Properties

Label 9300.2.g.l.3349.4
Level $9300$
Weight $2$
Character 9300.3349
Analytic conductor $74.261$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9300,2,Mod(3349,9300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9300.3349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9300.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.2608738798\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1860)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.4
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 9300.3349
Dual form 9300.2.g.l.3349.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +2.44949i q^{7} -1.00000 q^{9} +4.44949i q^{13} +2.00000i q^{17} +4.89898 q^{19} -2.44949 q^{21} +2.89898i q^{23} -1.00000i q^{27} -0.449490 q^{29} +1.00000 q^{31} -3.55051i q^{37} -4.44949 q^{39} +7.79796 q^{41} +3.10102i q^{43} +8.89898i q^{47} +1.00000 q^{49} -2.00000 q^{51} +6.00000i q^{53} +4.89898i q^{57} +7.34847 q^{59} -6.89898 q^{61} -2.44949i q^{63} -6.44949i q^{67} -2.89898 q^{69} +1.55051 q^{71} +12.4495i q^{73} +2.89898 q^{79} +1.00000 q^{81} +1.10102i q^{83} -0.449490i q^{87} +4.44949 q^{89} -10.8990 q^{91} +1.00000i q^{93} -5.10102i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 8 q^{29} + 4 q^{31} - 8 q^{39} - 8 q^{41} + 4 q^{49} - 8 q^{51} - 8 q^{61} + 8 q^{69} + 16 q^{71} - 8 q^{79} + 4 q^{81} + 8 q^{89} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/9300\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\) \(4651\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.44949i 0.925820i 0.886405 + 0.462910i \(0.153195\pi\)
−0.886405 + 0.462910i \(0.846805\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 4.44949i 1.23407i 0.786937 + 0.617033i \(0.211666\pi\)
−0.786937 + 0.617033i \(0.788334\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 4.89898 1.12390 0.561951 0.827170i \(-0.310051\pi\)
0.561951 + 0.827170i \(0.310051\pi\)
\(20\) 0 0
\(21\) −2.44949 −0.534522
\(22\) 0 0
\(23\) 2.89898i 0.604479i 0.953232 + 0.302240i \(0.0977342\pi\)
−0.953232 + 0.302240i \(0.902266\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) −0.449490 −0.0834681 −0.0417341 0.999129i \(-0.513288\pi\)
−0.0417341 + 0.999129i \(0.513288\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 3.55051i − 0.583700i −0.956464 0.291850i \(-0.905729\pi\)
0.956464 0.291850i \(-0.0942709\pi\)
\(38\) 0 0
\(39\) −4.44949 −0.712489
\(40\) 0 0
\(41\) 7.79796 1.21784 0.608918 0.793233i \(-0.291604\pi\)
0.608918 + 0.793233i \(0.291604\pi\)
\(42\) 0 0
\(43\) 3.10102i 0.472901i 0.971644 + 0.236451i \(0.0759841\pi\)
−0.971644 + 0.236451i \(0.924016\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.89898i 1.29805i 0.760767 + 0.649025i \(0.224823\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.89898i 0.648886i
\(58\) 0 0
\(59\) 7.34847 0.956689 0.478345 0.878172i \(-0.341237\pi\)
0.478345 + 0.878172i \(0.341237\pi\)
\(60\) 0 0
\(61\) −6.89898 −0.883324 −0.441662 0.897182i \(-0.645611\pi\)
−0.441662 + 0.897182i \(0.645611\pi\)
\(62\) 0 0
\(63\) − 2.44949i − 0.308607i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.44949i − 0.787931i −0.919125 0.393965i \(-0.871103\pi\)
0.919125 0.393965i \(-0.128897\pi\)
\(68\) 0 0
\(69\) −2.89898 −0.348996
\(70\) 0 0
\(71\) 1.55051 0.184012 0.0920059 0.995758i \(-0.470672\pi\)
0.0920059 + 0.995758i \(0.470672\pi\)
\(72\) 0 0
\(73\) 12.4495i 1.45710i 0.684991 + 0.728551i \(0.259806\pi\)
−0.684991 + 0.728551i \(0.740194\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.89898 0.326161 0.163080 0.986613i \(-0.447857\pi\)
0.163080 + 0.986613i \(0.447857\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.10102i 0.120853i 0.998173 + 0.0604264i \(0.0192460\pi\)
−0.998173 + 0.0604264i \(0.980754\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 0.449490i − 0.0481904i
