Properties

Label 930.2.o.e.161.19
Level $930$
Weight $2$
Character 930.161
Analytic conductor $7.426$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 161.19
Character \(\chi\) \(=\) 930.161
Dual form 930.2.o.e.491.9

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.41853 + 0.993862i) q^{3} -1.00000 q^{4} +(-0.866025 - 0.500000i) q^{5} +(-0.993862 + 1.41853i) q^{6} +(-1.64767 - 2.85385i) q^{7} -1.00000i q^{8} +(1.02448 + 2.81965i) q^{9} +O(q^{10})\) \(q+1.00000i q^{2} +(1.41853 + 0.993862i) q^{3} -1.00000 q^{4} +(-0.866025 - 0.500000i) q^{5} +(-0.993862 + 1.41853i) q^{6} +(-1.64767 - 2.85385i) q^{7} -1.00000i q^{8} +(1.02448 + 2.81965i) q^{9} +(0.500000 - 0.866025i) q^{10} +(2.34247 - 4.05727i) q^{11} +(-1.41853 - 0.993862i) q^{12} +(-3.57649 - 2.06489i) q^{13} +(2.85385 - 1.64767i) q^{14} +(-0.731555 - 1.56998i) q^{15} +1.00000 q^{16} +(-3.02223 - 5.23465i) q^{17} +(-2.81965 + 1.02448i) q^{18} +(-1.11458 - 1.93051i) q^{19} +(0.866025 + 0.500000i) q^{20} +(0.499058 - 5.68585i) q^{21} +(4.05727 + 2.34247i) q^{22} +0.244780 q^{23} +(0.993862 - 1.41853i) q^{24} +(0.500000 + 0.866025i) q^{25} +(2.06489 - 3.57649i) q^{26} +(-1.34909 + 5.01796i) q^{27} +(1.64767 + 2.85385i) q^{28} +2.05814 q^{29} +(1.56998 - 0.731555i) q^{30} +(-5.16785 - 2.07204i) q^{31} +1.00000i q^{32} +(7.35524 - 3.42729i) q^{33} +(5.23465 - 3.02223i) q^{34} +3.29535i q^{35} +(-1.02448 - 2.81965i) q^{36} +(-7.39979 + 4.27227i) q^{37} +(1.93051 - 1.11458i) q^{38} +(-3.02115 - 6.48364i) q^{39} +(-0.500000 + 0.866025i) q^{40} +(6.83739 + 3.94757i) q^{41} +(5.68585 + 0.499058i) q^{42} +(10.0366 - 5.79463i) q^{43} +(-2.34247 + 4.05727i) q^{44} +(0.522605 - 2.95413i) q^{45} +0.244780i q^{46} -3.99299i q^{47} +(1.41853 + 0.993862i) q^{48} +(-1.92965 + 3.34226i) q^{49} +(-0.866025 + 0.500000i) q^{50} +(0.915391 - 10.4292i) q^{51} +(3.57649 + 2.06489i) q^{52} +(0.996554 - 1.72608i) q^{53} +(-5.01796 - 1.34909i) q^{54} +(-4.05727 + 2.34247i) q^{55} +(-2.85385 + 1.64767i) q^{56} +(0.337591 - 3.84623i) q^{57} +2.05814i q^{58} +(-0.641535 + 0.370390i) q^{59} +(0.731555 + 1.56998i) q^{60} +6.30131i q^{61} +(2.07204 - 5.16785i) q^{62} +(6.35888 - 7.56957i) q^{63} -1.00000 q^{64} +(2.06489 + 3.57649i) q^{65} +(3.42729 + 7.35524i) q^{66} +(1.90767 - 3.30418i) q^{67} +(3.02223 + 5.23465i) q^{68} +(0.347229 + 0.243278i) q^{69} -3.29535 q^{70} +(8.36971 + 4.83225i) q^{71} +(2.81965 - 1.02448i) q^{72} +(0.290365 + 0.167642i) q^{73} +(-4.27227 - 7.39979i) q^{74} +(-0.151443 + 1.72542i) q^{75} +(1.11458 + 1.93051i) q^{76} -15.4385 q^{77} +(6.48364 - 3.02115i) q^{78} +(-11.1206 + 6.42046i) q^{79} +(-0.866025 - 0.500000i) q^{80} +(-6.90090 + 5.77733i) q^{81} +(-3.94757 + 6.83739i) q^{82} +(-1.42255 + 2.46393i) q^{83} +(-0.499058 + 5.68585i) q^{84} +6.04445i q^{85} +(5.79463 + 10.0366i) q^{86} +(2.91954 + 2.04551i) q^{87} +(-4.05727 - 2.34247i) q^{88} -0.149606 q^{89} +(2.95413 + 0.522605i) q^{90} +13.6090i q^{91} -0.244780 q^{92} +(-5.27144 - 8.07539i) q^{93} +3.99299 q^{94} +2.22916i q^{95} +(-0.993862 + 1.41853i) q^{96} -7.67331 q^{97} +(-3.34226 - 1.92965i) q^{98} +(13.8399 + 2.44837i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q + 6q^{3} - 40q^{4} - 12q^{7} - 2q^{9} + O(q^{10}) \) \( 40q + 6q^{3} - 40q^{4} - 12q^{7} - 2q^{9} + 20q^{10} - 6q^{12} - 12q^{13} + 40q^{16} - 12q^{18} - 12q^{19} + 12q^{21} - 24q^{22} + 20q^{25} + 12q^{28} + 8q^{31} + 52q^{33} + 24q^{34} + 2q^{36} + 60q^{37} - 8q^{39} - 20q^{40} + 12q^{42} + 24q^{43} - 12q^{45} + 6q^{48} - 4q^{49} + 14q^{51} + 12q^{52} + 24q^{55} - 12q^{57} - 40q^{64} + 8q^{66} + 64q^{67} - 26q^{69} - 24q^{70} + 12q^{72} + 6q^{75} + 12q^{76} - 68q^{78} - 48q^{79} + 2q^{81} + 4q^{82} - 12q^{84} + 36q^{87} + 24q^{88} + 2q^{90} - 22q^{93} - 40q^{94} + 8q^{97} - 90q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.41853 + 0.993862i 0.818991 + 0.573807i
\(4\) −1.00000 −0.500000
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) −0.993862 + 1.41853i −0.405743 + 0.579114i
\(7\) −1.64767 2.85385i −0.622762 1.07866i −0.988969 0.148122i \(-0.952677\pi\)
