Newspace parameters
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.z (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.42608738798\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | −2.20868 | − | 0.348916i | 1.00000 | 0.804232 | + | 0.261311i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | 1.01595 | + | 1.99195i | ||
109.2 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | −1.90693 | + | 1.16774i | 1.00000 | 0.507889 | + | 0.165023i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | 2.06559 | + | 0.856357i | ||
109.3 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | −0.635868 | + | 2.14375i | 1.00000 | 2.45458 | + | 0.797540i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | 2.10809 | − | 0.745638i | ||
109.4 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | −0.244369 | − | 2.22267i | 1.00000 | 4.86212 | + | 1.57980i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | −1.65455 | + | 1.50415i | ||
109.5 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 0.218072 | + | 2.22541i | 1.00000 | −0.288858 | − | 0.0938558i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | 1.67221 | − | 1.48449i | ||
109.6 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 0.836694 | − | 2.07363i | 1.00000 | −0.595482 | − | 0.193484i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | −2.16940 | + | 0.541950i | ||
109.7 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 1.25767 | − | 1.84886i | 1.00000 | −2.43606 | − | 0.791524i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | −2.23500 | + | 0.0692568i | ||
109.8 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 2.06791 | + | 0.850729i | 1.00000 | −4.57919 | − | 1.48787i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | −0.527234 | − | 2.17302i | ||
109.9 | −0.587785 | − | 0.809017i | −0.587785 | + | 0.809017i | −0.309017 | + | 0.951057i | 2.23353 | + | 0.106448i | 1.00000 | 4.25057 | + | 1.38109i | 0.951057 | − | 0.309017i | −0.309017 | − | 0.951057i | −1.22672 | − | 1.86953i | ||
109.10 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | −2.20868 | + | 0.348916i | 1.00000 | −0.804232 | − | 0.261311i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | −1.58051 | − | 1.58177i | ||
109.11 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | −1.90693 | − | 1.16774i | 1.00000 | −0.507889 | − | 0.165023i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | −0.176142 | − | 2.22912i | ||
109.12 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | −0.635868 | − | 2.14375i | 1.00000 | −2.45458 | − | 0.797540i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | 1.36058 | − | 1.77449i | ||
109.13 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | −0.244369 | + | 2.22267i | 1.00000 | −4.86212 | − | 1.57980i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | −1.94182 | + | 1.10876i | ||
109.14 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 0.218072 | − | 2.22541i | 1.00000 | 0.288858 | + | 0.0938558i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | 1.92857 | − | 1.13164i | ||
109.15 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 0.836694 | + | 2.07363i | 1.00000 | 0.595482 | + | 0.193484i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | −1.18581 | + | 1.89575i | ||
109.16 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 1.25767 | + | 1.84886i | 1.00000 | 2.43606 | + | 0.791524i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | −0.756519 | + | 2.10421i | ||
109.17 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 2.06791 | − | 0.850729i | 1.00000 | 4.57919 | + | 1.48787i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | 1.90374 | + | 1.17293i | ||
109.18 | 0.587785 | + | 0.809017i | 0.587785 | − | 0.809017i | −0.309017 | + | 0.951057i | 2.23353 | − | 0.106448i | 1.00000 | −4.25057 | − | 1.38109i | −0.951057 | + | 0.309017i | −0.309017 | − | 0.951057i | 1.39896 | + | 1.74440i | ||
349.1 | −0.951057 | − | 0.309017i | −0.951057 | + | 0.309017i | 0.809017 | + | 0.587785i | −2.22153 | − | 0.254605i | 1.00000 | −2.23337 | + | 3.07398i | −0.587785 | − | 0.809017i | 0.809017 | − | 0.587785i | 2.03412 | + | 0.928633i | ||
349.2 | −0.951057 | − | 0.309017i | −0.951057 | + | 0.309017i | 0.809017 | + | 0.587785i | −2.16020 | + | 0.577517i | 1.00000 | 2.84298 | − | 3.91303i | −0.587785 | − | 0.809017i | 0.809017 | − | 0.587785i | 2.23294 | + | 0.118288i | ||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
31.d | even | 5 | 1 | inner |
155.n | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 930.2.z.d | ✓ | 72 |
5.b | even | 2 | 1 | inner | 930.2.z.d | ✓ | 72 |
31.d | even | 5 | 1 | inner | 930.2.z.d | ✓ | 72 |
155.n | even | 10 | 1 | inner | 930.2.z.d | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
930.2.z.d | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
930.2.z.d | ✓ | 72 | 5.b | even | 2 | 1 | inner |
930.2.z.d | ✓ | 72 | 31.d | even | 5 | 1 | inner |
930.2.z.d | ✓ | 72 | 155.n | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(16\!\cdots\!55\)\( T_{7}^{56} - \)\(29\!\cdots\!80\)\( T_{7}^{54} + \)\(45\!\cdots\!30\)\( T_{7}^{52} - \)\(63\!\cdots\!00\)\( T_{7}^{50} + \)\(80\!\cdots\!85\)\( T_{7}^{48} - \)\(84\!\cdots\!20\)\( T_{7}^{46} + \)\(82\!\cdots\!90\)\( T_{7}^{44} - \)\(68\!\cdots\!70\)\( T_{7}^{42} + \)\(45\!\cdots\!65\)\( T_{7}^{40} - \)\(24\!\cdots\!20\)\( T_{7}^{38} + \)\(12\!\cdots\!65\)\( T_{7}^{36} - \)\(55\!\cdots\!20\)\( T_{7}^{34} + \)\(20\!\cdots\!10\)\( T_{7}^{32} - \)\(61\!\cdots\!00\)\( T_{7}^{30} + \)\(20\!\cdots\!55\)\( T_{7}^{28} - \)\(34\!\cdots\!80\)\( T_{7}^{26} + \)\(78\!\cdots\!50\)\( T_{7}^{24} - \)\(12\!\cdots\!76\)\( T_{7}^{22} + \)\(11\!\cdots\!39\)\( T_{7}^{20} - \)\(66\!\cdots\!92\)\( T_{7}^{18} + \)\(23\!\cdots\!83\)\( T_{7}^{16} - \)\(52\!\cdots\!28\)\( T_{7}^{14} + \)\(80\!\cdots\!47\)\( T_{7}^{12} - \)\(10\!\cdots\!34\)\( T_{7}^{10} + \)\(12\!\cdots\!41\)\( T_{7}^{8} - \)\(10\!\cdots\!80\)\( T_{7}^{6} + \)\(61\!\cdots\!00\)\( T_{7}^{4} - \)\(33\!\cdots\!00\)\( T_{7}^{2} + \)\(20\!\cdots\!00\)\( \)">\(T_{7}^{72} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\).