Properties

Label 9300.2.a.v.1.1
Level $9300$
Weight $2$
Character 9300.1
Self dual yes
Analytic conductor $74.261$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9300,2,Mod(1,9300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9300.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9300, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9300.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,-4,0,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.2608738798\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1860)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 9300.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.43807 q^{7} +1.00000 q^{9} +4.17226 q^{11} -4.43807 q^{13} +1.35194 q^{17} +2.70388 q^{19} -4.43807 q^{21} +1.35194 q^{23} +1.00000 q^{27} -7.25839 q^{29} -1.00000 q^{31} +4.17226 q^{33} +10.7826 q^{37} -4.43807 q^{39} +2.17226 q^{41} -9.46838 q^{43} +4.11644 q^{47} +12.6965 q^{49} +1.35194 q^{51} -12.8203 q^{53} +2.70388 q^{57} +5.25839 q^{59} +6.00000 q^{61} -4.43807 q^{63} +1.14195 q^{67} +1.35194 q^{69} -10.7268 q^{71} -10.4381 q^{73} -18.5168 q^{77} -2.05582 q^{79} +1.00000 q^{81} +6.99258 q^{83} -7.25839 q^{87} -2.55451 q^{89} +19.6965 q^{91} -1.00000 q^{93} +15.9245 q^{97} +4.17226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 4 q^{7} + 3 q^{9} - 2 q^{11} - 4 q^{13} + 2 q^{17} + 4 q^{19} - 4 q^{21} + 2 q^{23} + 3 q^{27} - 3 q^{31} - 2 q^{33} - 6 q^{37} - 4 q^{39} - 8 q^{41} - 18 q^{43} + 4 q^{47} + 7 q^{49} + 2 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.43807 −1.67743 −0.838716 0.544569i \(-0.816693\pi\)
−0.838716 + 0.544569i \(0.816693\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.17226 1.25798 0.628992 0.777412i \(-0.283468\pi\)
0.628992 + 0.777412i \(0.283468\pi\)
\(12\) 0 0
\(13\) −4.43807 −1.23090 −0.615449 0.788176i \(-0.711025\pi\)
−0.615449 + 0.788176i \(0.711025\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.35194 0.327893 0.163947 0.986469i \(-0.447577\pi\)
0.163947 + 0.986469i \(0.447577\pi\)
\(18\) 0 0
\(19\) 2.70388 0.620312 0.310156 0.950686i \(-0.399619\pi\)
0.310156 + 0.950686i \(0.399619\pi\)
\(20\) 0 0
\(21\) −4.43807 −0.968466
\(22\) 0 0
\(23\) 1.35194 0.281899 0.140949 0.990017i \(-0.454985\pi\)
0.140949 + 0.990017i \(0.454985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −7.25839 −1.34785 −0.673925 0.738800i \(-0.735393\pi\)
−0.673925 + 0.738800i \(0.735393\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 4.17226 0.726297
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.7826 1.77265 0.886323 0.463067i \(-0.153251\pi\)
0.886323 + 0.463067i \(0.153251\pi\)
\(38\) 0 0
\(39\) −4.43807 −0.710660
\(40\) 0 0
\(41\) 2.17226 0.339250 0.169625 0.985509i \(-0.445744\pi\)
0.169625 + 0.985509i \(0.445744\pi\)
\(42\) 0 0
\(43\) −9.46838 −1.44391 −0.721957 0.691938i \(-0.756757\pi\)
−0.721957 + 0.691938i \(0.756757\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.11644 0.600445 0.300222 0.953869i \(-0.402939\pi\)
0.300222 + 0.953869i \(0.402939\pi\)
\(48\) 0 0
\(49\) 12.6965 1.81378
\(50\) 0 0
\(51\) 1.35194 0.189309
\(52\) 0 0
\(53\) −12.8203 −1.76101 −0.880503 0.474040i \(-0.842795\pi\)
−0.880503 + 0.474040i \(0.842795\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.70388 0.358137
\(58\) 0 0
\(59\) 5.25839 0.684584 0.342292 0.939594i \(-0.388797\pi\)
0.342292 + 0.939594i \(0.388797\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −4.43807 −0.559144
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.14195 0.139511 0.0697556 0.997564i \(-0.477778\pi\)
0.0697556 + 0.997564i \(0.477778\pi\)
\(68\) 0 0
\(69\) 1.35194 0.162754
\(70\) 0 0
\(71\) −10.7268 −1.27303 −0.636517 0.771263i \(-0.719625\pi\)
−0.636517 + 0.771263i \(0.719625\pi\)
\(72\) 0 0
\(73\) −10.4381 −1.22168 −0.610842 0.791753i \(-0.709169\pi\)
−0.610842 + 0.791753i \(0.709169\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −18.5168 −2.11018
\(78\) 0 0