0.366207 0.930533i \(-0.380656\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.02448 + 2.81965i 0.341492 + 0.939885i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) 2.34247 4.05727i 0.706281 1.22331i −0.259947 0.965623i \(-0.583705\pi\)
0.966227 0.257691i \(-0.0829616\pi\)
\(12\) −1.41853 0.993862i −0.409495 0.286903i
\(13\) −3.57649 2.06489i −0.991939 0.572696i −0.0860855 0.996288i \(-0.527436\pi\)
−0.905853 + 0.423592i \(0.860769\pi\)
\(14\) 2.85385 1.64767i 0.762725 0.440359i
\(15\) −0.731555 1.56998i −0.188887 0.405366i
\(16\) 1.00000 0.250000
\(17\) −3.02223 5.23465i −0.732998 1.26959i −0.955596 0.294679i \(-0.904787\pi\)
0.222598 0.974910i \(-0.428546\pi\)
\(18\) −2.81965 + 1.02448i −0.664599 + 0.241471i
\(19\) −1.11458 1.93051i −0.255702 0.442889i 0.709384 0.704822i \(-0.248973\pi\)
−0.965086 + 0.261933i \(0.915640\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0.499058 5.68585i 0.108903 1.24075i
\(22\) 4.05727 + 2.34247i 0.865014 + 0.499416i
\(23\) 0.244780 0.0510402 0.0255201 0.999674i \(-0.491876\pi\)
0.0255201 + 0.999674i \(0.491876\pi\)
\(24\) 0.993862 1.41853i 0.202871 0.289557i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 2.06489 3.57649i 0.404957 0.701407i
\(27\) −1.34909 + 5.01796i −0.259633 + 0.965707i
\(28\) 1.64767 + 2.85385i 0.311381 + 0.539328i
\(29\) 2.05814 0.382188 0.191094 0.981572i \(-0.438797\pi\)
0.191094 + 0.981572i \(0.438797\pi\)
\(30\) 1.56998 0.731555i 0.286637 0.133563i
\(31\) −5.16785 2.07204i −0.928173 0.372149i
\(32\) 1.00000i 0.176777i
\(33\) 7.35524 3.42729i 1.28038 0.596614i
\(34\) 5.23465 3.02223i 0.897735 0.518308i
\(35\) 3.29535i 0.557015i
\(36\) −1.02448 2.81965i −0.170746 0.469942i
\(37\) −7.39979 + 4.27227i −1.21652 + 0.702357i −0.964172 0.265280i \(-0.914536\pi\)
−0.252347 + 0.967637i \(0.581202\pi\)
\(38\) 1.93051 1.11458i 0.313170 0.180809i
\(39\) −3.02115 6.48364i −0.483772 1.03821i
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) 6.83739 + 3.94757i 1.06782 + 0.616507i 0.927585 0.373611i \(-0.121881\pi\)
0.140236 + 0.990118i \(0.455214\pi\)
\(42\) 5.68585 + 0.499058i 0.877345 + 0.0770063i
\(43\) 10.0366 5.79463i 1.53057 0.883672i 0.531230 0.847228i \(-0.321730\pi\)
0.999336 0.0364445i \(-0.0116032\pi\)
\(44\) −2.34247 + 4.05727i −0.353140 + 0.611657i
\(45\) 0.522605 2.95413i 0.0779054 0.440376i
\(46\) 0.244780i 0.0360909i
\(47\) 3.99299i 0.582437i −0.956656 0.291219i \(-0.905939\pi\)
0.956656 0.291219i \(-0.0940607\pi\)
\(48\) 1.41853 + 0.993862i 0.204748 + 0.143452i
\(49\) −1.92965 + 3.34226i −0.275665 + 0.477466i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) 0.915391 10.4292i 0.128180 1.46038i
\(52\) 3.57649 + 2.06489i 0.495969 + 0.286348i
\(53\) 0.996554 1.72608i 0.136887 0.237096i −0.789430 0.613841i \(-0.789624\pi\)
0.926317 + 0.376746i \(0.122957\pi\)
\(54\) −5.01796 1.34909i −0.682858 0.183589i
\(55\) −4.05727 + 2.34247i −0.547083 + 0.315858i
\(56\) −2.85385 + 1.64767i −0.381362 + 0.220180i
\(57\) 0.337591 3.84623i 0.0447150 0.509446i
\(58\) 2.05814i 0.270247i
\(59\) −0.641535 + 0.370390i −0.0835207 + 0.0482207i −0.541179 0.840908i \(-0.682022\pi\)
0.457658 + 0.889128i \(0.348688\pi\)
\(60\) 0.731555 + 1.56998i 0.0944434 + 0.202683i
\(61\) 6.30131i 0.806801i 0.915024 + 0.403400i \(0.132172\pi\)
−0.915024 + 0.403400i \(0.867828\pi\)
\(62\) 2.07204 5.16785i 0.263149 0.656317i
\(63\) 6.35888 7.56957i 0.801144 0.953676i
\(64\) −1.00000 −0.125000
\(65\) 2.06489 + 3.57649i 0.256117 + 0.443608i
\(66\) 3.42729 + 7.35524i 0.421870 + 0.905367i
\(67\) 1.90767 3.30418i 0.233059 0.403669i −0.725648 0.688066i \(-0.758460\pi\)
0.958707 + 0.284397i \(0.0917933\pi\)
\(68\) 3.02223 + 5.23465i 0.366499 + 0.634795i
\(69\) 0.347229 + 0.243278i 0.0418014 + 0.0292872i
\(70\) −3.29535 −0.393869
\(71\) 8.36971 + 4.83225i 0.993302 + 0.573483i 0.906260 0.422722i \(-0.138925\pi\)
0.0870422 + 0.996205i \(0.472259\pi\)
\(72\) 2.81965 1.02448i 0.332299 0.120736i
\(73\) 0.290365 + 0.167642i 0.0339847 + 0.0196211i 0.516896 0.856048i \(-0.327087\pi\)
−0.482911 + 0.875669i \(0.660421\pi\)
\(74\) −4.27227 7.39979i −0.496642 0.860208i
\(75\) −0.151443 + 1.72542i −0.0174871 + 0.199234i
\(76\) 1.11458 + 1.93051i 0.127851 + 0.221444i
\(77\) −15.4385 −1.75938
\(78\) 6.48364 3.02115i 0.734128 0.342078i
