Properties

Label 9300.2.a.x.1.4
Level $9300$
Weight $2$
Character 9300.1
Self dual yes
Analytic conductor $74.261$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9300,2,Mod(1,9300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9300.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,4,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.2608738798\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.224148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 11x^{2} + 9x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1860)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.06316\) of defining polynomial
Character \(\chi\) \(=\) 9300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.64963 q^{7} +1.00000 q^{9} -6.12631 q^{11} -3.47668 q^{13} +6.44607 q^{17} +4.64963 q^{21} -6.44607 q^{23} +1.00000 q^{27} +8.96939 q^{29} +1.00000 q^{31} -6.12631 q^{33} +2.64963 q^{37} -3.47668 q^{39} +8.12631 q^{41} -6.12631 q^{43} -0.853176 q^{47} +14.6190 q^{49} +6.44607 q^{51} +1.14682 q^{53} -10.5623 q^{59} +1.36047 q^{61} +4.64963 q^{63} -6.11621 q^{67} -6.44607 q^{69} +3.79645 q^{71} +5.60300 q^{73} -28.4850 q^{77} +11.2731 q^{79} +1.00000 q^{81} +10.4461 q^{83} +8.96939 q^{87} +9.79645 q^{89} -16.1653 q^{91} +1.00000 q^{93} +17.0185 q^{97} -6.12631 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{7} + 4 q^{9} + 2 q^{11} - 2 q^{13} - 2 q^{17} + 4 q^{21} + 2 q^{23} + 4 q^{27} + 20 q^{29} + 4 q^{31} + 2 q^{33} - 4 q^{37} - 2 q^{39} + 6 q^{41} + 2 q^{43} - 2 q^{47} + 28 q^{49} - 2 q^{51}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.64963 1.75739 0.878697 0.477381i \(-0.158414\pi\)
0.878697 + 0.477381i \(0.158414\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.12631 −1.84715 −0.923576 0.383415i \(-0.874748\pi\)
−0.923576 + 0.383415i \(0.874748\pi\)
\(12\) 0 0
\(13\) −3.47668 −0.964259 −0.482129 0.876100i \(-0.660137\pi\)
−0.482129 + 0.876100i \(0.660137\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.44607 1.56340 0.781701 0.623653i \(-0.214352\pi\)
0.781701 + 0.623653i \(0.214352\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 4.64963 1.01463
\(22\) 0 0
\(23\) −6.44607 −1.34410 −0.672050 0.740506i \(-0.734586\pi\)
−0.672050 + 0.740506i \(0.734586\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.96939 1.66557 0.832787 0.553594i \(-0.186744\pi\)
0.832787 + 0.553594i \(0.186744\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −6.12631 −1.06645
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.64963 0.435596 0.217798 0.975994i \(-0.430113\pi\)
0.217798 + 0.975994i \(0.430113\pi\)
\(38\) 0 0
\(39\) −3.47668 −0.556715
\(40\) 0 0
\(41\) 8.12631 1.26912 0.634558 0.772875i \(-0.281182\pi\)
0.634558 + 0.772875i \(0.281182\pi\)
\(42\) 0 0
\(43\) −6.12631 −0.934254 −0.467127 0.884190i \(-0.654711\pi\)
−0.467127 + 0.884190i \(0.654711\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.853176 −0.124449 −0.0622243 0.998062i \(-0.519819\pi\)
−0.0622243 + 0.998062i \(0.519819\pi\)
\(48\) 0 0
\(49\) 14.6190 2.08843
\(50\) 0 0
\(51\) 6.44607 0.902631
\(52\) 0 0
\(53\) 1.14682 0.157528 0.0787642 0.996893i \(-0.474903\pi\)
0.0787642 + 0.996893i \(0.474903\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.5623 −1.37509 −0.687546 0.726141i \(-0.741312\pi\)
−0.687546 + 0.726141i \(0.741312\pi\)
\(60\) 0 0
\(61\) 1.36047 0.174191 0.0870953 0.996200i \(-0.472242\pi\)
0.0870953 + 0.996200i \(0.472242\pi\)
\(62\) 0 0
\(63\) 4.64963 0.585798
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.11621 −0.747214 −0.373607 0.927587i \(-0.621879\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(68\) 0 0
\(69\) −6.44607 −0.776016
\(70\) 0 0
\(71\) 3.79645 0.450556 0.225278 0.974295i \(-0.427671\pi\)
0.225278 + 0.974295i \(0.427671\pi\)
\(72\) 0 0
\(73\) 5.60300 0.655781 0.327890 0.944716i \(-0.393662\pi\)
0.327890 + 0.944716i \(0.393662\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −28.4850 −3.24617