\(88\) 0 0
\(89\) 4.44949 0.471645 0.235822 0.971796i \(-0.424222\pi\)
0.235822 + 0.971796i \(0.424222\pi\)
\(90\) 0 0
\(91\) −10.8990 −1.14252
\(92\) 0 0
\(93\) 1.00000i 0.103695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 5.10102i − 0.517930i −0.965887 0.258965i \(-0.916619\pi\)
0.965887 0.258965i \(-0.0833815\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 5.55051i 0.546908i 0.961885 + 0.273454i \(0.0881661\pi\)
−0.961885 + 0.273454i \(0.911834\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.89898i − 0.473602i −0.971558 0.236801i \(-0.923901\pi\)
0.971558 0.236801i \(-0.0760990\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 3.55051 0.337000
\(112\) 0 0
\(113\) 15.7980i 1.48615i 0.669210 + 0.743073i \(0.266633\pi\)
−0.669210 + 0.743073i \(0.733367\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.44949i − 0.411355i
\(118\) 0 0
\(119\) −4.89898 −0.449089
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 7.79796i 0.703118i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.89898i − 0.789657i −0.918755 0.394828i \(-0.870804\pi\)
0.918755 0.394828i \(-0.129196\pi\)
\(128\) 0 0
\(129\) −3.10102 −0.273030
\(130\) 0 0
\(131\) 12.2474 1.07006 0.535032 0.844832i \(-0.320299\pi\)
0.535032 + 0.844832i \(0.320299\pi\)
\(132\) 0 0
\(133\) 12.0000i 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 14.8990i − 1.27291i −0.771316 0.636453i \(-0.780401\pi\)
0.771316 0.636453i \(-0.219599\pi\)
\(138\) 0 0
\(139\) −13.7980 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(140\) 0 0
\(141\) −8.89898 −0.749429
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) −0.202041 −0.0165518 −0.00827592 0.999966i \(-0.502634\pi\)
−0.00827592 + 0.999966i \(0.502634\pi\)
\(150\) 0 0
\(151\) −10.8990 −0.886946 −0.443473 0.896288i \(-0.646254\pi\)
−0.443473 + 0.896288i \(0.646254\pi\)
\(152\) 0 0
\(153\) − 2.00000i − 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.89898i − 0.550599i −0.961359 0.275299i \(-0.911223\pi\)
0.961359 0.275299i \(-0.0887769\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −7.10102 −0.559639
\(162\) 0 0
\(163\) − 13.1464i − 1.02971i −0.857278 0.514854i \(-0.827846\pi\)
0.857278 0.514854i \(-0.172154\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) −6.79796 −0.522920
\(170\) 0 0
\(171\) −4.89898 −0.374634
\(172\) 0 0
\(173\) 0.202041i 0.0153609i 0.999971 + 0.00768045i \(0.00244479\pi\)
−0.999971 + 0.00768045i \(0.997555\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.34847i 0.552345i
\(178\) 0 0
\(179\) 15.5959 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(180\) 0 0
\(181\) −2.89898 −0.215479 −0.107740 0.994179i \(-0.534361\pi\)
−0.107740 + 0.994179i \(0.534361\pi\)
\(182\) 0 0
\(183\) − 6.89898i − 0.509987i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.44949 0.178174
\(190\) 0 0
\(191\) 1.55051 0.112191 0.0560955 0.998425i \(-0.482135\pi\)
0.0560955 + 0.998425i \(0.482135\pi\)
\(192\) 0 0
\(193\) 8.69694i 0.626019i 0.949750 + 0.313010i \(0.101337\pi\)
−0.949750 + 0.313010i \(0.898663\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 20.6969i − 1.47460i −0.675568 0.737298i \(-0.736101\pi\)
0.675568 0.737298i \(-0.263899\pi\)
\(198\) 0 0
\(199\) −24.6969 −1.75072 −0.875360 0.483472i \(-0.839375\pi\)
−0.875360 + 0.483472i \(0.839375\pi\)
\(200\) 0 0
\(201\) 6.44949 0.454912
\(202\) 0 0
\(203\) − 1.10102i − 0.0772765i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 2.89898i − 0.201493i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 20.4949 1.41093 0.705463 0.708746i \(-0.250739\pi\)
0.705463 + 0.708746i \(0.250739\pi\)
\(212\) 0 0
\(213\) 1.55051i 0.106239i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.44949i 0.166282i
\(218\) 0 0
\(219\) −12.4495 −0.841259
\(220\) 0 0