\(79\) −11.1206 + 6.42046i −1.25116 + 0.722358i −0.971340 0.237695i \(-0.923608\pi\)
−0.279820 + 0.960052i \(0.590275\pi\)
\(80\) −0.866025 0.500000i −0.0968246 0.0559017i
\(81\) −6.90090 + 5.77733i −0.766767 + 0.641926i
\(82\) −3.94757 + 6.83739i −0.435936 + 0.755063i
\(83\) −1.42255 + 2.46393i −0.156145 + 0.270451i −0.933475 0.358642i \(-0.883240\pi\)
0.777330 + 0.629093i \(0.216573\pi\)
\(84\) −0.499058 + 5.68585i −0.0544516 + 0.620377i
\(85\) 6.04445i 0.655613i
\(86\) 5.79463 + 10.0366i 0.624851 + 1.08227i
\(87\) 2.91954 + 2.04551i 0.313008 + 0.219302i
\(88\) −4.05727 2.34247i −0.432507 0.249708i
\(89\) −0.149606 −0.0158582 −0.00792909 0.999969i \(-0.502524\pi\)
−0.00792909 + 0.999969i \(0.502524\pi\)
\(90\) 2.95413 + 0.522605i 0.311393 + 0.0550874i
\(91\) 13.6090i 1.42661i
\(92\) −0.244780 −0.0255201
\(93\) −5.27144 8.07539i −0.546623 0.837379i
\(94\) 3.99299 0.411845
\(95\) 2.22916i 0.228707i
\(96\) −0.993862 + 1.41853i −0.101436 + 0.144778i
\(97\) −7.67331 −0.779107 −0.389553 0.921004i \(-0.627371\pi\)
−0.389553 + 0.921004i \(0.627371\pi\)
\(98\) −3.34226 1.92965i −0.337619 0.194925i
\(99\) 13.8399 + 2.44837i 1.39096 + 0.246071i
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 5.06959i 0.504443i −0.967669 0.252222i \(-0.918839\pi\)
0.967669 0.252222i \(-0.0811612\pi\)
\(102\) 10.4292 + 0.915391i 1.03265 + 0.0906372i
\(103\) 9.37875 16.2445i 0.924115 1.60061i 0.131138 0.991364i \(-0.458137\pi\)
0.792978 0.609251i \(-0.208530\pi\)
\(104\) −2.06489 + 3.57649i −0.202479 + 0.350703i
\(105\) −3.27512 + 4.67456i −0.319619 + 0.456190i
\(106\) 1.72608 + 0.996554i 0.167652 + 0.0967939i
\(107\) −3.66151 + 2.11397i −0.353971 + 0.204366i −0.666433 0.745565i \(-0.732180\pi\)
0.312462 + 0.949930i \(0.398846\pi\)
\(108\) 1.34909 5.01796i 0.129817 0.482854i
\(109\) 5.84653 0.559996 0.279998 0.960001i \(-0.409666\pi\)
0.279998 + 0.960001i \(0.409666\pi\)
\(110\) −2.34247 4.05727i −0.223346 0.386846i
\(111\) −14.7429 1.29401i −1.39933 0.122822i
\(112\) −1.64767 2.85385i −0.155690 0.269664i
\(113\) 5.58805 + 3.22626i 0.525679 + 0.303501i 0.739255 0.673425i \(-0.235178\pi\)
−0.213576 + 0.976926i \(0.568511\pi\)
\(114\) 3.84623 + 0.337591i 0.360232 + 0.0316183i
\(115\) −0.211986 0.122390i −0.0197678 0.0114129i
\(116\) −2.05814 −0.191094
\(117\) 2.15824 12.1999i 0.199529 1.12788i
\(118\) −0.370390 0.641535i −0.0340972 0.0590580i
\(119\) −9.95929 + 17.2500i −0.912966 + 1.58130i
\(120\) −1.56998 + 0.731555i −0.143319 + 0.0667815i
\(121\) −5.47431 9.48178i −0.497665 0.861980i
\(122\) −6.30131 −0.570494
\(123\) 5.77573 + 12.3952i 0.520780 + 1.11764i
\(124\) 5.16785 + 2.07204i 0.464086 + 0.186075i
\(125\) 1.00000i 0.0894427i
\(126\) 7.56957 + 6.35888i 0.674351 + 0.566494i
\(127\) 0.366646 0.211683i 0.0325346 0.0187839i −0.483644 0.875265i \(-0.660687\pi\)
0.516179 + 0.856481i \(0.327354\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 19.9963 + 1.75511i 1.76058 + 0.154529i
\(130\) −3.57649 + 2.06489i −0.313679 + 0.181102i
\(131\) −1.79983 + 1.03913i −0.157252 + 0.0907895i −0.576561 0.817054i \(-0.695606\pi\)
0.419309 + 0.907844i \(0.362272\pi\)
\(132\) −7.35524 + 3.42729i −0.640191 + 0.298307i
\(133\) −3.67293 + 6.36169i −0.318483 + 0.551629i
\(134\) 3.30418 + 1.90767i 0.285437 + 0.164797i
\(135\) 3.67733 3.67114i 0.316494 0.315961i
\(136\) −5.23465 + 3.02223i −0.448868 + 0.259154i
\(137\) 9.76518 16.9138i 0.834296 1.44504i −0.0603063 0.998180i \(-0.519208\pi\)
0.894602 0.446863i \(-0.147459\pi\)
\(138\) −0.243278 + 0.347229i −0.0207092 + 0.0295581i
\(139\) 22.5295i 1.91092i −0.295114 0.955462i \(-0.595358\pi\)
0.295114 0.955462i \(-0.404642\pi\)
\(140\) 3.29535i 0.278508i
\(141\) 3.96848 5.66419i 0.334206 0.477011i
\(142\) −4.83225 + 8.36971i −0.405514 + 0.702370i
\(143\) −16.7556 + 9.67385i −1.40117 + 0.808968i
\(144\) 1.02448 + 2.81965i 0.0853730 + 0.234971i
\(145\) −1.78240 1.02907i −0.148021 0.0854597i
\(146\) −0.167642 + 0.290365i −0.0138742 + 0.0240308i
\(147\) −6.05903 + 2.82330i −0.499740 + 0.232862i
\(148\) 7.39979 4.27227i 0.608259 0.351179i
\(149\) 13.4165 7.74601i 1.09912 0.634578i 0.163131 0.986604i \(-0.447841\pi\)
0.935990 + 0.352027i \(0.114507\pi\)