\(78\) 0 0
\(79\) 11.2731 1.26833 0.634163 0.773199i \(-0.281345\pi\)
0.634163 + 0.773199i \(0.281345\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.4461 1.14661 0.573303 0.819344i \(-0.305662\pi\)
0.573303 + 0.819344i \(0.305662\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.96939 0.961619
\(88\) 0 0
\(89\) 9.79645 1.03842 0.519211 0.854646i \(-0.326226\pi\)
0.519211 + 0.854646i \(0.326226\pi\)
\(90\) 0 0
\(91\) −16.1653 −1.69458
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.0185 1.72796 0.863981 0.503524i \(-0.167963\pi\)
0.863981 + 0.503524i \(0.167963\pi\)
\(98\) 0 0
\(99\) −6.12631 −0.615717
\(100\) 0 0
\(101\) 12.7658 1.27025 0.635124 0.772410i \(-0.280949\pi\)
0.635124 + 0.772410i \(0.280949\pi\)
\(102\) 0 0
\(103\) −10.7759 −1.06178 −0.530892 0.847439i \(-0.678143\pi\)
−0.530892 + 0.847439i \(0.678143\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.44607 −0.816513 −0.408256 0.912867i \(-0.633863\pi\)
−0.408256 + 0.912867i \(0.633863\pi\)
\(108\) 0 0
\(109\) 10.3198 0.988454 0.494227 0.869333i \(-0.335451\pi\)
0.494227 + 0.869333i \(0.335451\pi\)
\(110\) 0 0
\(111\) 2.64963 0.251491
\(112\) 0 0
\(113\) 8.95337 0.842262 0.421131 0.907000i \(-0.361633\pi\)
0.421131 + 0.907000i \(0.361633\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.47668 −0.321420
\(118\) 0 0
\(119\) 29.9718 2.74751
\(120\) 0 0
\(121\) 26.5317 2.41197
\(122\) 0 0
\(123\) 8.12631 0.732725
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.95337 0.262069 0.131035 0.991378i \(-0.458170\pi\)
0.131035 + 0.991378i \(0.458170\pi\)
\(128\) 0 0
\(129\) −6.12631 −0.539392
\(130\) 0 0
\(131\) −16.2686 −1.42140 −0.710699 0.703496i \(-0.751621\pi\)
−0.710699 + 0.703496i \(0.751621\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.08560 0.263621 0.131810 0.991275i \(-0.457921\pi\)
0.131810 + 0.991275i \(0.457921\pi\)
\(138\) 0 0
\(139\) 16.6597 1.41306 0.706530 0.707683i \(-0.250260\pi\)
0.706530 + 0.707683i \(0.250260\pi\)
\(140\) 0 0
\(141\) −0.853176 −0.0718504
\(142\) 0 0
\(143\) 21.2993 1.78113
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.6190 1.20576
\(148\) 0 0
\(149\) −21.6580 −1.77429 −0.887146 0.461489i \(-0.847315\pi\)
−0.887146 + 0.461489i \(0.847315\pi\)
\(150\) 0 0
\(151\) 3.68024 0.299493 0.149747 0.988724i \(-0.452154\pi\)
0.149747 + 0.988724i \(0.452154\pi\)
\(152\) 0 0
\(153\) 6.44607 0.521134
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.47219 0.516537 0.258269 0.966073i \(-0.416848\pi\)
0.258269 + 0.966073i \(0.416848\pi\)
\(158\) 0 0
\(159\) 1.14682 0.0909490
\(160\) 0 0
\(161\) −29.9718 −2.36211
\(162\) 0 0
\(163\) −1.47668 −0.115663 −0.0578314 0.998326i \(-0.518419\pi\)
−0.0578314 + 0.998326i \(0.518419\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.5519 −1.35820 −0.679102 0.734044i \(-0.737631\pi\)
−0.679102 + 0.734044i \(0.737631\pi\)
\(168\) 0 0
\(169\) −0.912662 −0.0702047
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.29925 −0.554952 −0.277476 0.960733i \(-0.589498\pi\)
−0.277476 + 0.960733i \(0.589498\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.5623 −0.793910
\(178\) 0 0
\(179\) 4.63953 0.346775 0.173387 0.984854i \(-0.444529\pi\)
0.173387 + 0.984854i \(0.444529\pi\)
\(180\) 0 0
\(181\) 20.5463 1.52719 0.763596 0.645694i \(-0.223432\pi\)
0.763596 + 0.645694i \(0.223432\pi\)
\(182\) 0 0
\(183\) 1.36047 0.100569
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −39.4906 −2.88784
\(188\) 0 0
\(189\) 4.64963 0.338210
\(190\) 0 0
\(191\) 1.28323 0.0928514 0.0464257 0.998922i \(-0.485217\pi\)
0.0464257 + 0.998922i \(0.485217\pi\)
\(192\) 0 0
\(193\) 5.78043 0.416084 0.208042 0.978120i \(-0.433291\pi\)
0.208042 + 0.978120i \(0.433291\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.6987 1.04724 0.523619 0.851952i \(-0.324581\pi\)
0.523619 + 0.851952i \(0.324581\pi\)
\(198\) 0 0
\(199\) 23.9329 1.69656 0.848278 0.529552i \(-0.177640\pi\)