\(221\) −8.89898 −0.598610
\(222\) 0 0
\(223\) 9.79796i 0.656120i 0.944657 + 0.328060i \(0.106395\pi\)
−0.944657 + 0.328060i \(0.893605\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.7980i 1.44678i 0.690439 + 0.723391i \(0.257417\pi\)
−0.690439 + 0.723391i \(0.742583\pi\)
\(228\) 0 0
\(229\) −19.7980 −1.30829 −0.654143 0.756371i \(-0.726971\pi\)
−0.654143 + 0.756371i \(0.726971\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.20204i 0.144261i 0.997395 + 0.0721303i \(0.0229797\pi\)
−0.997395 + 0.0721303i \(0.977020\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.89898i 0.188309i
\(238\) 0 0
\(239\) −16.8990 −1.09310 −0.546552 0.837425i \(-0.684060\pi\)
−0.546552 + 0.837425i \(0.684060\pi\)
\(240\) 0 0
\(241\) 3.79796 0.244648 0.122324 0.992490i \(-0.460965\pi\)
0.122324 + 0.992490i \(0.460965\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 21.7980i 1.38697i
\(248\) 0 0
\(249\) −1.10102 −0.0697743
\(250\) 0 0
\(251\) −9.79796 −0.618442 −0.309221 0.950990i \(-0.600068\pi\)
−0.309221 + 0.950990i \(0.600068\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.0000i 0.998053i 0.866587 + 0.499026i \(0.166309\pi\)
−0.866587 + 0.499026i \(0.833691\pi\)
\(258\) 0 0
\(259\) 8.69694 0.540401
\(260\) 0 0
\(261\) 0.449490 0.0278227
\(262\) 0 0
\(263\) − 29.3939i − 1.81250i −0.422738 0.906252i \(-0.638931\pi\)
0.422738 0.906252i \(-0.361069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.44949i 0.272304i
\(268\) 0 0
\(269\) −12.0454 −0.734421 −0.367211 0.930138i \(-0.619687\pi\)
−0.367211 + 0.930138i \(0.619687\pi\)
\(270\) 0 0
\(271\) −17.7980 −1.08115 −0.540575 0.841296i \(-0.681793\pi\)
−0.540575 + 0.841296i \(0.681793\pi\)
\(272\) 0 0
\(273\) − 10.8990i − 0.659636i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.1464i 0.669724i 0.942267 + 0.334862i \(0.108690\pi\)
−0.942267 + 0.334862i \(0.891310\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 14.8990 0.888799 0.444399 0.895829i \(-0.353417\pi\)
0.444399 + 0.895829i \(0.353417\pi\)
\(282\) 0 0
\(283\) 9.55051i 0.567719i 0.958866 + 0.283859i \(0.0916149\pi\)
−0.958866 + 0.283859i \(0.908385\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.1010i 1.12750i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 5.10102 0.299027
\(292\) 0 0
\(293\) 21.7980i 1.27345i 0.771091 + 0.636725i \(0.219711\pi\)
−0.771091 + 0.636725i \(0.780289\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.8990 −0.745967
\(300\) 0 0
\(301\) −7.59592 −0.437821
\(302\) 0 0
\(303\) 2.00000i 0.114897i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.4495i − 1.28126i −0.767850 0.640630i \(-0.778673\pi\)
0.767850 0.640630i \(-0.221327\pi\)
\(308\) 0 0
\(309\) −5.55051 −0.315757
\(310\) 0 0
\(311\) 4.65153 0.263764 0.131882 0.991265i \(-0.457898\pi\)
0.131882 + 0.991265i \(0.457898\pi\)
\(312\) 0 0
\(313\) 13.3485i 0.754500i 0.926111 + 0.377250i \(0.123130\pi\)
−0.926111 + 0.377250i \(0.876870\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.5959i − 0.875954i −0.898986 0.437977i \(-0.855695\pi\)
0.898986 0.437977i \(-0.144305\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.89898 0.273434
\(322\) 0 0
\(323\) 9.79796i 0.545173i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) −21.7980 −1.20176
\(330\) 0 0
\(331\) −1.10102 −0.0605176 −0.0302588 0.999542i \(-0.509633\pi\)
−0.0302588 + 0.999542i \(0.509633\pi\)
\(332\) 0 0
\(333\) 3.55051i 0.194567i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 19.1464i − 1.04297i −0.853260 0.521486i \(-0.825378\pi\)
0.853260 0.521486i \(-0.174622\pi\)
\(338\) 0 0
\(339\) −15.7980 −0.858027
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) 0 0
\(349\) −14.2020 −0.760218 −0.380109 0.924942i \(-0.624113\pi\)
−0.380109 + 0.924942i \(0.624113\pi\)
\(350\) 0 0
\(351\) 4.44949 0.237496
\(352\) 0 0