\(79\) −2.05582 −0.231298 −0.115649 0.993290i \(-0.536895\pi\)
−0.115649 + 0.993290i \(0.536895\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.99258 0.767536 0.383768 0.923430i \(-0.374626\pi\)
0.383768 + 0.923430i \(0.374626\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.25839 −0.778181
\(88\) 0 0
\(89\) −2.55451 −0.270778 −0.135389 0.990793i \(-0.543228\pi\)
−0.135389 + 0.990793i \(0.543228\pi\)
\(90\) 0 0
\(91\) 19.6965 2.06475
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 15.9245 1.61689 0.808446 0.588570i \(-0.200309\pi\)
0.808446 + 0.588570i \(0.200309\pi\)
\(98\) 0 0
\(99\) 4.17226 0.419328
\(100\) 0 0
\(101\) −0.876139 −0.0871791 −0.0435895 0.999050i \(-0.513879\pi\)
−0.0435895 + 0.999050i \(0.513879\pi\)
\(102\) 0 0
\(103\) −6.43807 −0.634362 −0.317181 0.948365i \(-0.602736\pi\)
−0.317181 + 0.948365i \(0.602736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.6965 −1.13074 −0.565370 0.824838i \(-0.691267\pi\)
−0.565370 + 0.824838i \(0.691267\pi\)
\(108\) 0 0
\(109\) 11.5242 1.10382 0.551909 0.833904i \(-0.313900\pi\)
0.551909 + 0.833904i \(0.313900\pi\)
\(110\) 0 0
\(111\) 10.7826 1.02344
\(112\) 0 0
\(113\) −17.5800 −1.65379 −0.826894 0.562357i \(-0.809895\pi\)
−0.826894 + 0.562357i \(0.809895\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.43807 −0.410300
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 6.40776 0.582523
\(122\) 0 0
\(123\) 2.17226 0.195866
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −15.8129 −1.40317 −0.701584 0.712587i \(-0.747524\pi\)
−0.701584 + 0.712587i \(0.747524\pi\)
\(128\) 0 0
\(129\) −9.46838 −0.833645
\(130\) 0 0
\(131\) −10.1345 −0.885458 −0.442729 0.896655i \(-0.645990\pi\)
−0.442729 + 0.896655i \(0.645990\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.1042 1.29044 0.645220 0.763997i \(-0.276766\pi\)
0.645220 + 0.763997i \(0.276766\pi\)
\(138\) 0 0
\(139\) −17.2207 −1.46064 −0.730319 0.683107i \(-0.760628\pi\)
−0.730319 + 0.683107i \(0.760628\pi\)
\(140\) 0 0
\(141\) 4.11644 0.346667
\(142\) 0 0
\(143\) −18.5168 −1.54845
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 12.6965 1.04719
\(148\) 0 0
\(149\) 1.82774 0.149734 0.0748671 0.997194i \(-0.476147\pi\)
0.0748671 + 0.997194i \(0.476147\pi\)
\(150\) 0 0
\(151\) −16.4610 −1.33957 −0.669787 0.742553i \(-0.733615\pi\)
−0.669787 + 0.742553i \(0.733615\pi\)
\(152\) 0 0
\(153\) 1.35194 0.109298
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.53162 −0.361662 −0.180831 0.983514i \(-0.557879\pi\)
−0.180831 + 0.983514i \(0.557879\pi\)
\(158\) 0 0
\(159\) −12.8203 −1.01672
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 2.78259 0.217949 0.108975 0.994045i \(-0.465243\pi\)
0.108975 + 0.994045i \(0.465243\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.7645 0.987747 0.493873 0.869534i \(-0.335581\pi\)
0.493873 + 0.869534i \(0.335581\pi\)
\(168\) 0 0
\(169\) 6.69646 0.515112
\(170\) 0 0
\(171\) 2.70388 0.206771
\(172\) 0 0
\(173\) −25.5800 −1.94481 −0.972406 0.233294i \(-0.925050\pi\)
−0.972406 + 0.233294i \(0.925050\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.25839 0.395245
\(178\) 0 0
\(179\) 5.64064 0.421601 0.210801 0.977529i \(-0.432393\pi\)
0.210801 + 0.977529i \(0.432393\pi\)
\(180\) 0 0
\(181\) 8.93676 0.664264 0.332132 0.943233i \(-0.392232\pi\)
0.332132 + 0.943233i \(0.392232\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.64064 0.412485
\(188\) 0 0
\(189\) −4.43807 −0.322822
\(190\) 0 0
\(191\) −2.32163 −0.167987 −0.0839935 0.996466i \(-0.526767\pi\)
−0.0839935 + 0.996466i \(0.526767\pi\)
\(192\) 0 0
\(193\) 5.22066 0.375791 0.187896 0.982189i \(-0.439833\pi\)
0.187896 + 0.982189i \(0.439833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.58482 0.682890 0.341445 0.939902i \(-0.389084\pi\)
0.341445 + 0.939902i \(0.389084\pi\)
\(198\) 0 0
\(199\) 12.9171 0.915670 0.457835 0.889037i \(-0.348625\pi\)
0.457835 + 0.889037i \(0.348625\pi\)
\(200\) 0 0