0.848278 + 0.529552i \(0.177640\pi\)
\(200\) 0 0
\(201\) −6.11621 −0.431404
\(202\) 0 0
\(203\) 41.7043 2.92707
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.44607 −0.448033
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.5373 1.96459 0.982294 0.187348i \(-0.0599891\pi\)
0.982294 + 0.187348i \(0.0599891\pi\)
\(212\) 0 0
\(213\) 3.79645 0.260128
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.64963 0.315637
\(218\) 0 0
\(219\) 5.60300 0.378615
\(220\) 0 0
\(221\) −22.4110 −1.50752
\(222\) 0 0
\(223\) 7.17294 0.480336 0.240168 0.970731i \(-0.422798\pi\)
0.240168 + 0.970731i \(0.422798\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.1524 −0.673840 −0.336920 0.941533i \(-0.609385\pi\)
−0.336920 + 0.941533i \(0.609385\pi\)
\(228\) 0 0
\(229\) 11.2470 0.743224 0.371612 0.928388i \(-0.378805\pi\)
0.371612 + 0.928388i \(0.378805\pi\)
\(230\) 0 0
\(231\) −28.4850 −1.87418
\(232\) 0 0
\(233\) −10.3849 −0.680334 −0.340167 0.940365i \(-0.610484\pi\)
−0.340167 + 0.940365i \(0.610484\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 11.2731 0.732269
\(238\) 0 0
\(239\) 8.06509 0.521687 0.260844 0.965381i \(-0.415999\pi\)
0.260844 + 0.965381i \(0.415999\pi\)
\(240\) 0 0
\(241\) 17.2060 1.10834 0.554168 0.832405i \(-0.313037\pi\)
0.554168 + 0.832405i \(0.313037\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 10.4461 0.661993
\(250\) 0 0
\(251\) −23.6131 −1.49045 −0.745223 0.666816i \(-0.767657\pi\)
−0.745223 + 0.666816i \(0.767657\pi\)
\(252\) 0 0
\(253\) 39.4906 2.48276
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.7453 −1.10692 −0.553461 0.832875i \(-0.686693\pi\)
−0.553461 + 0.832875i \(0.686693\pi\)
\(258\) 0 0
\(259\) 12.3198 0.765513
\(260\) 0 0
\(261\) 8.96939 0.555191
\(262\) 0 0
\(263\) 13.2470 0.816846 0.408423 0.912793i \(-0.366079\pi\)
0.408423 + 0.912793i \(0.366079\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 9.79645 0.599533
\(268\) 0 0
\(269\) −25.8817 −1.57804 −0.789019 0.614369i \(-0.789410\pi\)
−0.789019 + 0.614369i \(0.789410\pi\)
\(270\) 0 0
\(271\) −6.31384 −0.383539 −0.191769 0.981440i \(-0.561423\pi\)
−0.191769 + 0.981440i \(0.561423\pi\)
\(272\) 0 0
\(273\) −16.1653 −0.978367
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.99551 −0.540488 −0.270244 0.962792i \(-0.587104\pi\)
−0.270244 + 0.962792i \(0.587104\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −23.5519 −1.40499 −0.702493 0.711690i \(-0.747930\pi\)
−0.702493 + 0.711690i \(0.747930\pi\)
\(282\) 0 0
\(283\) −24.4951 −1.45609 −0.728043 0.685532i \(-0.759570\pi\)
−0.728043 + 0.685532i \(0.759570\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 37.7843 2.23034
\(288\) 0 0
\(289\) 24.5519 1.44423
\(290\) 0 0
\(291\) 17.0185 0.997640
\(292\) 0 0
\(293\) 0.600556 0.0350849 0.0175424 0.999846i \(-0.494416\pi\)
0.0175424 + 0.999846i \(0.494416\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6.12631 −0.355485
\(298\) 0 0
\(299\) 22.4110 1.29606
\(300\) 0 0
\(301\) −28.4850 −1.64185
\(302\) 0 0
\(303\) 12.7658 0.733378
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.1347 1.66280 0.831402 0.555672i \(-0.187539\pi\)
0.831402 + 0.555672i \(0.187539\pi\)
\(308\) 0 0
\(309\) −10.7759 −0.613022
\(310\) 0 0
\(311\) −10.9043 −0.618326 −0.309163 0.951009i \(-0.600049\pi\)
−0.309163 + 0.951009i \(0.600049\pi\)
\(312\) 0 0
\(313\) −6.43005 −0.363448 −0.181724 0.983350i \(-0.558168\pi\)
−0.181724 + 0.983350i \(0.558168\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.4517 −1.31718 −0.658589 0.752503i \(-0.728846\pi\)
−0.658589 + 0.752503i \(0.728846\pi\)
\(318\) 0 0
\(319\) −54.9493 −3.07657
\(320\) 0 0
\(321\) −8.44607 −0.471414
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.3198 0.570684
\(328\) 0 0
\(329\) −3.96695 −0.218705
\(330\) 0 0
\(331\) 26.5112 1.45719 0.728593 0.684947i \(-0.240175\pi\)
0.728593 + 0.684947i \(0.240175\pi\)
\(332\) 0 0
\(333\) 2.64963 0.145199