\(353\) 15.7980i 0.840841i 0.907329 + 0.420420i \(0.138117\pi\)
−0.907329 + 0.420420i \(0.861883\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.89898i − 0.259281i
\(358\) 0 0
\(359\) −9.55051 −0.504057 −0.252028 0.967720i \(-0.581098\pi\)
−0.252028 + 0.967720i \(0.581098\pi\)
\(360\) 0 0
\(361\) 5.00000 0.263158
\(362\) 0 0
\(363\) − 11.0000i − 0.577350i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 11.5959i − 0.605302i −0.953101 0.302651i \(-0.902128\pi\)
0.953101 0.302651i \(-0.0978717\pi\)
\(368\) 0 0
\(369\) −7.79796 −0.405946
\(370\) 0 0
\(371\) −14.6969 −0.763027
\(372\) 0 0
\(373\) 3.30306i 0.171026i 0.996337 + 0.0855130i \(0.0272529\pi\)
−0.996337 + 0.0855130i \(0.972747\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.00000i − 0.103005i
\(378\) 0 0
\(379\) −16.8990 −0.868042 −0.434021 0.900903i \(-0.642906\pi\)
−0.434021 + 0.900903i \(0.642906\pi\)
\(380\) 0 0
\(381\) 8.89898 0.455909
\(382\) 0 0
\(383\) − 10.8990i − 0.556912i −0.960449 0.278456i \(-0.910177\pi\)
0.960449 0.278456i \(-0.0898226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 3.10102i − 0.157634i
\(388\) 0 0
\(389\) 6.65153 0.337246 0.168623 0.985681i \(-0.446068\pi\)
0.168623 + 0.985681i \(0.446068\pi\)
\(390\) 0 0
\(391\) −5.79796 −0.293215
\(392\) 0 0
\(393\) 12.2474i 0.617802i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.7980i 0.592123i 0.955169 + 0.296061i \(0.0956733\pi\)
−0.955169 + 0.296061i \(0.904327\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 29.8434 1.49031 0.745153 0.666893i \(-0.232376\pi\)
0.745153 + 0.666893i \(0.232376\pi\)
\(402\) 0 0
\(403\) 4.44949i 0.221645i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.696938 0.0344614 0.0172307 0.999852i \(-0.494515\pi\)
0.0172307 + 0.999852i \(0.494515\pi\)
\(410\) 0 0
\(411\) 14.8990 0.734912
\(412\) 0 0
\(413\) 18.0000i 0.885722i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 13.7980i − 0.675689i
\(418\) 0 0
\(419\) −26.4495 −1.29214 −0.646071 0.763277i \(-0.723589\pi\)
−0.646071 + 0.763277i \(0.723589\pi\)
\(420\) 0 0
\(421\) 5.79796 0.282575 0.141288 0.989969i \(-0.454876\pi\)
0.141288 + 0.989969i \(0.454876\pi\)
\(422\) 0 0
\(423\) − 8.89898i − 0.432683i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 16.8990i − 0.817799i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.5505 −0.845378 −0.422689 0.906275i \(-0.638914\pi\)
−0.422689 + 0.906275i \(0.638914\pi\)
\(432\) 0 0
\(433\) − 31.1464i − 1.49680i −0.663247 0.748401i \(-0.730822\pi\)
0.663247 0.748401i \(-0.269178\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.2020i 0.679376i
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 0.202041i − 0.00955621i
\(448\) 0 0
\(449\) 3.14643 0.148489 0.0742446 0.997240i \(-0.476345\pi\)
0.0742446 + 0.997240i \(0.476345\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 10.8990i − 0.512079i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.34847i 0.250191i 0.992145 + 0.125095i \(0.0399237\pi\)
−0.992145 + 0.125095i \(0.960076\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 3.55051 0.165364 0.0826819 0.996576i \(-0.473651\pi\)
0.0826819 + 0.996576i \(0.473651\pi\)
\(462\) 0 0
\(463\) − 1.30306i − 0.0605584i −0.999541 0.0302792i \(-0.990360\pi\)
0.999541 0.0302792i \(-0.00963964\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.1010i 0.883890i 0.897042 + 0.441945i \(0.145711\pi\)
−0.897042 + 0.441945i \(0.854289\pi\)
\(468\) 0 0
\(469\) 15.7980 0.729482
\(470\) 0 0
\(471\) 6.89898 0.317888
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 6.00000i − 0.274721i
\(478\) 0 0
\(479\) −19.3485 −0.884054 −0.442027 0.897002i \(-0.645740\pi\)
−0.442027 + 0.897002i \(0.645740\pi\)
\(480\) 0 0
\(481\) 15.7980 0.720325
\(482\) 0 0
\(483\) − 7.10102i − 0.323108i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 32.8990i − 1.49080i −0.666620 0.745398i \(-0.732260\pi\)