\(201\) 1.14195 0.0805468
\(202\) 0 0
\(203\) 32.2132 2.26093
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.35194 0.0939663
\(208\) 0 0
\(209\) 11.2813 0.780343
\(210\) 0 0
\(211\) 5.82774 0.401198 0.200599 0.979673i \(-0.435711\pi\)
0.200599 + 0.979673i \(0.435711\pi\)
\(212\) 0 0
\(213\) −10.7268 −0.734986
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.43807 0.301276
\(218\) 0 0
\(219\) −10.4381 −0.705339
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −25.7933 −1.71196 −0.855979 0.517010i \(-0.827045\pi\)
−0.855979 + 0.517010i \(0.827045\pi\)
\(228\) 0 0
\(229\) −7.93937 −0.524649 −0.262324 0.964980i \(-0.584489\pi\)
−0.262324 + 0.964980i \(0.584489\pi\)
\(230\) 0 0
\(231\) −18.5168 −1.21831
\(232\) 0 0
\(233\) −24.4610 −1.60249 −0.801246 0.598336i \(-0.795829\pi\)
−0.801246 + 0.598336i \(0.795829\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.05582 −0.133540
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) −2.64325 −0.170267 −0.0851335 0.996370i \(-0.527132\pi\)
−0.0851335 + 0.996370i \(0.527132\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 −0.763542
\(248\) 0 0
\(249\) 6.99258 0.443137
\(250\) 0 0
\(251\) −16.4562 −1.03870 −0.519352 0.854561i \(-0.673827\pi\)
−0.519352 + 0.854561i \(0.673827\pi\)
\(252\) 0 0
\(253\) 5.64064 0.354624
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.16484 −0.446931 −0.223465 0.974712i \(-0.571737\pi\)
−0.223465 + 0.974712i \(0.571737\pi\)
\(258\) 0 0
\(259\) −47.8539 −2.97350
\(260\) 0 0
\(261\) −7.25839 −0.449283
\(262\) 0 0
\(263\) 8.87614 0.547326 0.273663 0.961826i \(-0.411765\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.55451 −0.156334
\(268\) 0 0
\(269\) 3.90164 0.237887 0.118944 0.992901i \(-0.462049\pi\)
0.118944 + 0.992901i \(0.462049\pi\)
\(270\) 0 0
\(271\) −4.87614 −0.296204 −0.148102 0.988972i \(-0.547316\pi\)
−0.148102 + 0.988972i \(0.547316\pi\)
\(272\) 0 0
\(273\) 19.6965 1.19208
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −29.5981 −1.77838 −0.889189 0.457540i \(-0.848731\pi\)
−0.889189 + 0.457540i \(0.848731\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −15.2207 −0.907988 −0.453994 0.891005i \(-0.650001\pi\)
−0.453994 + 0.891005i \(0.650001\pi\)
\(282\) 0 0
\(283\) 20.0181 1.18995 0.594976 0.803744i \(-0.297162\pi\)
0.594976 + 0.803744i \(0.297162\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.64064 −0.569069
\(288\) 0 0
\(289\) −15.1723 −0.892486
\(290\) 0 0
\(291\) 15.9245 0.933513
\(292\) 0 0
\(293\) 8.46096 0.494295 0.247147 0.968978i \(-0.420507\pi\)
0.247147 + 0.968978i \(0.420507\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.17226 0.242099
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 42.0213 2.42207
\(302\) 0 0
\(303\) −0.876139 −0.0503329
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.43807 0.481586 0.240793 0.970576i \(-0.422592\pi\)
0.240793 + 0.970576i \(0.422592\pi\)
\(308\) 0 0
\(309\) −6.43807 −0.366249
\(310\) 0 0
\(311\) −20.6661 −1.17187 −0.585935 0.810358i \(-0.699273\pi\)
−0.585935 + 0.810358i \(0.699273\pi\)
\(312\) 0 0
\(313\) −21.3142 −1.20475 −0.602375 0.798213i \(-0.705779\pi\)
−0.602375 + 0.798213i \(0.705779\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.5242 −0.759595 −0.379797 0.925070i \(-0.624006\pi\)
−0.379797 + 0.925070i \(0.624006\pi\)
\(318\) 0 0
\(319\) −30.2839 −1.69557
\(320\) 0 0
\(321\) −11.6965 −0.652833
\(322\) 0 0
\(323\) 3.65548 0.203396
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.5242 0.637290
\(328\) 0 0
\(329\) −18.2691 −1.00721
\(330\) 0 0
\(331\) 12.9926 0.714137 0.357068 0.934078i \(-0.383776\pi\)
0.357068 + 0.934078i \(0.383776\pi\)
\(332\) 0 0
\(333\) 10.7826 0.590882
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.5955 −1.23085 −0.615427 0.788194i \(-0.711017\pi\)
−0.615427 + 0.788194i \(0.711017\pi\)
\(338\) 0 0
\(339\) −17.5800 −0.954815
\(340\) 0 0
\(341\) −4.17226 −0.225941
\(342\) 0 0
\(343\) −25.2813 −1.36506