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.99551 0.490016 0.245008 0.969521i \(-0.421209\pi\)
0.245008 + 0.969521i \(0.421209\pi\)
\(338\) 0 0
\(339\) 8.95337 0.486280
\(340\) 0 0
\(341\) −6.12631 −0.331758
\(342\) 0 0
\(343\) 35.4256 1.91280
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.5783 −0.567873 −0.283937 0.958843i \(-0.591641\pi\)
−0.283937 + 0.958843i \(0.591641\pi\)
\(348\) 0 0
\(349\) 2.95929 0.158407 0.0792036 0.996858i \(-0.474762\pi\)
0.0792036 + 0.996858i \(0.474762\pi\)
\(350\) 0 0
\(351\) −3.47668 −0.185572
\(352\) 0 0
\(353\) 10.1935 0.542543 0.271271 0.962503i \(-0.412556\pi\)
0.271271 + 0.962503i \(0.412556\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 29.9718 1.58628
\(358\) 0 0
\(359\) −23.8615 −1.25936 −0.629682 0.776853i \(-0.716815\pi\)
−0.629682 + 0.776853i \(0.716815\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 26.5317 1.39255
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 8.12631 0.423039
\(370\) 0 0
\(371\) 5.33230 0.276839
\(372\) 0 0
\(373\) 5.59290 0.289589 0.144795 0.989462i \(-0.453748\pi\)
0.144795 + 0.989462i \(0.453748\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −31.1837 −1.60604
\(378\) 0 0
\(379\) −26.8511 −1.37925 −0.689625 0.724167i \(-0.742224\pi\)
−0.689625 + 0.724167i \(0.742224\pi\)
\(380\) 0 0
\(381\) 2.95337 0.151306
\(382\) 0 0
\(383\) 33.0446 1.68850 0.844249 0.535950i \(-0.180047\pi\)
0.844249 + 0.535950i \(0.180047\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.12631 −0.311418
\(388\) 0 0
\(389\) −19.0957 −0.968190 −0.484095 0.875015i \(-0.660851\pi\)
−0.484095 + 0.875015i \(0.660851\pi\)
\(390\) 0 0
\(391\) −41.5519 −2.10137
\(392\) 0 0
\(393\) −16.2686 −0.820644
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −27.3974 −1.37504 −0.687518 0.726168i \(-0.741300\pi\)
−0.687518 + 0.726168i \(0.741300\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.79645 −0.489211 −0.244606 0.969623i \(-0.578659\pi\)
−0.244606 + 0.969623i \(0.578659\pi\)
\(402\) 0 0
\(403\) −3.47668 −0.173186
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.2324 −0.804611
\(408\) 0 0
\(409\) −21.4906 −1.06264 −0.531322 0.847170i \(-0.678305\pi\)
−0.531322 + 0.847170i \(0.678305\pi\)
\(410\) 0 0
\(411\) 3.08560 0.152202
\(412\) 0 0
\(413\) −49.1107 −2.41658
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.6597 0.815830
\(418\) 0 0
\(419\) 17.3483 0.847521 0.423760 0.905774i \(-0.360710\pi\)
0.423760 + 0.905774i \(0.360710\pi\)
\(420\) 0 0
\(421\) 11.6190 0.566276 0.283138 0.959079i \(-0.408625\pi\)
0.283138 + 0.959079i \(0.408625\pi\)
\(422\) 0 0
\(423\) −0.853176 −0.0414829
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.32569 0.306121
\(428\) 0 0
\(429\) 21.2993 1.02834
\(430\) 0 0
\(431\) −10.7819 −0.519344 −0.259672 0.965697i \(-0.583614\pi\)
−0.259672 + 0.965697i \(0.583614\pi\)
\(432\) 0 0
\(433\) −28.4339 −1.36645 −0.683224 0.730209i \(-0.739423\pi\)
−0.683224 + 0.730209i \(0.739423\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −25.7843 −1.23062 −0.615309 0.788286i \(-0.710969\pi\)
−0.615309 + 0.788286i \(0.710969\pi\)
\(440\) 0 0
\(441\) 14.6190 0.696144
\(442\) 0 0
\(443\) 7.43148 0.353080 0.176540 0.984293i \(-0.443509\pi\)
0.176540 + 0.984293i \(0.443509\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −21.6580 −1.02439
\(448\) 0 0
\(449\) 16.8021 0.792938 0.396469 0.918048i \(-0.370235\pi\)
0.396469 + 0.918048i \(0.370235\pi\)
\(450\) 0 0
\(451\) −49.7843 −2.34425
\(452\) 0 0
\(453\) 3.68024 0.172913
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.2161 1.55378 0.776892 0.629634i \(-0.216795\pi\)
0.776892 + 0.629634i \(0.216795\pi\)
\(458\) 0 0
\(459\) 6.44607 0.300877
\(460\) 0 0
\(461\) 26.9082 1.25324 0.626619 0.779326i \(-0.284438\pi\)
0.626619 + 0.779326i \(0.284438\pi\)
\(462\) 0 0
\(463\) −32.2975 −1.50099 −0.750496 0.660875i \(-0.770186\pi\)