\(150\) −1.72542 0.151443i −0.140880 0.0123653i
\(151\) 18.2693i 1.48673i 0.668884 + 0.743367i \(0.266772\pi\)
−0.668884 + 0.743367i \(0.733228\pi\)
\(152\) −1.93051 + 1.11458i −0.156585 + 0.0904043i
\(153\) 11.6637 13.8844i 0.942955 1.12249i
\(154\) 15.4385i 1.24407i
\(155\) 3.43947 + 4.37836i 0.276265 + 0.351679i
\(156\) 3.02115 + 6.48364i 0.241886 + 0.519107i
\(157\) −18.3537 −1.46478 −0.732391 0.680885i \(-0.761596\pi\)
−0.732391 + 0.680885i \(0.761596\pi\)
\(158\) −6.42046 11.1206i −0.510784 0.884704i
\(159\) 3.12913 1.45807i 0.248156 0.115632i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) −0.403318 0.698566i −0.0317859 0.0550548i
\(162\) −5.77733 6.90090i −0.453910 0.542186i
\(163\) 1.70445 0.133503 0.0667515 0.997770i \(-0.478737\pi\)
0.0667515 + 0.997770i \(0.478737\pi\)
\(164\) −6.83739 3.94757i −0.533910 0.308253i
\(165\) −8.08347 0.709501i −0.629297 0.0552346i
\(166\) −2.46393 1.42255i −0.191238 0.110411i
\(167\) 6.28618 + 10.8880i 0.486439 + 0.842537i 0.999878 0.0155887i \(-0.00496225\pi\)
−0.513439 + 0.858126i \(0.671629\pi\)
\(168\) −5.68585 0.499058i −0.438673 0.0385031i
\(169\) 2.02750 + 3.51174i 0.155962 + 0.270134i
\(170\) −6.04445 −0.463588
\(171\) 4.30151 5.12049i 0.328944 0.391573i
\(172\) −10.0366 + 5.79463i −0.765283 + 0.441836i
\(173\) 2.25868 + 1.30405i 0.171724 + 0.0991450i 0.583399 0.812186i \(-0.301723\pi\)
−0.411674 + 0.911331i \(0.635056\pi\)
\(174\) −2.04551 + 2.91954i −0.155070 + 0.221330i
\(175\) 1.64767 2.85385i 0.124552 0.215731i
\(176\) 2.34247 4.05727i 0.176570 0.305828i
\(177\) −1.27816 0.112186i −0.0960720 0.00843242i
\(178\) 0.149606i 0.0112134i
\(179\) 9.49768 + 16.4505i 0.709890 + 1.22957i 0.964898 + 0.262626i \(0.0845886\pi\)
−0.255008 + 0.966939i \(0.582078\pi\)
\(180\) −0.522605 + 2.95413i −0.0389527 + 0.220188i
\(181\) −14.3763 8.30014i −1.06858 0.616944i −0.140786 0.990040i \(-0.544963\pi\)
−0.927793 + 0.373096i \(0.878296\pi\)
\(182\) −13.6090 −1.00877
\(183\) −6.26264 + 8.93863i −0.462948 + 0.660762i
\(184\) 0.244780i 0.0180454i
\(185\) 8.54454 0.628207
\(186\) 8.07539 5.27144i 0.592116 0.386521i
\(187\) −28.3179 −2.07081
\(188\) 3.99299i 0.291219i
\(189\) 16.5434 4.41784i 1.20336 0.321351i
\(190\) −2.22916 −0.161720
\(191\) 14.6036 + 8.43140i 1.05668 + 0.610074i 0.924512 0.381153i \(-0.124473\pi\)
0.132168 + 0.991227i \(0.457806\pi\)
\(192\) −1.41853 0.993862i −0.102374 0.0717258i
\(193\) −3.46345 5.99887i −0.249305 0.431808i 0.714028 0.700117i \(-0.246869\pi\)
−0.963333 + 0.268308i \(0.913535\pi\)
\(194\) 7.67331i 0.550912i
\(195\) −0.625425 + 7.12558i −0.0447876 + 0.510273i
\(196\) 1.92965 3.34226i 0.137832 0.238733i
\(197\) 7.40933 12.8333i 0.527893 0.914337i −0.471579 0.881824i \(-0.656316\pi\)
0.999471 0.0325129i \(-0.0103510\pi\)
\(198\) −2.44837 + 13.8399i −0.173998 + 0.983559i
\(199\) −16.4647 9.50589i −1.16715 0.673855i −0.214143 0.976802i \(-0.568696\pi\)
−0.953007 + 0.302947i \(0.902029\pi\)
\(200\) 0.866025 0.500000i 0.0612372 0.0353553i
\(201\) 5.98999 2.79113i 0.422501 0.196871i
\(202\) 5.06959 0.356695
\(203\) −3.39115 5.87364i −0.238012 0.412249i
\(204\) −0.915391 + 10.4292i −0.0640902 + 0.730191i
\(205\) −3.94757 6.83739i −0.275710 0.477544i
\(206\) 16.2445 + 9.37875i 1.13181 + 0.653448i
\(207\) 0.250771 + 0.690195i 0.0174298 + 0.0479719i
\(208\) −3.57649 2.06489i −0.247985 0.143174i
\(209\) −10.4435 −0.722390
\(210\) −4.67456 3.27512i −0.322575 0.226005i
\(211\) −0.159771 0.276731i −0.0109991 0.0190509i 0.860473 0.509495i \(-0.170168\pi\)
−0.871473 + 0.490444i \(0.836835\pi\)
\(212\) −0.996554 + 1.72608i −0.0684436 + 0.118548i
\(213\) 7.07012 + 15.1731i 0.484437 + 1.03964i
\(214\) −2.11397 3.66151i −0.144508 0.250296i
\(215\) −11.5893 −0.790381
\(216\) 5.01796 + 1.34909i 0.341429 + 0.0917943i
\(217\) 2.60163 + 18.1623i 0.176610 + 1.23294i
\(218\) 5.84653i 0.395977i
\(219\) 0.245279 + 0.526389i 0.0165744 + 0.0355701i
\(220\) 4.05727 2.34247i 0.273541 0.157929i
\(221\) 24.9622i 1.67914i
\(222\) 1.29401 14.7429i 0.0868484 0.989479i
\(223\) −1.19955 + 0.692562i −0.0803279 + 0.0463774i −0.539626 0.841905i \(-0.681434\pi\)
0.459298 + 0.888282i \(0.348101\pi\)