0.666620 0.745398i \(-0.267740\pi\)
\(488\) 0 0
\(489\) 13.1464 0.594502
\(490\) 0 0
\(491\) −11.1010 −0.500982 −0.250491 0.968119i \(-0.580592\pi\)
−0.250491 + 0.968119i \(0.580592\pi\)
\(492\) 0 0
\(493\) − 0.898979i − 0.0404880i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.79796i 0.170362i
\(498\) 0 0
\(499\) −13.7980 −0.617681 −0.308841 0.951114i \(-0.599941\pi\)
−0.308841 + 0.951114i \(0.599941\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) − 27.1010i − 1.20837i −0.796842 0.604187i \(-0.793498\pi\)
0.796842 0.604187i \(-0.206502\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.79796i − 0.301908i
\(508\) 0 0
\(509\) −6.24745 −0.276913 −0.138457 0.990368i \(-0.544214\pi\)
−0.138457 + 0.990368i \(0.544214\pi\)
\(510\) 0 0
\(511\) −30.4949 −1.34901
\(512\) 0 0
\(513\) − 4.89898i − 0.216295i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.202041 −0.00886862
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 11.1010i 0.485414i 0.970100 + 0.242707i \(0.0780353\pi\)
−0.970100 + 0.242707i \(0.921965\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.00000i 0.0871214i
\(528\) 0 0
\(529\) 14.5959 0.634605
\(530\) 0 0
\(531\) −7.34847 −0.318896
\(532\) 0 0
\(533\) 34.6969i 1.50289i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.5959i 0.673014i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.404082 −0.0173728 −0.00868642 0.999962i \(-0.502765\pi\)
−0.00868642 + 0.999962i \(0.502765\pi\)
\(542\) 0 0
\(543\) − 2.89898i − 0.124407i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 30.9444i 1.32309i 0.749907 + 0.661543i \(0.230098\pi\)
−0.749907 + 0.661543i \(0.769902\pi\)
\(548\) 0 0
\(549\) 6.89898 0.294441
\(550\) 0 0
\(551\) −2.20204 −0.0938101
\(552\) 0 0
\(553\) 7.10102i 0.301966i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.5959i 0.915048i 0.889197 + 0.457524i \(0.151264\pi\)
−0.889197 + 0.457524i \(0.848736\pi\)
\(558\) 0 0
\(559\) −13.7980 −0.583591
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 0.898979i − 0.0378875i −0.999821 0.0189437i \(-0.993970\pi\)
0.999821 0.0189437i \(-0.00603034\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.44949i 0.102869i
\(568\) 0 0
\(569\) 40.4495 1.69573 0.847865 0.530212i \(-0.177887\pi\)
0.847865 + 0.530212i \(0.177887\pi\)
\(570\) 0 0
\(571\) −10.2020 −0.426942 −0.213471 0.976949i \(-0.568477\pi\)
−0.213471 + 0.976949i \(0.568477\pi\)
\(572\) 0 0
\(573\) 1.55051i 0.0647735i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.40408i 0.100083i 0.998747 + 0.0500416i \(0.0159354\pi\)
−0.998747 + 0.0500416i \(0.984065\pi\)
\(578\) 0 0
\(579\) −8.69694 −0.361432
\(580\) 0 0
\(581\) −2.69694 −0.111888
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.5959i 0.643712i 0.946789 + 0.321856i \(0.104307\pi\)
−0.946789 + 0.321856i \(0.895693\pi\)
\(588\) 0 0
\(589\) 4.89898 0.201859
\(590\) 0 0
\(591\) 20.6969 0.851358
\(592\) 0 0
\(593\) 33.5959i 1.37962i 0.723991 + 0.689809i \(0.242306\pi\)
−0.723991 + 0.689809i \(0.757694\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 24.6969i − 1.01078i
\(598\) 0 0
\(599\) 14.9444 0.610611 0.305306 0.952254i \(-0.401241\pi\)
0.305306 + 0.952254i \(0.401241\pi\)
\(600\) 0 0
\(601\) 3.30306 0.134735 0.0673673 0.997728i \(-0.478540\pi\)
0.0673673 + 0.997728i \(0.478540\pi\)
\(602\) 0 0
\(603\) 6.44949i 0.262644i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 42.9444i − 1.74306i −0.490343 0.871529i \(-0.663129\pi\)
0.490343 0.871529i \(-0.336871\pi\)
\(608\) 0 0
\(609\) 1.10102 0.0446156
\(610\) 0 0
\(611\) −39.5959 −1.60188
\(612\) 0 0
\(613\) − 36.0454i − 1.45586i −0.685651 0.727930i \(-0.740482\pi\)
0.685651 0.727930i \(-0.259518\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i 0.992680 + 0.120775i \(0.0385381\pi\)