−0.750496 + 0.660875i \(0.770186\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.9834 1.71139 0.855693 0.517484i \(-0.173131\pi\)
0.855693 + 0.517484i \(0.173131\pi\)
\(468\) 0 0
\(469\) −28.4381 −1.31315
\(470\) 0 0
\(471\) 6.47219 0.298223
\(472\) 0 0
\(473\) 37.5317 1.72571
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.14682 0.0525095
\(478\) 0 0
\(479\) 10.7819 0.492636 0.246318 0.969189i \(-0.420779\pi\)
0.246318 + 0.969189i \(0.420779\pi\)
\(480\) 0 0
\(481\) −9.21191 −0.420027
\(482\) 0 0
\(483\) −29.9718 −1.36377
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.40710 0.199705 0.0998524 0.995002i \(-0.468163\pi\)
0.0998524 + 0.995002i \(0.468163\pi\)
\(488\) 0 0
\(489\) −1.47668 −0.0667780
\(490\) 0 0
\(491\) 15.0056 0.677193 0.338597 0.940932i \(-0.390048\pi\)
0.338597 + 0.940932i \(0.390048\pi\)
\(492\) 0 0
\(493\) 57.8173 2.60396
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.6521 0.791803
\(498\) 0 0
\(499\) 25.9067 1.15974 0.579872 0.814707i \(-0.303102\pi\)
0.579872 + 0.814707i \(0.303102\pi\)
\(500\) 0 0
\(501\) −17.5519 −0.784160
\(502\) 0 0
\(503\) −14.6375 −0.652653 −0.326326 0.945257i \(-0.605811\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.912662 −0.0405327
\(508\) 0 0
\(509\) −11.7554 −0.521050 −0.260525 0.965467i \(-0.583896\pi\)
−0.260525 + 0.965467i \(0.583896\pi\)
\(510\) 0 0
\(511\) 26.0518 1.15246
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.22682 0.229875
\(518\) 0 0
\(519\) −7.29925 −0.320402
\(520\) 0 0
\(521\) 2.21957 0.0972411 0.0486206 0.998817i \(-0.484517\pi\)
0.0486206 + 0.998817i \(0.484517\pi\)
\(522\) 0 0
\(523\) −17.6862 −0.773362 −0.386681 0.922214i \(-0.626378\pi\)
−0.386681 + 0.922214i \(0.626378\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.44607 0.280795
\(528\) 0 0
\(529\) 18.5519 0.806603
\(530\) 0 0
\(531\) −10.5623 −0.458364
\(532\) 0 0
\(533\) −28.2526 −1.22376
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.63953 0.200210
\(538\) 0 0
\(539\) −89.5606 −3.85765
\(540\) 0 0
\(541\) 39.0574 1.67921 0.839605 0.543197i \(-0.182786\pi\)
0.839605 + 0.543197i \(0.182786\pi\)
\(542\) 0 0
\(543\) 20.5463 0.881725
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 21.1218 0.903104 0.451552 0.892245i \(-0.350871\pi\)
0.451552 + 0.892245i \(0.350871\pi\)
\(548\) 0 0
\(549\) 1.36047 0.0580635
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 52.4158 2.22895
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.08560 0.130741 0.0653706 0.997861i \(-0.479177\pi\)
0.0653706 + 0.997861i \(0.479177\pi\)
\(558\) 0 0
\(559\) 21.2993 0.900862
\(560\) 0 0
\(561\) −39.4906 −1.66730
\(562\) 0 0
\(563\) 0.193454 0.00815310 0.00407655 0.999992i \(-0.498702\pi\)
0.00407655 + 0.999992i \(0.498702\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.64963 0.195266
\(568\) 0 0
\(569\) 0.736964 0.0308951 0.0154476 0.999881i \(-0.495083\pi\)
0.0154476 + 0.999881i \(0.495083\pi\)
\(570\) 0 0
\(571\) 23.0056 0.962755 0.481377 0.876514i \(-0.340137\pi\)
0.481377 + 0.876514i \(0.340137\pi\)
\(572\) 0 0
\(573\) 1.28323 0.0536078
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27.4666 1.14345 0.571725 0.820446i \(-0.306275\pi\)
0.571725 + 0.820446i \(0.306275\pi\)
\(578\) 0 0
\(579\) 5.78043 0.240226
\(580\) 0 0
\(581\) 48.5703 2.01504
\(582\) 0 0
\(583\) −7.02580 −0.290979
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.9388 −0.905510 −0.452755 0.891635i \(-0.649559\pi\)
−0.452755 + 0.891635i \(0.649559\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 14.6987 0.604623
\(592\) 0 0
\(593\) −32.4440 −1.33232 −0.666158 0.745811i \(-0.732062\pi\)
−0.666158 + 0.745811i \(0.732062\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 23.9329 0.979507
\(598\) 0 0
\(599\) 18.4270 0.752906 0.376453 0.926436i \(-0.377144\pi\)
0.376453 + 0.926436i \(0.377144\pi\)
\(600\) 0 0
\(601\) −35.1768 −1.43489 −0.717446 0.696614i \(-0.754689\pi\)
−0.717446 + 0.696614i \(0.754689\pi\)
\(602\) 0 0
\(603\) −6.11621 −0.249071