\(224\) 2.85385 1.64767i 0.190681 0.110090i
\(225\) −1.92965 + 2.29705i −0.128644 + 0.153137i
\(226\) −3.22626 + 5.58805i −0.214608 + 0.371711i
\(227\) 7.88419 + 4.55194i 0.523292 + 0.302123i 0.738281 0.674494i \(-0.235638\pi\)
−0.214988 + 0.976617i \(0.568971\pi\)
\(228\) −0.337591 + 3.84623i −0.0223575 + 0.254723i
\(229\) 6.91782 3.99401i 0.457143 0.263931i −0.253699 0.967283i \(-0.581647\pi\)
0.710842 + 0.703352i \(0.248314\pi\)
\(230\) 0.122390 0.211986i 0.00807016 0.0139779i
\(231\) −21.9000 15.3437i −1.44092 1.00954i
\(232\) 2.05814i 0.135124i
\(233\) 15.9529i 1.04511i 0.852606 + 0.522554i \(0.175021\pi\)
−0.852606 + 0.522554i \(0.824979\pi\)
\(234\) 12.1999 + 2.15824i 0.797531 + 0.141089i
\(235\) −1.99650 + 3.45803i −0.130237 + 0.225577i
\(236\) 0.641535 0.370390i 0.0417603 0.0241103i
\(237\) −22.1559 1.94467i −1.43918 0.126320i
\(238\) −17.2500 9.95929i −1.11815 0.645565i
\(239\) 4.52292 7.83393i 0.292564 0.506735i −0.681852 0.731491i \(-0.738825\pi\)
0.974415 + 0.224756i \(0.0721584\pi\)
\(240\) −0.731555 1.56998i −0.0472217 0.101342i
\(241\) 13.3621 7.71462i 0.860730 0.496943i −0.00352685 0.999994i \(-0.501123\pi\)
0.864257 + 0.503051i \(0.167789\pi\)
\(242\) 9.48178 5.47431i 0.609512 0.351902i
\(243\) −15.5310 + 1.33680i −0.996316 + 0.0857557i
\(244\) 6.30131i 0.403400i
\(245\) 3.34226 1.92965i 0.213529 0.123281i
\(246\) −12.3952 + 5.77573i −0.790288 + 0.368247i
\(247\) 9.20591i 0.585758i
\(248\) −2.07204 + 5.16785i −0.131575 + 0.328159i
\(249\) −4.46673 + 2.08134i −0.283068 + 0.131900i
\(250\) 1.00000 0.0632456
\(251\) −1.89792 3.28729i −0.119795 0.207492i 0.799891 0.600145i \(-0.204891\pi\)
−0.919687 + 0.392653i \(0.871557\pi\)
\(252\) −6.35888 + 7.56957i −0.400572 + 0.476838i
\(253\) 0.573389 0.993140i 0.0360487 0.0624382i
\(254\) 0.211683 + 0.366646i 0.0132822 + 0.0230054i
\(255\) −6.00736 + 8.57426i −0.376195 + 0.536941i
\(256\) 1.00000 0.0625000
\(257\) −26.8650 15.5105i −1.67579 0.967518i −0.964296 0.264828i \(-0.914685\pi\)
−0.711495 0.702691i \(-0.751982\pi\)
\(258\) −1.75511 + 19.9963i −0.109269 + 1.24492i
\(259\) 24.3849 + 14.0786i 1.51520 + 0.874803i
\(260\) −2.06489 3.57649i −0.128059 0.221804i
\(261\) 2.10852 + 5.80325i 0.130514 + 0.359212i
\(262\) −1.03913 1.79983i −0.0641979 0.111194i
\(263\) −21.5086 −1.32627 −0.663137 0.748498i \(-0.730775\pi\)
−0.663137 + 0.748498i \(0.730775\pi\)
\(264\) −3.42729 7.35524i −0.210935 0.452684i
\(265\) −1.72608 + 0.996554i −0.106032 + 0.0612178i
\(266\) −6.36169 3.67293i −0.390060 0.225202i
\(267\) −0.212221 0.148688i −0.0129877 0.00909953i
\(268\) −1.90767 + 3.30418i −0.116529 + 0.201835i
\(269\) −13.5212 + 23.4194i −0.824401 + 1.42791i 0.0779746 + 0.996955i \(0.475155\pi\)
−0.902376 + 0.430950i \(0.858179\pi\)
\(270\) 3.67114 + 3.67733i 0.223418 + 0.223795i
\(271\) 16.9825i 1.03162i 0.856704 + 0.515808i \(0.172508\pi\)
−0.856704 + 0.515808i \(0.827492\pi\)
\(272\) −3.02223 5.23465i −0.183249 0.317397i
\(273\) −13.5255 + 19.3049i −0.818600 + 1.16838i
\(274\) 16.9138 + 9.76518i 1.02180 + 0.589936i
\(275\) 4.68494 0.282512
\(276\) −0.347229 0.243278i −0.0209007 0.0146436i
\(277\) 23.1214i 1.38923i −0.719381 0.694616i \(-0.755574\pi\)
0.719381 0.694616i \(-0.244426\pi\)
\(278\) 22.5295 1.35123
\(279\) 0.548100 16.6943i 0.0328139 0.999461i
\(280\) 3.29535 0.196935
\(281\) 26.0722i 1.55534i −0.628674 0.777669i \(-0.716402\pi\)
0.628674 0.777669i \(-0.283598\pi\)
\(282\) 5.66419 + 3.96848i 0.337298 + 0.236320i
\(283\) 14.5905 0.867315 0.433657 0.901078i \(-0.357223\pi\)
0.433657 + 0.901078i \(0.357223\pi\)
\(284\) −8.36971 4.83225i −0.496651 0.286742i
\(285\) −2.21548 + 3.16214i −0.131234 + 0.187309i
\(286\) −9.67385 16.7556i −0.572027 0.990780i
\(287\) 26.0172i 1.53575i
\(288\) −2.81965 + 1.02448i −0.166150 + 0.0603678i
\(289\) −9.76772 + 16.9182i −0.574571 + 0.995187i
\(290\) 1.02907 1.78240i 0.0604292 0.104666i
\(291\) −10.8849 7.62622i −0.638081 0.447057i
\(292\) −0.290365 0.167642i −0.0169923 0.00981053i
\(293\) 24.7303 14.2780i 1.44476 0.834132i 0.446598 0.894735i \(-0.352636\pi\)
0.998162 + 0.0606026i \(0.0193022\pi\)
\(294\) −2.82330 6.05903i −0.164658 0.353370i
\(295\) 0.740780 0.0431299