−0.992680 + 0.120775i \(0.961462\pi\)
\(618\) 0 0
\(619\) −46.4949 −1.86879 −0.934394 0.356242i \(-0.884058\pi\)
−0.934394 + 0.356242i \(0.884058\pi\)
\(620\) 0 0
\(621\) 2.89898 0.116332
\(622\) 0 0
\(623\) 10.8990i 0.436658i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.10102 0.283136
\(630\) 0 0
\(631\) 3.59592 0.143151 0.0715756 0.997435i \(-0.477197\pi\)
0.0715756 + 0.997435i \(0.477197\pi\)
\(632\) 0 0
\(633\) 20.4949i 0.814599i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.44949i 0.176295i
\(638\) 0 0
\(639\) −1.55051 −0.0613372
\(640\) 0 0
\(641\) −44.0454 −1.73969 −0.869845 0.493326i \(-0.835781\pi\)
−0.869845 + 0.493326i \(0.835781\pi\)
\(642\) 0 0
\(643\) 20.4949i 0.808240i 0.914706 + 0.404120i \(0.132422\pi\)
−0.914706 + 0.404120i \(0.867578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.5959i 0.770395i 0.922834 + 0.385198i \(0.125867\pi\)
−0.922834 + 0.385198i \(0.874133\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.44949 −0.0960031
\(652\) 0 0
\(653\) − 4.00000i − 0.156532i −0.996933 0.0782660i \(-0.975062\pi\)
0.996933 0.0782660i \(-0.0249384\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 12.4495i − 0.485701i
\(658\) 0 0
\(659\) −0.651531 −0.0253800 −0.0126900 0.999919i \(-0.504039\pi\)
−0.0126900 + 0.999919i \(0.504039\pi\)
\(660\) 0 0
\(661\) 39.3939 1.53224 0.766122 0.642695i \(-0.222184\pi\)
0.766122 + 0.642695i \(0.222184\pi\)
\(662\) 0 0
\(663\) − 8.89898i − 0.345608i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.30306i − 0.0504547i
\(668\) 0 0
\(669\) −9.79796 −0.378811
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 28.9444i − 1.11572i −0.829934 0.557862i \(-0.811622\pi\)
0.829934 0.557862i \(-0.188378\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 8.20204i − 0.315230i −0.987501 0.157615i \(-0.949619\pi\)
0.987501 0.157615i \(-0.0503805\pi\)
\(678\) 0 0
\(679\) 12.4949 0.479510
\(680\) 0 0
\(681\) −21.7980 −0.835300
\(682\) 0 0
\(683\) − 3.59592i − 0.137594i −0.997631 0.0687970i \(-0.978084\pi\)
0.997631 0.0687970i \(-0.0219161\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 19.7980i − 0.755339i
\(688\) 0 0
\(689\) −26.6969 −1.01707
\(690\) 0 0
\(691\) −45.3939 −1.72686 −0.863432 0.504465i \(-0.831690\pi\)
−0.863432 + 0.504465i \(0.831690\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.5959i 0.590738i
\(698\) 0 0
\(699\) −2.20204 −0.0832888
\(700\) 0 0
\(701\) 44.6969 1.68818 0.844090 0.536201i \(-0.180141\pi\)
0.844090 + 0.536201i \(0.180141\pi\)
\(702\) 0 0
\(703\) − 17.3939i − 0.656022i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.89898i 0.184245i
\(708\) 0 0
\(709\) 7.79796 0.292858 0.146429 0.989221i \(-0.453222\pi\)
0.146429 + 0.989221i \(0.453222\pi\)
\(710\) 0 0
\(711\) −2.89898 −0.108720
\(712\) 0 0
\(713\) 2.89898i 0.108568i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 16.8990i − 0.631104i
\(718\) 0 0
\(719\) −17.7980 −0.663752 −0.331876 0.943323i \(-0.607682\pi\)
−0.331876 + 0.943323i \(0.607682\pi\)
\(720\) 0 0
\(721\) −13.5959 −0.506338
\(722\) 0 0
\(723\) 3.79796i 0.141248i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.1464i 0.635926i 0.948103 + 0.317963i \(0.102999\pi\)
−0.948103 + 0.317963i \(0.897001\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −6.20204 −0.229391
\(732\) 0 0
\(733\) − 10.4041i − 0.384284i −0.981367 0.192142i \(-0.938457\pi\)
0.981367 0.192142i \(-0.0615433\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 40.6969 1.49706 0.748531 0.663100i \(-0.230760\pi\)
0.748531 + 0.663100i \(0.230760\pi\)
\(740\) 0 0
\(741\) −21.7980 −0.800768
\(742\) 0 0
\(743\) 1.79796i 0.0659607i 0.999456 + 0.0329804i \(0.0104999\pi\)