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.52332 −0.264773 −0.132387 0.991198i \(-0.542264\pi\)
−0.132387 + 0.991198i \(0.542264\pi\)
\(608\) 0 0
\(609\) 41.7043 1.68994
\(610\) 0 0
\(611\) 2.96623 0.120001
\(612\) 0 0
\(613\) −34.5602 −1.39587 −0.697937 0.716159i \(-0.745899\pi\)
−0.697937 + 0.716159i \(0.745899\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −36.1594 −1.45572 −0.727861 0.685725i \(-0.759485\pi\)
−0.727861 + 0.685725i \(0.759485\pi\)
\(618\) 0 0
\(619\) 41.4966 1.66789 0.833944 0.551849i \(-0.186078\pi\)
0.833944 + 0.551849i \(0.186078\pi\)
\(620\) 0 0
\(621\) −6.44607 −0.258672
\(622\) 0 0
\(623\) 45.5498 1.82491
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.0797 0.681011
\(630\) 0 0
\(631\) −4.69176 −0.186776 −0.0933880 0.995630i \(-0.529770\pi\)
−0.0933880 + 0.995630i \(0.529770\pi\)
\(632\) 0 0
\(633\) 28.5373 1.13426
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −50.8257 −2.01379
\(638\) 0 0
\(639\) 3.79645 0.150185
\(640\) 0 0
\(641\) 44.8671 1.77215 0.886073 0.463546i \(-0.153423\pi\)
0.886073 + 0.463546i \(0.153423\pi\)
\(642\) 0 0
\(643\) 0.871953 0.0343865 0.0171932 0.999852i \(-0.494527\pi\)
0.0171932 + 0.999852i \(0.494527\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.29365 −0.247429 −0.123714 0.992318i \(-0.539481\pi\)
−0.123714 + 0.992318i \(0.539481\pi\)
\(648\) 0 0
\(649\) 64.7078 2.54001
\(650\) 0 0
\(651\) 4.64963 0.182233
\(652\) 0 0
\(653\) 20.0271 0.783722 0.391861 0.920024i \(-0.371831\pi\)
0.391861 + 0.920024i \(0.371831\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.60300 0.218594
\(658\) 0 0
\(659\) 32.9614 1.28399 0.641997 0.766707i \(-0.278106\pi\)
0.641997 + 0.766707i \(0.278106\pi\)
\(660\) 0 0
\(661\) −36.3918 −1.41548 −0.707738 0.706475i \(-0.750284\pi\)
−0.707738 + 0.706475i \(0.750284\pi\)
\(662\) 0 0
\(663\) −22.4110 −0.870370
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −57.8173 −2.23870
\(668\) 0 0
\(669\) 7.17294 0.277322
\(670\) 0 0
\(671\) −8.33467 −0.321757
\(672\) 0 0
\(673\) −26.0870 −1.00558 −0.502791 0.864408i \(-0.667693\pi\)
−0.502791 + 0.864408i \(0.667693\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.2547 −0.932183 −0.466091 0.884737i \(-0.654338\pi\)
−0.466091 + 0.884737i \(0.654338\pi\)
\(678\) 0 0
\(679\) 79.1295 3.03671
\(680\) 0 0
\(681\) −10.1524 −0.389042
\(682\) 0 0
\(683\) −7.75431 −0.296711 −0.148355 0.988934i \(-0.547398\pi\)
−0.148355 + 0.988934i \(0.547398\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11.2470 0.429100
\(688\) 0 0
\(689\) −3.98714 −0.151898
\(690\) 0 0
\(691\) −22.4440 −0.853811 −0.426905 0.904296i \(-0.640396\pi\)
−0.426905 + 0.904296i \(0.640396\pi\)
\(692\) 0 0
\(693\) −28.4850 −1.08206
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 52.3828 1.98414
\(698\) 0 0
\(699\) −10.3849 −0.392791
\(700\) 0 0
\(701\) −15.0797 −0.569552 −0.284776 0.958594i \(-0.591919\pi\)
−0.284776 + 0.958594i \(0.591919\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 59.3564 2.23233
\(708\) 0 0
\(709\) 14.6277 0.549354 0.274677 0.961537i \(-0.411429\pi\)
0.274677 + 0.961537i \(0.411429\pi\)
\(710\) 0 0
\(711\) 11.2731 0.422776
\(712\) 0 0
\(713\) −6.44607 −0.241407
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.06509 0.301196
\(718\) 0 0
\(719\) 16.8473 0.628297 0.314148 0.949374i \(-0.398281\pi\)
0.314148 + 0.949374i \(0.398281\pi\)
\(720\) 0 0
\(721\) −50.1041 −1.86597
\(722\) 0 0
\(723\) 17.2060 0.639898
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.3486 0.680513 0.340257 0.940333i \(-0.389486\pi\)
0.340257 + 0.940333i \(0.389486\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −39.4906 −1.46061
\(732\) 0 0
\(733\) −8.15936 −0.301373 −0.150686 0.988582i \(-0.548148\pi\)
−0.150686 + 0.988582i \(0.548148\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.4698 1.38022
\(738\) 0 0
\(739\) 22.0261 0.810244 0.405122 0.914263i \(-0.367229\pi\)
