064 −0.204742
\(760\) 0 0
\(761\) 26.4184 0.957667 0.478834 0.877906i \(-0.341060\pi\)
0.478834 + 0.877906i \(0.341060\pi\)
\(762\) 0 0
\(763\) − 51.1452i − 1.85158i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.3371i 0.842654i
\(768\) 0 0
\(769\) −32.9023 −1.18649 −0.593243 0.805023i \(-0.702153\pi\)
−0.593243 + 0.805023i \(0.702153\pi\)
\(770\) 0 0
\(771\) −7.16484 −0.258035
\(772\) 0 0
\(773\) − 44.8661i − 1.61372i −0.590741 0.806861i \(-0.701165\pi\)
0.590741 0.806861i \(-0.298835\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 47.8539i 1.71675i
\(778\) 0 0
\(779\) −5.87353 −0.210441
\(780\) 0 0
\(781\) −44.7549 −1.60146
\(782\) 0 0
\(783\) − 7.25839i − 0.259394i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 42.4265i − 1.51234i −0.654375 0.756170i \(-0.727068\pi\)
0.654375 0.756170i \(-0.272932\pi\)
\(788\) 0 0
\(789\) −8.87614 −0.315999
\(790\) 0 0
\(791\) 78.0213 2.77412
\(792\) 0 0
\(793\) − 26.6284i − 0.945603i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.9681i 1.02610i 0.858358 + 0.513052i \(0.171485\pi\)
−0.858358 + 0.513052i \(0.828515\pi\)
\(798\) 0 0
\(799\) −5.56518 −0.196882
\(800\) 0 0
\(801\) −2.55451 −0.0902593
\(802\) 0 0
\(803\) − 43.5503i − 1.53686i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 3.90164i − 0.137344i
\(808\) 0 0
\(809\) −26.4429 −0.929682 −0.464841 0.885394i \(-0.653889\pi\)
−0.464841 + 0.885394i \(0.653889\pi\)
\(810\) 0 0
\(811\) −26.2542 −0.921910 −0.460955 0.887423i \(-0.652493\pi\)
−0.460955 + 0.887423i \(0.652493\pi\)
\(812\) 0 0
\(813\) − 4.87614i − 0.171014i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25.6014i 0.895678i
\(818\) 0 0
\(819\) −19.6965 −0.688250
\(820\) 0 0
\(821\) 13.5571 0.473147 0.236573 0.971614i \(-0.423976\pi\)
0.236573 + 0.971614i \(0.423976\pi\)
\(822\) 0 0
\(823\) − 44.8613i − 1.56377i −0.623425 0.781883i \(-0.714259\pi\)
0.623425 0.781883i \(-0.285741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 29.8081i − 1.03653i −0.855220 0.518265i \(-0.826578\pi\)
0.855220 0.518265i \(-0.173422\pi\)
\(828\) 0 0
\(829\) 43.4535 1.50920 0.754602 0.656183i \(-0.227830\pi\)
0.754602 + 0.656183i \(0.227830\pi\)
\(830\) 0 0
\(831\) −29.5981 −1.02675
\(832\) 0 0
\(833\) 17.1648i 0.594727i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000i 0.0345651i
\(838\) 0 0
\(839\) 12.9958 0.448666 0.224333 0.974513i \(-0.427980\pi\)
0.224333 + 0.974513i \(0.427980\pi\)
\(840\) 0 0
\(841\) 23.6842 0.816698
\(842\) 0 0
\(843\) − 15.2207i − 0.524227i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 28.4381i 0.977144i
\(848\) 0 0
\(849\) −20.0181 −0.687019
\(850\) 0 0
\(851\) 14.5774 0.499707
\(852\) 0 0
\(853\) 49.7523i 1.70349i 0.523960 + 0.851743i \(0.324454\pi\)
−0.523960 + 0.851743i \(0.675546\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 21.2058i − 0.724377i −0.932105 0.362189i \(-0.882030\pi\)
0.932105 0.362189i \(-0.117970\pi\)
\(858\) 0 0
\(859\) 10.4710 0.357266 0.178633 0.983916i \(-0.442833\pi\)
0.178633 + 0.983916i \(0.442833\pi\)
\(860\) 0 0
\(861\) −9.64064 −0.328552
\(862\) 0 0
\(863\) 4.83997i 0.164754i 0.996601 + 0.0823772i \(0.0262512\pi\)
−0.996601 + 0.0823772i \(0.973749\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 15.1723i 0.515277i
\(868\) 0 0
\(869\) 8.57741 0.290969
\(870\) 0 0
\(871\) −5.06804 −0.171724
\(872\) 0 0
\(873\) 15.9245i 0.538964i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 36.8007i − 1.24267i −0.783545 0.621335i \(-0.786591\pi\)
0.783545 0.621335i \(-0.213409\pi\)
\(878\) 0 0
\(879\) −8.46096 −0.285381
\(880\) 0 0
\(881\) −39.1319 −1.31839 −0.659194 0.751973i \(-0.729102\pi\)
−0.659194 + 0.751973i \(0.729102\pi\)
\(882\) 0 0
\(883\) 17.7671i 0.597911i 0.954267 + 0.298956i \(0.0966382\pi\)
