Newspace parameters
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.v (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.42608738798\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401.1 | −0.587785 | + | 0.809017i | −1.71066 | + | 0.271374i | −0.309017 | − | 0.951057i | 1.00000i | 0.785954 | − | 1.54346i | 0.226704 | + | 0.697724i | 0.951057 | + | 0.309017i | 2.85271 | − | 0.928458i | −0.809017 | − | 0.587785i | ||
401.2 | −0.587785 | + | 0.809017i | −1.32297 | − | 1.11792i | −0.309017 | − | 0.951057i | 1.00000i | 1.68204 | − | 0.413212i | −1.31298 | − | 4.04094i | 0.951057 | + | 0.309017i | 0.500516 | + | 2.95795i | −0.809017 | − | 0.587785i | ||
401.3 | −0.587785 | + | 0.809017i | −1.23647 | + | 1.21291i | −0.309017 | − | 0.951057i | 1.00000i | −0.254481 | − | 1.71325i | −0.489949 | − | 1.50791i | 0.951057 | + | 0.309017i | 0.0577223 | − | 2.99944i | −0.809017 | − | 0.587785i | ||
401.4 | −0.587785 | + | 0.809017i | −0.829675 | + | 1.52041i | −0.309017 | − | 0.951057i | 1.00000i | −0.742365 | − | 1.56489i | 1.36101 | + | 4.18875i | 0.951057 | + | 0.309017i | −1.62328 | − | 2.52289i | −0.809017 | − | 0.587785i | ||
401.5 | −0.587785 | + | 0.809017i | −0.335845 | − | 1.69918i | −0.309017 | − | 0.951057i | 1.00000i | 1.57207 | + | 0.727048i | 0.678803 | + | 2.08914i | 0.951057 | + | 0.309017i | −2.77442 | + | 1.14132i | −0.809017 | − | 0.587785i | ||
401.6 | −0.587785 | + | 0.809017i | 0.240855 | + | 1.71522i | −0.309017 | − | 0.951057i | 1.00000i | −1.52922 | − | 0.813327i | −0.762356 | − | 2.34629i | 0.951057 | + | 0.309017i | −2.88398 | + | 0.826239i | −0.809017 | − | 0.587785i | ||
401.7 | −0.587785 | + | 0.809017i | 0.305332 | − | 1.70493i | −0.309017 | − | 0.951057i | 1.00000i | 1.19984 | + | 1.24915i | 0.0989466 | + | 0.304526i | 0.951057 | + | 0.309017i | −2.81354 | − | 1.04114i | −0.809017 | − | 0.587785i | ||
401.8 | −0.587785 | + | 0.809017i | 1.57188 | + | 0.727458i | −0.309017 | − | 0.951057i | 1.00000i | −1.51245 | + | 0.844088i | 1.04544 | + | 3.21754i | 0.951057 | + | 0.309017i | 1.94161 | + | 2.28695i | −0.809017 | − | 0.587785i | ||
401.9 | −0.587785 | + | 0.809017i | 1.60896 | − | 0.641293i | −0.309017 | − | 0.951057i | 1.00000i | −0.426905 | + | 1.67862i | 1.11324 | + | 3.42620i | 0.951057 | + | 0.309017i | 2.17749 | − | 2.06362i | −0.809017 | − | 0.587785i | ||
401.10 | −0.587785 | + | 0.809017i | 1.70860 | − | 0.284052i | −0.309017 | − | 0.951057i | 1.00000i | −0.774487 | + | 1.54925i | −0.458862 | − | 1.41223i | 0.951057 | + | 0.309017i | 2.83863 | − | 0.970663i | −0.809017 | − | 0.587785i | ||
401.11 | 0.587785 | − | 0.809017i | −1.71583 | − | 0.236463i | −0.309017 | − | 0.951057i | − | 1.00000i | −1.19984 | + | 1.24915i | 0.0989466 | + | 0.304526i | −0.951057 | − | 0.309017i | 2.88817 | + | 0.811463i | −0.809017 | − | 0.587785i | |
401.12 | 0.587785 | − | 0.809017i | −1.51223 | − | 0.844483i | −0.309017 | − | 0.951057i | − | 1.00000i | −1.57207 | + | 0.727048i | 0.678803 | + | 2.08914i | −0.951057 | − | 0.309017i | 1.57370 | + | 2.55411i | −0.809017 | − | 0.587785i | |