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.419983 0.0225459 0.0112729 0.999936i \(-0.496412\pi\)
0.0112729 + 0.999936i \(0.496412\pi\)
\(348\) 0 0
\(349\) −11.8687 −0.635318 −0.317659 0.948205i \(-0.602897\pi\)
−0.317659 + 0.948205i \(0.602897\pi\)
\(350\) 0 0
\(351\) −4.43807 −0.236887
\(352\) 0 0
\(353\) 1.69646 0.0902935 0.0451467 0.998980i \(-0.485624\pi\)
0.0451467 + 0.998980i \(0.485624\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 −0.317554
\(358\) 0 0
\(359\) −4.80223 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(360\) 0 0
\(361\) −11.6890 −0.615213
\(362\) 0 0
\(363\) 6.40776 0.336320
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 31.6258 1.65085 0.825427 0.564509i \(-0.190935\pi\)
0.825427 + 0.564509i \(0.190935\pi\)
\(368\) 0 0
\(369\) 2.17226 0.113083
\(370\) 0 0
\(371\) 56.8975 2.95397
\(372\) 0 0
\(373\) −17.9245 −0.928097 −0.464049 0.885810i \(-0.653604\pi\)
−0.464049 + 0.885810i \(0.653604\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 32.2132 1.65907
\(378\) 0 0
\(379\) 32.8007 1.68486 0.842429 0.538808i \(-0.181125\pi\)
0.842429 + 0.538808i \(0.181125\pi\)
\(380\) 0 0
\(381\) −15.8129 −0.810120
\(382\) 0 0
\(383\) 29.8081 1.52312 0.761561 0.648093i \(-0.224433\pi\)
0.761561 + 0.648093i \(0.224433\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.46838 −0.481305
\(388\) 0 0
\(389\) −32.7629 −1.66115 −0.830574 0.556909i \(-0.811987\pi\)
−0.830574 + 0.556909i \(0.811987\pi\)
\(390\) 0 0
\(391\) 1.82774 0.0924328
\(392\) 0 0
\(393\) −10.1345 −0.511219
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −34.4562 −1.72930 −0.864652 0.502371i \(-0.832461\pi\)
−0.864652 + 0.502371i \(0.832461\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 29.7145 1.48387 0.741937 0.670470i \(-0.233907\pi\)
0.741937 + 0.670470i \(0.233907\pi\)
\(402\) 0 0
\(403\) 4.43807 0.221076
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 44.9878 2.22996
\(408\) 0 0
\(409\) −28.0968 −1.38930 −0.694649 0.719349i \(-0.744440\pi\)
−0.694649 + 0.719349i \(0.744440\pi\)
\(410\) 0 0
\(411\) 15.1042 0.745036
\(412\) 0 0
\(413\) −23.3371 −1.14834
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −17.2207 −0.843299
\(418\) 0 0
\(419\) 6.83841 0.334078 0.167039 0.985950i \(-0.446579\pi\)
0.167039 + 0.985950i \(0.446579\pi\)
\(420\) 0 0
\(421\) −5.24030 −0.255397 −0.127698 0.991813i \(-0.540759\pi\)
−0.127698 + 0.991813i \(0.540759\pi\)
\(422\) 0 0
\(423\) 4.11644 0.200148
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −26.6284 −1.28864
\(428\) 0 0
\(429\) −18.5168 −0.893999
\(430\) 0 0
\(431\) 6.83841 0.329395 0.164697 0.986344i \(-0.447335\pi\)
0.164697 + 0.986344i \(0.447335\pi\)
\(432\) 0 0
\(433\) 11.3142 0.543726 0.271863 0.962336i \(-0.412360\pi\)
0.271863 + 0.962336i \(0.412360\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.65548 0.174865
\(438\) 0 0
\(439\) −10.8155 −0.516196 −0.258098 0.966119i \(-0.583096\pi\)
−0.258098 + 0.966119i \(0.583096\pi\)
\(440\) 0 0
\(441\) 12.6965 0.604593
\(442\) 0 0
\(443\) 17.4487 0.829015 0.414507 0.910046i \(-0.363954\pi\)
0.414507 + 0.910046i \(0.363954\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.82774 0.0864491
\(448\) 0 0
\(449\) 3.96227 0.186991 0.0934955 0.995620i \(-0.470196\pi\)
0.0934955 + 0.995620i \(0.470196\pi\)
\(450\) 0 0
\(451\) 9.06324 0.426771
\(452\) 0 0
\(453\) −16.4610 −0.773404
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.8310 −1.58255 −0.791273 0.611462i \(-0.790582\pi\)
−0.791273 + 0.611462i \(0.790582\pi\)
\(458\) 0 0
\(459\) 1.35194 0.0631031
\(460\) 0 0
\(461\) −7.55712 −0.351970 −0.175985 0.984393i \(-0.556311\pi\)
−0.175985 + 0.984393i \(0.556311\pi\)
\(462\) 0 0
\(463\) −28.7401 −1.33566 −0.667832 0.744312i \(-0.732777\pi\)
−0.667832 + 0.744312i \(0.732777\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.16484 0.331549 0.165775 0.986164i \(-0.446988\pi\)
0.165775 + 0.986164i \(0.446988\pi\)