0.405122 + 0.914263i \(0.367229\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.46272 0.127035 0.0635175 0.997981i \(-0.479768\pi\)
0.0635175 + 0.997981i \(0.479768\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.4461 0.382202
\(748\) 0 0
\(749\) −39.2711 −1.43493
\(750\) 0 0
\(751\) −38.5783 −1.40774 −0.703871 0.710328i \(-0.748547\pi\)
−0.703871 + 0.710328i \(0.748547\pi\)
\(752\) 0 0
\(753\) −23.6131 −0.860509
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.0606 −1.05623 −0.528113 0.849174i \(-0.677100\pi\)
−0.528113 + 0.849174i \(0.677100\pi\)
\(758\) 0 0
\(759\) 39.4906 1.43342
\(760\) 0 0
\(761\) −10.0362 −0.363812 −0.181906 0.983316i \(-0.558227\pi\)
−0.181906 + 0.983316i \(0.558227\pi\)
\(762\) 0 0
\(763\) 47.9830 1.73710
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.7217 1.32595
\(768\) 0 0
\(769\) 18.1973 0.656212 0.328106 0.944641i \(-0.393590\pi\)
0.328106 + 0.944641i \(0.393590\pi\)
\(770\) 0 0
\(771\) −17.7453 −0.639082
\(772\) 0 0
\(773\) 1.16702 0.0419747 0.0209874 0.999780i \(-0.493319\pi\)
0.0209874 + 0.999780i \(0.493319\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.3198 0.441969
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −23.2582 −0.832245
\(782\) 0 0
\(783\) 8.96939 0.320540
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −51.1284 −1.82253 −0.911266 0.411818i \(-0.864894\pi\)
−0.911266 + 0.411818i \(0.864894\pi\)
\(788\) 0 0
\(789\) 13.2470 0.471606
\(790\) 0 0
\(791\) 41.6298 1.48019
\(792\) 0 0
\(793\) −4.72993 −0.167965
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.6841 1.47653 0.738263 0.674513i \(-0.235646\pi\)
0.738263 + 0.674513i \(0.235646\pi\)
\(798\) 0 0
\(799\) −5.49964 −0.194563
\(800\) 0 0
\(801\) 9.79645 0.346141
\(802\) 0 0
\(803\) −34.3257 −1.21133
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −25.8817 −0.911080
\(808\) 0 0
\(809\) 46.7867 1.64493 0.822467 0.568813i \(-0.192597\pi\)
0.822467 + 0.568813i \(0.192597\pi\)
\(810\) 0 0
\(811\) 18.8309 0.661243 0.330622 0.943763i \(-0.392742\pi\)
0.330622 + 0.943763i \(0.392742\pi\)
\(812\) 0 0
\(813\) −6.31384 −0.221436
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −16.1653 −0.564861
\(820\) 0 0
\(821\) 26.2237 0.915215 0.457608 0.889154i \(-0.348706\pi\)
0.457608 + 0.889154i \(0.348706\pi\)
\(822\) 0 0
\(823\) 34.3267 1.19655 0.598277 0.801290i \(-0.295852\pi\)
0.598277 + 0.801290i \(0.295852\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.6208 −0.647507 −0.323753 0.946141i \(-0.604945\pi\)
−0.323753 + 0.946141i \(0.604945\pi\)
\(828\) 0 0
\(829\) −8.64852 −0.300375 −0.150188 0.988658i \(-0.547988\pi\)
−0.150188 + 0.988658i \(0.547988\pi\)
\(830\) 0 0
\(831\) −8.99551 −0.312051
\(832\) 0 0
\(833\) 94.2352 3.26506
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) 16.7739 0.579099 0.289549 0.957163i \(-0.406495\pi\)
0.289549 + 0.957163i \(0.406495\pi\)
\(840\) 0 0
\(841\) 51.4499 1.77414
\(842\) 0 0
\(843\) −23.5519 −0.811170
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 123.362 4.23878
\(848\) 0 0
\(849\) −24.4951 −0.840671
\(850\) 0 0
\(851\) −17.0797 −0.585484
\(852\) 0 0
\(853\) 33.4256 1.14447 0.572235 0.820090i \(-0.306077\pi\)
0.572235 + 0.820090i \(0.306077\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.1504 1.30319 0.651596 0.758566i \(-0.274100\pi\)
0.651596 + 0.758566i \(0.274100\pi\)
\(858\) 0 0
\(859\) 4.81420 0.164259 0.0821293 0.996622i \(-0.473828\pi\)
0.0821293 + 0.996622i \(0.473828\pi\)
\(860\) 0 0
\(861\) 37.7843 1.28769
\(862\) 0 0
\(863\) 10.1594 0.345829 0.172914 0.984937i \(-0.444682\pi\)
0.172914 + 0.984937i \(0.444682\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.5519 0.833825
\(868\) 0 0
\(869\) −69.0627 −2.34279
\(870\) 0 0
\(871\) 21.2641 0.720508
\(872\) 0 0
\(873\) 17.0185 0.575988
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −36.9162 −1.24657 −0.623286 0.781994i \(-0.714203\pi\)