\(296\) 4.27227 + 7.39979i 0.248321 + 0.430104i
\(297\) 17.1990 + 17.2281i 0.997989 + 0.999673i
\(298\) 7.74601 + 13.4165i 0.448714 + 0.777196i
\(299\) −0.875452 0.505443i −0.0506287 0.0292305i
\(300\) 0.151443 1.72542i 0.00874357 0.0996170i
\(301\) −33.0740 19.0953i −1.90636 1.10064i
\(302\) −18.2693 −1.05128
\(303\) 5.03848 7.19139i 0.289453 0.413134i
\(304\) −1.11458 1.93051i −0.0639255 0.110722i
\(305\) 3.15066 5.45710i 0.180406 0.312473i
\(306\) 13.8844 + 11.6637i 0.793719 + 0.666770i
\(307\) 4.69037 + 8.12397i 0.267694 + 0.463659i 0.968266 0.249922i \(-0.0804051\pi\)
−0.700572 + 0.713582i \(0.747072\pi\)
\(308\) 15.4385 0.879689
\(309\) 29.4488 13.7221i 1.67529 0.780625i
\(310\) −4.37836 + 3.43947i −0.248674 + 0.195349i
\(311\) 1.63457i 0.0926879i 0.998926 + 0.0463440i \(0.0147570\pi\)
−0.998926 + 0.0463440i \(0.985243\pi\)
\(312\) −6.48364 + 3.02115i −0.367064 + 0.171039i
\(313\) 10.6934 6.17384i 0.604427 0.348966i −0.166354 0.986066i \(-0.553200\pi\)
0.770781 + 0.637100i \(0.219866\pi\)
\(314\) 18.3537i 1.03576i
\(315\) −9.29174 + 3.37600i −0.523530 + 0.190216i
\(316\) 11.1206 6.42046i 0.625580 0.361179i
\(317\) −29.5244 + 17.0459i −1.65825 + 0.957393i −0.684732 + 0.728795i \(0.740081\pi\)
−0.973521 + 0.228598i \(0.926586\pi\)
\(318\) 1.45807 + 3.12913i 0.0817644 + 0.175473i
\(319\) 4.82113 8.35045i 0.269932 0.467535i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) −7.29497 0.640293i −0.407166 0.0357377i
\(322\) 0.698566 0.403318i 0.0389296 0.0224760i
\(323\) −6.73702 + 11.6689i −0.374858 + 0.649273i
\(324\) 6.90090 5.77733i 0.383383 0.320963i
\(325\) 4.12977i 0.229078i
\(326\) 1.70445i 0.0944009i
\(327\) 8.29350 + 5.81064i 0.458631 + 0.321329i
\(328\) 3.94757 6.83739i 0.217968 0.377532i
\(329\) −11.3954 + 6.57914i −0.628249 + 0.362720i
\(330\) 0.709501 8.08347i 0.0390568 0.444980i
\(331\) 19.1972 + 11.0835i 1.05517 + 0.609205i 0.924093 0.382167i \(-0.124822\pi\)
0.131080 + 0.991372i \(0.458155\pi\)
\(332\) 1.42255 2.46393i 0.0780725 0.135225i
\(333\) −19.6272 16.4880i −1.07557 0.903538i
\(334\) −10.8880 + 6.28618i −0.595764 + 0.343964i
\(335\) −3.30418 + 1.90767i −0.180526 + 0.104227i
\(336\) 0.499058 5.68585i 0.0272258 0.310188i
\(337\) 24.0073i 1.30776i 0.756597 + 0.653881i \(0.226860\pi\)
−0.756597 + 0.653881i \(0.773140\pi\)
\(338\) −3.51174 + 2.02750i −0.191013 + 0.110282i
\(339\) 4.72038 + 10.1303i 0.256376 + 0.550203i
\(340\) 6.04445i 0.327807i
\(341\) −20.5123 + 16.1137i −1.11081 + 0.872605i
\(342\) 5.12049 + 4.30151i 0.276884 + 0.232599i
\(343\) −10.3497 −0.558829
\(344\) −5.79463 10.0366i −0.312425 0.541137i
\(345\) −0.179070 0.384299i −0.00964081 0.0206900i
\(346\) −1.30405 + 2.25868i −0.0701061 + 0.121427i
\(347\) 14.1185 + 24.4539i 0.757919 + 1.31275i 0.943910 + 0.330202i \(0.107117\pi\)
−0.185992 + 0.982551i \(0.559550\pi\)
\(348\) −2.91954 2.04551i −0.156504 0.109651i
\(349\) 14.1084 0.755205 0.377602 0.925968i \(-0.376749\pi\)
0.377602 + 0.925968i \(0.376749\pi\)
\(350\) 2.85385 + 1.64767i 0.152545 + 0.0880718i
\(351\) 15.1865 15.1609i 0.810597 0.809231i
\(352\) 4.05727 + 2.34247i 0.216253 + 0.124854i
\(353\) 11.1592 + 19.3283i 0.593943 + 1.02874i 0.993695 + 0.112116i \(0.0357628\pi\)
−0.399752 + 0.916623i \(0.630904\pi\)
\(354\) 0.112186 1.27816i 0.00596262 0.0679332i
\(355\) −4.83225 8.36971i −0.256469 0.444218i
\(356\) 0.149606 0.00792909
\(357\) −31.2717 + 14.5715i −1.65507 + 0.771207i
\(358\) −16.4505 + 9.49768i −0.869434 + 0.501968i
\(359\) 4.93899 + 2.85152i 0.260670 + 0.150498i 0.624640 0.780913i \(-0.285246\pi\)
−0.363970 + 0.931411i \(0.618579\pi\)
\(360\) −2.95413 0.522605i −0.155696 0.0275437i
\(361\) 7.01543 12.1511i 0.369233 0.639530i
\(362\) 8.30014 14.3763i 0.436245 0.755599i
\(363\) 1.65809 18.8909i 0.0870273 0.991517i
\(364\) 13.6090i 0.713307i
\(365\) −0.167642 0.290365i −0.00877480 0.0151984i
\(366\) −8.93863 6.26264i −0.467229 0.327353i
\(367\) 27.7580 + 16.0261i 1.44896 + 0.836555i 0.998419 0.0562025i \(-0.0178992\pi\)
0.450537 + 0.892758i \(0.351233\pi\)
\(368\) 0.244780 0.0127600
\(369\) −4.12604 + 23.3233i −0.214793 + 1.21416i
\(370\) 8.54454i 0.444210i
\(371\) −6.56798 −0.340993
\(372\) 5.27144 + 8.07539i 0.273312 + 0.418689i