−0.954267 + 0.298956i \(0.903362\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 57.2520i − 1.92233i −0.275966 0.961167i \(-0.588998\pi\)
0.275966 0.961167i \(-0.411002\pi\)
\(888\) 0 0
\(889\) −70.1788 −2.35372
\(890\) 0 0
\(891\) 4.17226 0.139776
\(892\) 0 0
\(893\) 11.1304i 0.372463i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.00000i 0.200334i
\(898\) 0 0
\(899\) −7.25839 −0.242081
\(900\) 0 0
\(901\) −17.3323 −0.577422
\(902\) 0 0
\(903\) 42.0213i 1.39838i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.8581i 0.559762i 0.960035 + 0.279881i \(0.0902951\pi\)
−0.960035 + 0.279881i \(0.909705\pi\)
\(908\) 0 0
\(909\) 0.876139 0.0290597
\(910\) 0 0
\(911\) 45.5800 1.51013 0.755067 0.655648i \(-0.227604\pi\)
0.755067 + 0.655648i \(0.227604\pi\)
\(912\) 0 0
\(913\) 29.1749i 0.965547i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 44.9777i − 1.48530i
\(918\) 0 0
\(919\) 35.8491 1.18255 0.591276 0.806469i \(-0.298624\pi\)
0.591276 + 0.806469i \(0.298624\pi\)
\(920\) 0 0
\(921\) 8.43807 0.278044
\(922\) 0 0
\(923\) 47.6062i 1.56698i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.43807i 0.211454i
\(928\) 0 0
\(929\) −45.7752 −1.50183 −0.750917 0.660396i \(-0.770388\pi\)
−0.750917 + 0.660396i \(0.770388\pi\)
\(930\) 0 0
\(931\) 34.3297 1.12511
\(932\) 0 0
\(933\) − 20.6661i − 0.676579i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25.8277i 0.843755i 0.906653 + 0.421878i \(0.138629\pi\)
−0.906653 + 0.421878i \(0.861371\pi\)
\(938\) 0 0
\(939\) 21.3142 0.695563
\(940\) 0 0
\(941\) −1.52095 −0.0495815 −0.0247908 0.999693i \(-0.507892\pi\)
−0.0247908 + 0.999693i \(0.507892\pi\)
\(942\) 0 0
\(943\) 2.93676i 0.0956342i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.6481i 0.605981i 0.952994 + 0.302990i \(0.0979850\pi\)
−0.952994 + 0.302990i \(0.902015\pi\)
\(948\) 0 0
\(949\) −46.3249 −1.50377
\(950\) 0 0
\(951\) −13.5242 −0.438552
\(952\) 0 0
\(953\) − 33.3519i − 1.08038i −0.841545 0.540188i \(-0.818353\pi\)
0.841545 0.540188i \(-0.181647\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 30.2839i 0.978939i
\(958\) 0 0
\(959\) 67.0336 2.16463
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) − 11.6965i − 0.376913i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.00000i − 0.0643157i −0.999483 0.0321578i \(-0.989762\pi\)
0.999483 0.0321578i \(-0.0102379\pi\)
\(968\) 0 0
\(969\) −3.65548 −0.117431
\(970\) 0 0
\(971\) 21.6932 0.696168 0.348084 0.937463i \(-0.386832\pi\)
0.348084 + 0.937463i \(0.386832\pi\)
\(972\) 0 0
\(973\) 76.4265i 2.45012i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.2813i 0.552877i 0.961032 + 0.276439i \(0.0891543\pi\)
−0.961032 + 0.276439i \(0.910846\pi\)
\(978\) 0 0
\(979\) 10.6581 0.340634
\(980\) 0 0
\(981\) 11.5242 0.367939
\(982\) 0 0
\(983\) − 29.1452i − 0.929587i −0.885419 0.464794i \(-0.846128\pi\)
0.885419 0.464794i \(-0.153872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.2691i 0.581511i
\(988\) 0 0
\(989\) 12.8007 0.407038
\(990\) 0 0
\(991\) −5.34191 −0.169691 −0.0848457 0.996394i \(-0.527040\pi\)
−0.0848457 + 0.996394i \(0.527040\pi\)
\(992\) 0 0
\(993\) 12.9926i 0.412307i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.23550i 0.0391286i 0.999809 + 0.0195643i \(0.00622790\pi\)
−0.999809 + 0.0195643i \(0.993772\pi\)
\(998\) 0 0
\(999\) −10.7826 −0.341146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9300.2.g.p.3349.6 6
5.2 odd 4 9300.2.a.v.1.1 3
5.3 odd 4 1860.2.a.f.1.3 3
5.4 even 2 inner 9300.2.g.p.3349.1 6
15.8 even 4 5580.2.a.l.1.3 3
20.3 even 4 7440.2.a.bt.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.f.1.3 3 5.3 odd 4
5580.2.a.l.1.3 3 15.8 even 4
7440.2.a.bt.1.1 3 20.3 even 4
9300.2.a.v.1.1 3 5.2 odd 4
9300.2.g.p.3349.1 6 5.4 even 2 inner
9300.2.g.p.3349.6 6 1.1 even 1 trivial