\(468\) 0 0
\(469\) −5.06804 −0.234021
\(470\) 0 0
\(471\) −4.53162 −0.208806
\(472\) 0 0
\(473\) −39.5046 −1.81642
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −12.8203 −0.587002
\(478\) 0 0
\(479\) −30.8384 −1.40904 −0.704521 0.709683i \(-0.748838\pi\)
−0.704521 + 0.709683i \(0.748838\pi\)
\(480\) 0 0
\(481\) −47.8539 −2.18195
\(482\) 0 0
\(483\) −6.00000 −0.273009
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.17226 0.279692 0.139846 0.990173i \(-0.455339\pi\)
0.139846 + 0.990173i \(0.455339\pi\)
\(488\) 0 0
\(489\) 2.78259 0.125833
\(490\) 0 0
\(491\) 1.10902 0.0500496 0.0250248 0.999687i \(-0.492034\pi\)
0.0250248 + 0.999687i \(0.492034\pi\)
\(492\) 0 0
\(493\) −9.81290 −0.441951
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 47.6062 2.13543
\(498\) 0 0
\(499\) −30.2180 −1.35275 −0.676373 0.736559i \(-0.736449\pi\)
−0.676373 + 0.736559i \(0.736449\pi\)
\(500\) 0 0
\(501\) 12.7645 0.570276
\(502\) 0 0
\(503\) 15.2765 0.681144 0.340572 0.940218i \(-0.389379\pi\)
0.340572 + 0.940218i \(0.389379\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.69646 0.297400
\(508\) 0 0
\(509\) −7.08613 −0.314087 −0.157044 0.987592i \(-0.550196\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(510\) 0 0
\(511\) 46.3249 2.04929
\(512\) 0 0
\(513\) 2.70388 0.119379
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17.1749 0.755350
\(518\) 0 0
\(519\) −25.5800 −1.12284
\(520\) 0 0
\(521\) 16.7645 0.734466 0.367233 0.930129i \(-0.380305\pi\)
0.367233 + 0.930129i \(0.380305\pi\)
\(522\) 0 0
\(523\) 20.9878 0.917731 0.458866 0.888506i \(-0.348256\pi\)
0.458866 + 0.888506i \(0.348256\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.35194 −0.0588914
\(528\) 0 0
\(529\) −21.1723 −0.920533
\(530\) 0 0
\(531\) 5.25839 0.228195
\(532\) 0 0
\(533\) −9.64064 −0.417583
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.64064 0.243412
\(538\) 0 0
\(539\) 52.9729 2.28171
\(540\) 0 0
\(541\) −24.4003 −1.04905 −0.524526 0.851394i \(-0.675758\pi\)
−0.524526 + 0.851394i \(0.675758\pi\)
\(542\) 0 0
\(543\) 8.93676 0.383513
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −23.4355 −1.00203 −0.501014 0.865439i \(-0.667039\pi\)
−0.501014 + 0.865439i \(0.667039\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −19.6258 −0.836087
\(552\) 0 0
\(553\) 9.12386 0.387986
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.1526 1.10812 0.554061 0.832476i \(-0.313077\pi\)
0.554061 + 0.832476i \(0.313077\pi\)
\(558\) 0 0
\(559\) 42.0213 1.77731
\(560\) 0 0
\(561\) 5.64064 0.238148
\(562\) 0 0
\(563\) −37.9049 −1.59750 −0.798750 0.601663i \(-0.794505\pi\)
−0.798750 + 0.601663i \(0.794505\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −4.43807 −0.186381
\(568\) 0 0
\(569\) −9.19777 −0.385590 −0.192795 0.981239i \(-0.561755\pi\)
−0.192795 + 0.981239i \(0.561755\pi\)
\(570\) 0 0
\(571\) 29.2207 1.22285 0.611423 0.791304i \(-0.290597\pi\)
0.611423 + 0.791304i \(0.290597\pi\)
\(572\) 0 0
\(573\) −2.32163 −0.0969873
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.2084 0.758027 0.379014 0.925391i \(-0.376263\pi\)
0.379014 + 0.925391i \(0.376263\pi\)
\(578\) 0 0
\(579\) 5.22066 0.216963
\(580\) 0 0
\(581\) −31.0336 −1.28749
\(582\) 0 0
\(583\) −53.4897 −2.21532
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.3807 1.66669 0.833345 0.552754i \(-0.186423\pi\)
0.833345 + 0.552754i \(0.186423\pi\)
\(588\) 0 0
\(589\) −2.70388 −0.111411
\(590\) 0 0
\(591\) 9.58482 0.394267
\(592\) 0 0
\(593\) 36.7497 1.50913 0.754564 0.656226i \(-0.227848\pi\)
0.754564 + 0.656226i \(0.227848\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.9171 0.528663
\(598\) 0 0
\(599\) −12.5545 −0.512963 −0.256482 0.966549i \(-0.582563\pi\)
−0.256482 + 0.966549i \(0.582563\pi\)
\(600\) 0 0
\(601\) −30.0362 −1.22520 −0.612601 0.790393i \(-0.709877\pi\)
−0.612601 + 0.790393i \(0.709877\pi\)
\(602\) 0 0
\(603\) 1.14195 0.0465037