\(373\) −22.0309 −1.14072 −0.570359 0.821396i \(-0.693196\pi\)
−0.570359 + 0.821396i \(0.693196\pi\)
\(374\) 28.3179i 1.46428i
\(375\) 0.993862 1.41853i 0.0513228 0.0732528i
\(376\) −3.99299 −0.205923
\(377\) −7.36092 4.24983i −0.379107 0.218877i
\(378\) 4.41784 + 16.5434i 0.227229 + 0.850901i
\(379\) 11.4743 + 19.8741i 0.589397 + 1.02087i 0.994312 + 0.106511i \(0.0339679\pi\)
−0.404915 + 0.914355i \(0.632699\pi\)
\(380\) 2.22916i 0.114353i
\(381\) 0.730484 + 0.0641160i 0.0374238 + 0.00328476i
\(382\) −8.43140 + 14.6036i −0.431388 + 0.747186i
\(383\) 5.15835 8.93453i 0.263579 0.456533i −0.703611 0.710585i \(-0.748430\pi\)
0.967190 + 0.254052i \(0.0817635\pi\)
\(384\) 0.993862 1.41853i 0.0507178 0.0723892i
\(385\) 13.3701 + 7.71924i 0.681404 + 0.393409i
\(386\) 5.99887 3.46345i 0.305335 0.176285i
\(387\) 26.6211 + 22.3633i 1.35323 + 1.13679i
\(388\) 7.67331 0.389553
\(389\) −12.7371 22.0613i −0.645798 1.11855i −0.984117 0.177523i \(-0.943192\pi\)
0.338319 0.941031i \(-0.390142\pi\)
\(390\) −7.12558 0.625425i −0.360818 0.0316696i
\(391\) −0.739781 1.28134i −0.0374123 0.0648001i
\(392\) 3.34226 + 1.92965i 0.168810 + 0.0974623i
\(393\) −3.58588 0.314739i −0.180884 0.0158765i
\(394\) 12.8333 + 7.40933i 0.646534 + 0.373276i
\(395\) 12.8409 0.646096
\(396\) −13.8399 2.44837i −0.695482 0.123035i
\(397\) 3.16333 + 5.47906i 0.158763 + 0.274986i 0.934423 0.356165i \(-0.115916\pi\)
−0.775660 + 0.631151i \(0.782583\pi\)
\(398\) 9.50589 16.4647i 0.476487 0.825300i
\(399\) −11.5328 + 5.37389i −0.577363 + 0.269031i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 25.4504 1.27093 0.635465 0.772130i \(-0.280808\pi\)
0.635465 + 0.772130i \(0.280808\pi\)
\(402\) 2.79113 + 5.98999i 0.139209 + 0.298753i
\(403\) 14.2042 + 18.0816i 0.707562 + 0.900710i
\(404\) 5.06959i 0.252222i
\(405\) 8.86502 1.55287i 0.440506 0.0771626i
\(406\) 5.87364 3.39115i 0.291504 0.168300i
\(407\) 40.0306i 1.98425i
\(408\) −10.4292 0.915391i −0.516323 0.0453186i
\(409\) 31.9037 18.4196i 1.57754 0.910790i 0.582333 0.812950i \(-0.302140\pi\)
0.995202 0.0978399i \(-0.0311933\pi\)
\(410\) 6.83739 3.94757i 0.337675 0.194957i
\(411\) 30.6622 14.2875i 1.51246 0.704752i
\(412\) −9.37875 + 16.2445i −0.462058 + 0.800307i
\(413\) 2.11408 + 1.22056i 0.104027 + 0.0600600i
\(414\) −0.690195 + 0.250771i −0.0339212 + 0.0123247i
\(415\) 2.46393 1.42255i 0.120949 0.0698301i
\(416\) 2.06489 3.57649i 0.101239 0.175352i
\(417\) 22.3912 31.9588i 1.09650 1.56503i
\(418\) 10.4435i 0.510807i
\(419\) 8.72337i 0.426164i 0.977034 + 0.213082i \(0.0683502\pi\)
−0.977034 + 0.213082i \(0.931650\pi\)
\(420\) 3.27512 4.67456i 0.159810 0.228095i
\(421\) −2.19810 + 3.80721i −0.107129 + 0.185552i −0.914606 0.404347i \(-0.867499\pi\)
0.807477 + 0.589899i \(0.200832\pi\)
\(422\) 0.276731 0.159771i 0.0134711 0.00777752i
\(423\) 11.2589 4.09072i 0.547424 0.198898i
\(424\) −1.72608 0.996554i −0.0838260 0.0483969i
\(425\) 3.02223 5.23465i 0.146600 0.253918i
\(426\) −15.1731 + 7.07012i −0.735137 + 0.342548i
\(427\) 17.9830 10.3825i 0.870260 0.502445i
\(428\) 3.66151 2.11397i 0.176986 0.102183i
\(429\) −33.3829 2.93008i −1.61174 0.141465i
\(430\) 11.5893i 0.558883i
\(431\) 12.3311 7.11935i 0.593967 0.342927i −0.172698 0.984975i \(-0.555248\pi\)
0.766665 + 0.642048i \(0.221915\pi\)
\(432\) −1.34909 + 5.01796i −0.0649084 + 0.241427i
\(433\) 16.3649i 0.786448i −0.919443 0.393224i \(-0.871360\pi\)
0.919443 0.393224i \(-0.128640\pi\)
\(434\) −18.1623 + 2.60163i −0.871820 + 0.124882i
\(435\) −1.50564 3.23124i −0.0721901 0.154926i
\(436\) −5.84653 −0.279998
\(437\) −0.272827 0.472550i −0.0130511 0.0226051i
\(438\) −0.526389 + 0.245279i −0.0251519 + 0.0117199i
\(439\) −6.66688 + 11.5474i −0.318193 + 0.551126i −0.980111 0.198450i \(-0.936409\pi\)
0.661918 + 0.749576i \(0.269743\pi\)
\(440\) 2.34247 + 4.05727i 0.111673 + 0.193423i
\(441\) −11.4009 2.01689i −0.542900 0.0960426i
\(442\) −24.9622 −1.18733
\(443\) −18.7900 10.8484i −0.892742 0.515425i −0.0179037 0.999840i \(-0.505699\pi\)
−0.874838 + 0.484415i \(0.839033\pi\)
\(444\) 14.7429 + 1.29401i 0.699667 + 0.0614111i
\(445\) 0.129562 + 0.0748029i 0.00614185 + 0.00354600i