−0.623286 + 0.781994i \(0.714203\pi\)
\(878\) 0 0
\(879\) 0.600556 0.0202563
\(880\) 0 0
\(881\) −38.1994 −1.28697 −0.643486 0.765458i \(-0.722512\pi\)
−0.643486 + 0.765458i \(0.722512\pi\)
\(882\) 0 0
\(883\) 37.1576 1.25045 0.625227 0.780443i \(-0.285006\pi\)
0.625227 + 0.780443i \(0.285006\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.3472 0.515309 0.257654 0.966237i \(-0.417050\pi\)
0.257654 + 0.966237i \(0.417050\pi\)
\(888\) 0 0
\(889\) 13.7321 0.460559
\(890\) 0 0
\(891\) −6.12631 −0.205239
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 22.4110 0.748280
\(898\) 0 0
\(899\) 8.96939 0.299146
\(900\) 0 0
\(901\) 7.39251 0.246280
\(902\) 0 0
\(903\) −28.4850 −0.947923
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −24.2627 −0.805630 −0.402815 0.915281i \(-0.631968\pi\)
−0.402815 + 0.915281i \(0.631968\pi\)
\(908\) 0 0
\(909\) 12.7658 0.423416
\(910\) 0 0
\(911\) −19.7804 −0.655355 −0.327677 0.944790i \(-0.606266\pi\)
−0.327677 + 0.944790i \(0.606266\pi\)
\(912\) 0 0
\(913\) −63.9959 −2.11795
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −75.6431 −2.49795
\(918\) 0 0
\(919\) −1.70635 −0.0562874 −0.0281437 0.999604i \(-0.508960\pi\)
−0.0281437 + 0.999604i \(0.508960\pi\)
\(920\) 0 0
\(921\) 29.1347 0.960020
\(922\) 0 0
\(923\) −13.1991 −0.434452
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10.7759 −0.353928
\(928\) 0 0
\(929\) −2.06825 −0.0678572 −0.0339286 0.999424i \(-0.510802\pi\)
−0.0339286 + 0.999424i \(0.510802\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.9043 −0.356991
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.9815 0.358751 0.179376 0.983781i \(-0.442592\pi\)
0.179376 + 0.983781i \(0.442592\pi\)
\(938\) 0 0
\(939\) −6.43005 −0.209837
\(940\) 0 0
\(941\) 0.517393 0.0168665 0.00843327 0.999964i \(-0.497316\pi\)
0.00843327 + 0.999964i \(0.497316\pi\)
\(942\) 0 0
\(943\) −52.3828 −1.70582
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.28671 −0.139299 −0.0696497 0.997572i \(-0.522188\pi\)
−0.0696497 + 0.997572i \(0.522188\pi\)
\(948\) 0 0
\(949\) −19.4798 −0.632343
\(950\) 0 0
\(951\) −23.4517 −0.760473
\(952\) 0 0
\(953\) −36.7801 −1.19142 −0.595712 0.803198i \(-0.703130\pi\)
−0.595712 + 0.803198i \(0.703130\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −54.9493 −1.77626
\(958\) 0 0
\(959\) 14.3469 0.463285
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −8.44607 −0.272171
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −49.8375 −1.60267 −0.801334 0.598218i \(-0.795876\pi\)
−0.801334 + 0.598218i \(0.795876\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.82849 0.122862 0.0614310 0.998111i \(-0.480434\pi\)
0.0614310 + 0.998111i \(0.480434\pi\)
\(972\) 0 0
\(973\) 77.4615 2.48330
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.8776 0.827896 0.413948 0.910300i \(-0.364149\pi\)
0.413948 + 0.910300i \(0.364149\pi\)
\(978\) 0 0
\(979\) −60.0161 −1.91812
\(980\) 0 0
\(981\) 10.3198 0.329485
\(982\) 0 0
\(983\) 23.2380 0.741178 0.370589 0.928797i \(-0.379156\pi\)
0.370589 + 0.928797i \(0.379156\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3.96695 −0.126269
\(988\) 0 0
\(989\) 39.4906 1.25573
\(990\) 0 0
\(991\) −9.68616 −0.307691 −0.153845 0.988095i \(-0.549166\pi\)
−0.153845 + 0.988095i \(0.549166\pi\)
\(992\) 0 0
\(993\) 26.5112 0.841306
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.9011 1.04199 0.520995 0.853560i \(-0.325561\pi\)
0.520995 + 0.853560i \(0.325561\pi\)
\(998\) 0 0
\(999\) 2.64963 0.0838304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9300.2.a.x.1.4 4
5.2 odd 4 9300.2.g.s.3349.4 8
5.3 odd 4 9300.2.g.s.3349.5 8
5.4 even 2 1860.2.a.i.1.1 4
15.14 odd 2 5580.2.a.m.1.1 4
20.19 odd 2 7440.2.a.cb.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.i.1.1 4 5.4 even 2
5580.2.a.m.1.1 4 15.14 odd 2
7440.2.a.cb.1.4 4 20.19 odd 2
9300.2.a.x.1.4 4 1.1 even 1 trivial
9300.2.g.s.3349.4 8 5.2 odd 4
9300.2.g.s.3349.5 8 5.3 odd 4