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10.1297 0.411153 0.205576 0.978641i \(-0.434093\pi\)
0.205576 + 0.978641i \(0.434093\pi\)
\(608\) 0 0
\(609\) 32.2132 1.30535
\(610\) 0 0
\(611\) −18.2691 −0.739087
\(612\) 0 0
\(613\) 38.8794 1.57032 0.785162 0.619291i \(-0.212580\pi\)
0.785162 + 0.619291i \(0.212580\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.4078 1.10339 0.551697 0.834044i \(-0.313980\pi\)
0.551697 + 0.834044i \(0.313980\pi\)
\(618\) 0 0
\(619\) 26.2887 1.05663 0.528316 0.849048i \(-0.322824\pi\)
0.528316 + 0.849048i \(0.322824\pi\)
\(620\) 0 0
\(621\) 1.35194 0.0542515
\(622\) 0 0
\(623\) 11.3371 0.454211
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 11.2813 0.450531
\(628\) 0 0
\(629\) 14.5774 0.581239
\(630\) 0 0
\(631\) −3.87875 −0.154411 −0.0772053 0.997015i \(-0.524600\pi\)
−0.0772053 + 0.997015i \(0.524600\pi\)
\(632\) 0 0
\(633\) 5.82774 0.231632
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −56.3478 −2.23258
\(638\) 0 0
\(639\) −10.7268 −0.424345
\(640\) 0 0
\(641\) 4.08874 0.161496 0.0807478 0.996735i \(-0.474269\pi\)
0.0807478 + 0.996735i \(0.474269\pi\)
\(642\) 0 0
\(643\) −15.2355 −0.600829 −0.300415 0.953809i \(-0.597125\pi\)
−0.300415 + 0.953809i \(0.597125\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.6406 0.850781 0.425391 0.905010i \(-0.360137\pi\)
0.425391 + 0.905010i \(0.360137\pi\)
\(648\) 0 0
\(649\) 21.9394 0.861196
\(650\) 0 0
\(651\) 4.43807 0.173942
\(652\) 0 0
\(653\) 0.228078 0.00892538 0.00446269 0.999990i \(-0.498579\pi\)
0.00446269 + 0.999990i \(0.498579\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.4381 −0.407228
\(658\) 0 0
\(659\) 50.9500 1.98473 0.992366 0.123328i \(-0.0393568\pi\)
0.992366 + 0.123328i \(0.0393568\pi\)
\(660\) 0 0
\(661\) −7.82774 −0.304464 −0.152232 0.988345i \(-0.548646\pi\)
−0.152232 + 0.988345i \(0.548646\pi\)
\(662\) 0 0
\(663\) −6.00000 −0.233021
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.81290 −0.379957
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) 25.0336 0.966410
\(672\) 0 0
\(673\) 45.3962 1.74989 0.874947 0.484219i \(-0.160896\pi\)
0.874947 + 0.484219i \(0.160896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −51.9507 −1.99663 −0.998313 0.0580539i \(-0.981510\pi\)
−0.998313 + 0.0580539i \(0.981510\pi\)
\(678\) 0 0
\(679\) −70.6742 −2.71223
\(680\) 0 0
\(681\) −25.7933 −0.988400
\(682\) 0 0
\(683\) −47.0894 −1.80183 −0.900913 0.434001i \(-0.857102\pi\)
−0.900913 + 0.434001i \(0.857102\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7.93937 −0.302906
\(688\) 0 0
\(689\) 56.8975 2.16762
\(690\) 0 0
\(691\) −29.9097 −1.13782 −0.568909 0.822400i \(-0.692634\pi\)
−0.568909 + 0.822400i \(0.692634\pi\)
\(692\) 0 0
\(693\) −18.5168 −0.703394
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.93676 0.111238
\(698\) 0 0
\(699\) −24.4610 −0.925199
\(700\) 0 0
\(701\) 40.4562 1.52801 0.764004 0.645212i \(-0.223231\pi\)
0.764004 + 0.645212i \(0.223231\pi\)
\(702\) 0 0
\(703\) 29.1548 1.09959
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.88836 0.146237
\(708\) 0 0
\(709\) −52.7858 −1.98241 −0.991207 0.132321i \(-0.957757\pi\)
−0.991207 + 0.132321i \(0.957757\pi\)
\(710\) 0 0
\(711\) −2.05582 −0.0770992
\(712\) 0 0
\(713\) −1.35194 −0.0506305
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18.0000 −0.672222
\(718\) 0 0
\(719\) 3.82774 0.142751 0.0713753 0.997450i \(-0.477261\pi\)
0.0713753 + 0.997450i \(0.477261\pi\)
\(720\) 0 0
\(721\) 28.5726 1.06410
\(722\) 0 0
\(723\) −2.64325 −0.0983036
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.8554 0.439694 0.219847 0.975534i \(-0.429444\pi\)
0.219847 + 0.975534i \(0.429444\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.8007 −0.473450
\(732\) 0 0
\(733\) 5.16003 0.190590 0.0952951 0.995449i \(-0.469621\pi\)
0.0952951 + 0.995449i \(0.469621\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.76450 0.175503
\(738\) 0 0
\(739\) −9.52420 −0.350353 −0.175177 0.984537i \(-0.556050\pi\)