−0.999456 + 0.0329804i \(0.989500\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.10102i − 0.0402842i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −5.79796 −0.211571 −0.105785 0.994389i \(-0.533736\pi\)
−0.105785 + 0.994389i \(0.533736\pi\)
\(752\) 0 0
\(753\) − 9.79796i − 0.357057i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 12.4495i − 0.452484i −0.974071 0.226242i \(-0.927356\pi\)
0.974071 0.226242i \(-0.0726441\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −37.8434 −1.37182 −0.685910 0.727686i \(-0.740596\pi\)
−0.685910 + 0.727686i \(0.740596\pi\)
\(762\) 0 0
\(763\) 9.79796i 0.354710i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.6969i 1.18062i
\(768\) 0 0
\(769\) −33.7980 −1.21879 −0.609393 0.792868i \(-0.708587\pi\)
−0.609393 + 0.792868i \(0.708587\pi\)
\(770\) 0 0
\(771\) −16.0000 −0.576226
\(772\) 0 0
\(773\) 10.0000i 0.359675i 0.983696 + 0.179838i \(0.0575572\pi\)
−0.983696 + 0.179838i \(0.942443\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.69694i 0.312001i
\(778\) 0 0
\(779\) 38.2020 1.36873
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.449490i 0.0160635i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 47.1918i − 1.68221i −0.540874 0.841104i \(-0.681906\pi\)
0.540874 0.841104i \(-0.318094\pi\)
\(788\) 0 0
\(789\) 29.3939 1.04645
\(790\) 0 0
\(791\) −38.6969 −1.37590
\(792\) 0 0
\(793\) − 30.6969i − 1.09008i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.4949i 0.938497i 0.883066 + 0.469249i \(0.155475\pi\)
−0.883066 + 0.469249i \(0.844525\pi\)
\(798\) 0 0
\(799\) −17.7980 −0.629647
\(800\) 0 0
\(801\) −4.44949 −0.157215
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 12.0454i − 0.424018i
\(808\) 0 0
\(809\) 17.3485 0.609940 0.304970 0.952362i \(-0.401354\pi\)
0.304970 + 0.952362i \(0.401354\pi\)
\(810\) 0 0
\(811\) 46.2929 1.62556 0.812781 0.582569i \(-0.197953\pi\)
0.812781 + 0.582569i \(0.197953\pi\)
\(812\) 0 0
\(813\) − 17.7980i − 0.624202i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.1918i 0.531495i
\(818\) 0 0
\(819\) 10.8990 0.380841
\(820\) 0 0
\(821\) −55.6413 −1.94190 −0.970948 0.239291i \(-0.923085\pi\)
−0.970948 + 0.239291i \(0.923085\pi\)
\(822\) 0 0
\(823\) − 24.4949i − 0.853838i −0.904290 0.426919i \(-0.859599\pi\)
0.904290 0.426919i \(-0.140401\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 42.0908i − 1.46364i −0.681497 0.731821i \(-0.738671\pi\)
0.681497 0.731821i \(-0.261329\pi\)
\(828\) 0 0
\(829\) −2.89898 −0.100686 −0.0503429 0.998732i \(-0.516031\pi\)
−0.0503429 + 0.998732i \(0.516031\pi\)
\(830\) 0 0
\(831\) −11.1464 −0.386665
\(832\) 0 0
\(833\) 2.00000i 0.0692959i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.00000i − 0.0345651i
\(838\) 0 0
\(839\) 14.4495 0.498852 0.249426 0.968394i \(-0.419758\pi\)
0.249426 + 0.968394i \(0.419758\pi\)
\(840\) 0 0
\(841\) −28.7980 −0.993033
\(842\) 0 0
\(843\) 14.8990i 0.513148i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 26.9444i − 0.925820i
\(848\) 0 0
\(849\) −9.55051 −0.327773
\(850\) 0 0
\(851\) 10.2929 0.352835
\(852\) 0 0
\(853\) 19.3939i 0.664034i 0.943273 + 0.332017i \(0.107729\pi\)
−0.943273 + 0.332017i \(0.892271\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.1918i 1.13381i 0.823783 + 0.566906i \(0.191860\pi\)
−0.823783 + 0.566906i \(0.808140\pi\)
\(858\) 0 0
\(859\) 47.5959 1.62395 0.811976 0.583691i \(-0.198392\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(860\) 0 0
\(861\) −19.1010 −0.650961
\(862\) 0 0
\(863\) 56.0000i 1.90626i 0.302558 + 0.953131i \(0.402160\pi\)
−0.302558 + 0.953131i \(0.597840\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 28.6969 0.972359
\(872\) 0 0
\(873\) 5.10102i 0.172643i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 16.2020i − 0.547104i −0.961857 0.273552i \(-0.911801\pi\)
0.961857 0.273552i \(-0.0881986\pi\)
\(878\) 0 0
\(879\) −21.7980 −0.735227
\(880\) 0 0