401.13 | 0.587785 | − | 0.809017i | −1.10710 | + | 1.33204i | −0.309017 | − | 0.951057i | − | 1.00000i | 0.426905 | + | 1.67862i | 1.11324 | + | 3.42620i | −0.951057 | − | 0.309017i | −0.548656 | − | 2.94940i | −0.809017 | − | 0.587785i | |
401.14 | 0.587785 | − | 0.809017i | −0.798136 | + | 1.53720i | −0.309017 | − | 0.951057i | − | 1.00000i | 0.774487 | + | 1.54925i | −0.458862 | − | 1.41223i | −0.951057 | − | 0.309017i | −1.72596 | − | 2.45379i | −0.809017 | − | 0.587785i | |
401.15 | 0.587785 | − | 0.809017i | −0.654383 | − | 1.60368i | −0.309017 | − | 0.951057i | − | 1.00000i | −1.68204 | − | 0.413212i | −1.31298 | − | 4.04094i | −0.951057 | − | 0.309017i | −2.14357 | + | 2.09884i | −0.809017 | − | 0.587785i | |
401.16 | 0.587785 | − | 0.809017i | 0.206116 | + | 1.71974i | −0.309017 | − | 0.951057i | − | 1.00000i | 1.51245 | + | 0.844088i | 1.04544 | + | 3.21754i | −0.951057 | − | 0.309017i | −2.91503 | + | 0.708934i | −0.809017 | − | 0.587785i | |
401.17 | 0.587785 | − | 0.809017i | 0.786715 | − | 1.54307i | −0.309017 | − | 0.951057i | − | 1.00000i | −0.785954 | − | 1.54346i | 0.226704 | + | 0.697724i | −0.951057 | − | 0.309017i | −1.76216 | − | 2.42792i | −0.809017 | − | 0.587785i | |
401.18 | 0.587785 | − | 0.809017i | 1.53563 | − | 0.801146i | −0.309017 | − | 0.951057i | − | 1.00000i | 0.254481 | − | 1.71325i | −0.489949 | − | 1.50791i | −0.951057 | − | 0.309017i | 1.71633 | − | 2.46053i | −0.809017 | − | 0.587785i | |
401.19 | 0.587785 | − | 0.809017i | 1.55685 | + | 0.759099i | −0.309017 | − | 0.951057i | − | 1.00000i | 1.52922 | − | 0.813327i | −0.762356 | − | 2.34629i | −0.951057 | − | 0.309017i | 1.84754 | + | 2.36360i | −0.809017 | − | 0.587785i | |
401.20 | 0.587785 | − | 0.809017i | 1.70238 | − | 0.319236i | −0.309017 | − | 0.951057i | − | 1.00000i | 0.742365 | − | 1.56489i | 1.36101 | + | 4.18875i | −0.951057 | − | 0.309017i | 2.79618 | − | 1.08692i | −0.809017 | − | 0.587785i | |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
31.f | odd | 10 | 1 | inner |
93.k | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 930.2.v.b | ✓ | 80 |
3.b | odd | 2 | 1 | inner | 930.2.v.b | ✓ | 80 |
31.f | odd | 10 | 1 | inner | 930.2.v.b | ✓ | 80 |
93.k | even | 10 | 1 | inner | 930.2.v.b | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
930.2.v.b | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
930.2.v.b | ✓ | 80 | 3.b | odd | 2 | 1 | inner |
930.2.v.b | ✓ | 80 | 31.f | odd | 10 | 1 | inner |
930.2.v.b | ✓ | 80 | 93.k | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(11\!\cdots\!31\)\( T_{7}^{19} + \)\(40\!\cdots\!35\)\( T_{7}^{18} - \)\(55\!\cdots\!67\)\( T_{7}^{17} + \)\(17\!\cdots\!83\)\( T_{7}^{16} - \)\(15\!\cdots\!06\)\( T_{7}^{15} + \)\(57\!\cdots\!73\)\( T_{7}^{14} - \)\(24\!\cdots\!94\)\( T_{7}^{13} + \)\(16\!\cdots\!66\)\( T_{7}^{12} - \)\(12\!\cdots\!97\)\( T_{7}^{11} + \)\(32\!\cdots\!57\)\( T_{7}^{10} - \)\(13\!\cdots\!64\)\( T_{7}^{9} + \)\(36\!\cdots\!57\)\( T_{7}^{8} - \)\(22\!\cdots\!72\)\( T_{7}^{7} + \)\(40\!\cdots\!82\)\( T_{7}^{6} - \)\(44\!\cdots\!99\)\( T_{7}^{5} + \)\(11\!\cdots\!75\)\( T_{7}^{4} + \)\(54\!\cdots\!54\)\( T_{7}^{3} + \)\(25\!\cdots\!52\)\( T_{7}^{2} + 959152476760 T_{7} + \)\(31\!\cdots\!16\)\( \)">\(T_{7}^{40} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\).