−0.175177 + 0.984537i \(0.556050\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) 33.7885 1.23958 0.619789 0.784768i \(-0.287218\pi\)
0.619789 + 0.784768i \(0.287218\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.99258 0.255845
\(748\) 0 0
\(749\) 51.9097 1.89674
\(750\) 0 0
\(751\) 41.1090 1.50009 0.750045 0.661387i \(-0.230032\pi\)
0.750045 + 0.661387i \(0.230032\pi\)
\(752\) 0 0
\(753\) −16.4562 −0.599696
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 24.3626 0.885474 0.442737 0.896652i \(-0.354008\pi\)
0.442737 + 0.896652i \(0.354008\pi\)
\(758\) 0 0
\(759\) 5.64064 0.204742
\(760\) 0 0
\(761\) 26.4184 0.957667 0.478834 0.877906i \(-0.341060\pi\)
0.478834 + 0.877906i \(0.341060\pi\)
\(762\) 0 0
\(763\) −51.1452 −1.85158
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.3371 −0.842654
\(768\) 0 0
\(769\) 32.9023 1.18649 0.593243 0.805023i \(-0.297847\pi\)
0.593243 + 0.805023i \(0.297847\pi\)
\(770\) 0 0
\(771\) −7.16484 −0.258035
\(772\) 0 0
\(773\) −44.8661 −1.61372 −0.806861 0.590741i \(-0.798835\pi\)
−0.806861 + 0.590741i \(0.798835\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −47.8539 −1.71675
\(778\) 0 0
\(779\) 5.87353 0.210441
\(780\) 0 0
\(781\) −44.7549 −1.60146
\(782\) 0 0
\(783\) −7.25839 −0.259394
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 42.4265 1.51234 0.756170 0.654375i \(-0.227068\pi\)
0.756170 + 0.654375i \(0.227068\pi\)
\(788\) 0 0
\(789\) 8.87614 0.315999
\(790\) 0 0
\(791\) 78.0213 2.77412
\(792\) 0 0
\(793\) −26.6284 −0.945603
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.9681 −1.02610 −0.513052 0.858358i \(-0.671485\pi\)
−0.513052 + 0.858358i \(0.671485\pi\)
\(798\) 0 0
\(799\) 5.56518 0.196882
\(800\) 0 0
\(801\) −2.55451 −0.0902593
\(802\) 0 0
\(803\) −43.5503 −1.53686
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.90164 0.137344
\(808\) 0 0
\(809\) 26.4429 0.929682 0.464841 0.885394i \(-0.346111\pi\)
0.464841 + 0.885394i \(0.346111\pi\)
\(810\) 0 0
\(811\) −26.2542 −0.921910 −0.460955 0.887423i \(-0.652493\pi\)
−0.460955 + 0.887423i \(0.652493\pi\)
\(812\) 0 0
\(813\) −4.87614 −0.171014
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −25.6014 −0.895678
\(818\) 0 0
\(819\) 19.6965 0.688250
\(820\) 0 0
\(821\) 13.5571 0.473147 0.236573 0.971614i \(-0.423976\pi\)
0.236573 + 0.971614i \(0.423976\pi\)
\(822\) 0 0
\(823\) −44.8613 −1.56377 −0.781883 0.623425i \(-0.785741\pi\)
−0.781883 + 0.623425i \(0.785741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.8081 1.03653 0.518265 0.855220i \(-0.326578\pi\)
0.518265 + 0.855220i \(0.326578\pi\)
\(828\) 0 0
\(829\) −43.4535 −1.50920 −0.754602 0.656183i \(-0.772170\pi\)
−0.754602 + 0.656183i \(0.772170\pi\)
\(830\) 0 0
\(831\) −29.5981 −1.02675
\(832\) 0 0
\(833\) 17.1648 0.594727
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) −12.9958 −0.448666 −0.224333 0.974513i \(-0.572020\pi\)
−0.224333 + 0.974513i \(0.572020\pi\)
\(840\) 0 0
\(841\) 23.6842 0.816698
\(842\) 0 0
\(843\) −15.2207 −0.524227
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −28.4381 −0.977144
\(848\) 0 0
\(849\) 20.0181 0.687019
\(850\) 0 0
\(851\) 14.5774 0.499707
\(852\) 0 0
\(853\) 49.7523 1.70349 0.851743 0.523960i \(-0.175546\pi\)
0.851743 + 0.523960i \(0.175546\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.2058 0.724377 0.362189 0.932105i \(-0.382030\pi\)
0.362189 + 0.932105i \(0.382030\pi\)
\(858\) 0 0
\(859\) −10.4710 −0.357266 −0.178633 0.983916i \(-0.557167\pi\)
−0.178633 + 0.983916i \(0.557167\pi\)
\(860\) 0 0
\(861\) −9.64064 −0.328552
\(862\) 0 0
\(863\) 4.83997 0.164754 0.0823772 0.996601i \(-0.473749\pi\)
0.0823772 + 0.996601i \(0.473749\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −15.1723 −0.515277
\(868\) 0 0
\(869\) −8.57741 −0.290969
\(870\) 0 0
\(871\) −5.06804 −0.171724
\(872\) 0 0
\(873\) 15.9245 0.538964