\(881\) 1.75255 0.0590450 0.0295225 0.999564i \(-0.490601\pi\)
0.0295225 + 0.999564i \(0.490601\pi\)
\(882\) 0 0
\(883\) 21.3939i 0.719961i 0.932960 + 0.359981i \(0.117217\pi\)
−0.932960 + 0.359981i \(0.882783\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.0000i 0.671534i 0.941945 + 0.335767i \(0.108996\pi\)
−0.941945 + 0.335767i \(0.891004\pi\)
\(888\) 0 0
\(889\) 21.7980 0.731080
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 43.5959i 1.45888i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 12.8990i − 0.430684i
\(898\) 0 0
\(899\) −0.449490 −0.0149913
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) − 7.59592i − 0.252776i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 37.1464i 1.23343i 0.787188 + 0.616713i \(0.211536\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) −6.20204 −0.205483 −0.102741 0.994708i \(-0.532761\pi\)
−0.102741 + 0.994708i \(0.532761\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.0000i 0.990687i
\(918\) 0 0
\(919\) −25.3031 −0.834671 −0.417335 0.908752i \(-0.637036\pi\)
−0.417335 + 0.908752i \(0.637036\pi\)
\(920\) 0 0
\(921\) 22.4495 0.739736
\(922\) 0 0
\(923\) 6.89898i 0.227083i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 5.55051i − 0.182303i
\(928\) 0 0
\(929\) 40.9444 1.34334 0.671671 0.740850i \(-0.265577\pi\)
0.671671 + 0.740850i \(0.265577\pi\)
\(930\) 0 0
\(931\) 4.89898 0.160558
\(932\) 0 0
\(933\) 4.65153i 0.152284i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 22.4949i − 0.734876i −0.930048 0.367438i \(-0.880235\pi\)
0.930048 0.367438i \(-0.119765\pi\)
\(938\) 0 0
\(939\) −13.3485 −0.435611
\(940\) 0 0
\(941\) −2.24745 −0.0732647 −0.0366324 0.999329i \(-0.511663\pi\)
−0.0366324 + 0.999329i \(0.511663\pi\)
\(942\) 0 0
\(943\) 22.6061i 0.736157i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 6.49490i − 0.211056i −0.994416 0.105528i \(-0.966347\pi\)
0.994416 0.105528i \(-0.0336532\pi\)
\(948\) 0 0
\(949\) −55.3939 −1.79816
\(950\) 0 0
\(951\) 15.5959 0.505732
\(952\) 0 0
\(953\) − 40.6969i − 1.31830i −0.752010 0.659152i \(-0.770916\pi\)
0.752010 0.659152i \(-0.229084\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.4949 1.17848
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 4.89898i 0.157867i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.3939i 0.945243i 0.881265 + 0.472622i \(0.156692\pi\)
−0.881265 + 0.472622i \(0.843308\pi\)
\(968\) 0 0
\(969\) −9.79796 −0.314756
\(970\) 0 0
\(971\) −21.5505 −0.691589 −0.345794 0.938310i \(-0.612391\pi\)
−0.345794 + 0.938310i \(0.612391\pi\)
\(972\) 0 0
\(973\) − 33.7980i − 1.08351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 25.1918i − 0.805958i −0.915209 0.402979i \(-0.867975\pi\)
0.915209 0.402979i \(-0.132025\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) − 6.20204i − 0.197814i −0.995097 0.0989072i \(-0.968465\pi\)
0.995097 0.0989072i \(-0.0315347\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 21.7980i − 0.693837i
\(988\) 0 0
\(989\) −8.98979 −0.285859
\(990\) 0 0
\(991\) 37.3939 1.18786 0.593928 0.804518i \(-0.297576\pi\)
0.593928 + 0.804518i \(0.297576\pi\)
\(992\) 0 0
\(993\) − 1.10102i − 0.0349398i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 28.2929i − 0.896044i −0.894023 0.448022i \(-0.852129\pi\)
0.894023 0.448022i \(-0.147871\pi\)
\(998\) 0 0
\(999\) −3.55051 −0.112333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9300.2.g.l.3349.4 4
5.2 odd 4 9300.2.a.p.1.1 2
5.3 odd 4 1860.2.a.d.1.2 2
5.4 even 2 inner 9300.2.g.l.3349.1 4
15.8 even 4 5580.2.a.g.1.2 2
20.3 even 4 7440.2.a.bj.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.d.1.2 2 5.3 odd 4
5580.2.a.g.1.2 2 15.8 even 4
7440.2.a.bj.1.1 2 20.3 even 4
9300.2.a.p.1.1 2 5.2 odd 4
9300.2.g.l.3349.1 4 5.4 even 2 inner
9300.2.g.l.3349.4 4 1.1 even 1 trivial