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.8007 1.24267 0.621335 0.783545i \(-0.286591\pi\)
0.621335 + 0.783545i \(0.286591\pi\)
\(878\) 0 0
\(879\) 8.46096 0.285381
\(880\) 0 0
\(881\) −39.1319 −1.31839 −0.659194 0.751973i \(-0.729102\pi\)
−0.659194 + 0.751973i \(0.729102\pi\)
\(882\) 0 0
\(883\) 17.7671 0.597911 0.298956 0.954267i \(-0.403362\pi\)
0.298956 + 0.954267i \(0.403362\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 57.2520 1.92233 0.961167 0.275966i \(-0.0889977\pi\)
0.961167 + 0.275966i \(0.0889977\pi\)
\(888\) 0 0
\(889\) 70.1788 2.35372
\(890\) 0 0
\(891\) 4.17226 0.139776
\(892\) 0 0
\(893\) 11.1304 0.372463
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.00000 −0.200334
\(898\) 0 0
\(899\) 7.25839 0.242081
\(900\) 0 0
\(901\) −17.3323 −0.577422
\(902\) 0 0
\(903\) 42.0213 1.39838
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −16.8581 −0.559762 −0.279881 0.960035i \(-0.590295\pi\)
−0.279881 + 0.960035i \(0.590295\pi\)
\(908\) 0 0
\(909\) −0.876139 −0.0290597
\(910\) 0 0
\(911\) 45.5800 1.51013 0.755067 0.655648i \(-0.227604\pi\)
0.755067 + 0.655648i \(0.227604\pi\)
\(912\) 0 0
\(913\) 29.1749 0.965547
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.9777 1.48530
\(918\) 0 0
\(919\) −35.8491 −1.18255 −0.591276 0.806469i \(-0.701376\pi\)
−0.591276 + 0.806469i \(0.701376\pi\)
\(920\) 0 0
\(921\) 8.43807 0.278044
\(922\) 0 0
\(923\) 47.6062 1.56698
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6.43807 −0.211454
\(928\) 0 0
\(929\) 45.7752 1.50183 0.750917 0.660396i \(-0.229612\pi\)
0.750917 + 0.660396i \(0.229612\pi\)
\(930\) 0 0
\(931\) 34.3297 1.12511
\(932\) 0 0
\(933\) −20.6661 −0.676579
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −25.8277 −0.843755 −0.421878 0.906653i \(-0.638629\pi\)
−0.421878 + 0.906653i \(0.638629\pi\)
\(938\) 0 0
\(939\) −21.3142 −0.695563
\(940\) 0 0
\(941\) −1.52095 −0.0495815 −0.0247908 0.999693i \(-0.507892\pi\)
−0.0247908 + 0.999693i \(0.507892\pi\)
\(942\) 0 0
\(943\) 2.93676 0.0956342
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.6481 −0.605981 −0.302990 0.952994i \(-0.597985\pi\)
−0.302990 + 0.952994i \(0.597985\pi\)
\(948\) 0 0
\(949\) 46.3249 1.50377
\(950\) 0 0
\(951\) −13.5242 −0.438552
\(952\) 0 0
\(953\) −33.3519 −1.08038 −0.540188 0.841545i \(-0.681647\pi\)
−0.540188 + 0.841545i \(0.681647\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −30.2839 −0.978939
\(958\) 0 0
\(959\) −67.0336 −2.16463
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −11.6965 −0.376913
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) 3.65548 0.117431
\(970\) 0 0
\(971\) 21.6932 0.696168 0.348084 0.937463i \(-0.386832\pi\)
0.348084 + 0.937463i \(0.386832\pi\)
\(972\) 0 0
\(973\) 76.4265 2.45012
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.2813 −0.552877 −0.276439 0.961032i \(-0.589154\pi\)
−0.276439 + 0.961032i \(0.589154\pi\)
\(978\) 0 0
\(979\) −10.6581 −0.340634
\(980\) 0 0
\(981\) 11.5242 0.367939
\(982\) 0 0
\(983\) −29.1452 −0.929587 −0.464794 0.885419i \(-0.653872\pi\)
−0.464794 + 0.885419i \(0.653872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −18.2691 −0.581511
\(988\) 0 0
\(989\) −12.8007 −0.407038
\(990\) 0 0
\(991\) −5.34191 −0.169691 −0.0848457 0.996394i \(-0.527040\pi\)
−0.0848457 + 0.996394i \(0.527040\pi\)
\(992\) 0 0
\(993\) 12.9926 0.412307
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.23550 −0.0391286 −0.0195643 0.999809i \(-0.506228\pi\)
−0.0195643 + 0.999809i \(0.506228\pi\)
\(998\) 0 0
\(999\) 10.7826 0.341146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9300.2.a.v.1.1 3
5.2 odd 4 9300.2.g.p.3349.1 6
5.3 odd 4 9300.2.g.p.3349.6 6
5.4 even 2 1860.2.a.f.1.3 3
15.14 odd 2 5580.2.a.l.1.3 3
20.19 odd 2 7440.2.a.bt.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.f.1.3 3 5.4 even 2
5580.2.a.l.1.3 3 15.14 odd 2
7440.2.a.bt.1.1 3 20.19 odd 2
9300.2.a.v.1.1 3 1.1 even 1 trivial
9300.2.g.p.3349.1 6 5.2 odd 4
9300.2.g.p.3349.6 6 5.3 odd 4