\(446\) −0.692562 1.19955i −0.0327937 0.0568004i
\(447\) 26.7302 + 2.34616i 1.26429 + 0.110970i
\(448\) 1.64767 + 2.85385i 0.0778452 + 0.134832i
\(449\) −5.51787 −0.260405 −0.130202 0.991487i \(-0.541563\pi\)
−0.130202 + 0.991487i \(0.541563\pi\)
\(450\) −2.29705 1.92965i −0.108284 0.0909648i
\(451\) 32.0327 18.4941i 1.50836 0.870854i
\(452\) −5.58805 3.22626i −0.262840 0.151751i
\(453\) −18.1572 + 25.9156i −0.853097 + 1.21762i
\(454\) −4.55194 + 7.88419i −0.213633 + 0.370024i
\(455\) 6.80451 11.7858i 0.319000 0.552525i
\(456\) −3.84623 0.337591i −0.180116 0.0158091i
\(457\) 17.8127i 0.833241i −0.909081 0.416620i \(-0.863214\pi\)
0.909081 0.416620i \(-0.136786\pi\)
\(458\) 3.99401 + 6.91782i 0.186628 + 0.323249i
\(459\) 30.3446 8.10338i 1.41636 0.378233i
\(460\) 0.211986 + 0.122390i 0.00988389 + 0.00570646i
\(461\) 10.7060 0.498630 0.249315 0.968422i \(-0.419795\pi\)
0.249315 + 0.968422i \(0.419795\pi\)
\(462\) 15.3437 21.9000i 0.713855 1.01888i
\(463\) 23.2499i 1.08051i −0.841500 0.540257i \(-0.818327\pi\)
0.841500 0.540257i \(-0.181673\pi\)
\(464\) 2.05814 0.0955469
\(465\) 0.527512 + 9.62921i 0.0244628 + 0.446544i
\(466\) −15.9529 −0.739003
\(467\) 1.78177i 0.0824507i −0.999150 0.0412253i \(-0.986874\pi\)
0.999150 0.0412253i \(-0.0131262\pi\)
\(468\) −2.15824 + 12.1999i −0.0997647 + 0.563940i
\(469\) −12.5728 −0.580560
\(470\) −3.45803 1.99650i −0.159507 0.0920914i
\(471\) −26.0353 18.2410i −1.19964 0.840501i
\(472\) 0.370390 + 0.641535i 0.0170486 + 0.0295290i
\(473\) 54.2949i 2.49648i
\(474\) 1.94467 22.1559i 0.0893216 1.01766i
\(475\) 1.11458 1.93051i 0.0511404 0.0885778i
\(476\) 9.95929 17.2500i 0.456483 0.790652i
\(477\) 5.88790 + 1.04161i 0.269588 + 0.0476920i
\(478\) 7.83393 + 4.52292i 0.358316 + 0.206874i
\(479\) 30.8844 17.8311i 1.41115 0.814725i 0.415649 0.909525i \(-0.363555\pi\)
0.995496 + 0.0948002i \(0.0302212\pi\)
\(480\) 1.56998 0.731555i 0.0716593 0.0333908i
\(481\) 35.2870 1.60895
\(482\) 7.71462 + 13.3621i 0.351391 + 0.608628i
\(483\) 0.122159 1.39178i 0.00555844 0.0633283i
\(484\) 5.47431 + 9.48178i 0.248832 + 0.430990i
\(485\) 6.64528 + 3.83666i 0.301747 + 0.174214i
\(486\) −1.33680 15.5310i −0.0606384 0.704502i
\(487\) 9.14547 + 5.28014i 0.414421 + 0.239266i 0.692687 0.721238i \(-0.256427\pi\)
−0.278267 + 0.960504i \(0.589760\pi\)
\(488\) 6.30131 0.285247
\(489\) 2.41782 + 1.69399i 0.109338 + 0.0766049i
\(490\) 1.92965 + 3.34226i 0.0871729 + 0.150988i
\(491\) 8.01143 13.8762i 0.361551 0.626224i −0.626665 0.779288i \(-0.715581\pi\)
0.988216 + 0.153064i \(0.0489141\pi\)
\(492\) −5.77573 12.3952i −0.260390 0.558818i
\(493\) −6.22018 10.7737i −0.280143 0.485221i
\(494\) −9.20591 −0.414194
\(495\) −10.7615 9.04031i −0.483695 0.406332i
\(496\) −5.16785 2.07204i −0.232043 0.0930373i
\(497\) 31.8479i 1.42857i
\(498\) −2.08134 4.46673i −0.0932673 0.200159i
\(499\) 15.8026 9.12364i 0.707422 0.408430i −0.102684 0.994714i \(-0.532743\pi\)
0.810106 + 0.586284i \(0.199410\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) −1.90400 + 21.6926i −0.0850643 + 0.969152i
\(502\) 3.28729 1.89792i 0.146719 0.0847082i
\(503\) 30.0423 17.3449i 1.33952 0.773371i 0.352782 0.935706i \(-0.385236\pi\)
0.986736 + 0.162335i \(0.0519024\pi\)
\(504\) −7.56957 6.35888i −0.337176 0.283247i
\(505\) −2.53480 + 4.39040i −0.112797 + 0.195370i
\(506\) 0.993140 + 0.573389i 0.0441504 + 0.0254903i
\(507\) −0.614102 + 6.99657i −0.0272732 + 0.310729i
\(508\) −0.366646 + 0.211683i −0.0162673 + 0.00939193i
\(509\) 9.89991 17.1472i 0.438806 0.760034i −0.558792 0.829308i \(-0.688735\pi\)
0.997598 + 0.0692738i \(0.0220682\pi\)
\(510\) −8.57426 6.00736i −0.379675 0.266010i
\(511\) 1.10488i 0.0488770i
\(512\) 1.00000i 0.0441942i
\(513\) 11.1909 2.98848i 0.494090 0.131945i
\(514\) 15.5105 26.8650i 0.684139 1.18496i
\(515\) −16.2445 + 9.37875i −0.715817 + 0.413277i
\(516\) −19.9963 1.75511i −0.880288 0.0772645i
\(517\) −16.2007 9.35345i −0.712504 0.411364i
\(518\) −14.0786 + 24.3849i −0.618579 + 1.07141i
\(519\) 1.90797 + 4.09465i 0.0837505 + 0.179735i
\(520\) 3.57649 2.06489i 0.156839 0.0905512i
\(521\) −27.2181 + 15.7144i −1.19245 + 0.688460i −0.958861 0.283876i \(-0.908380\pi\)
−0.233587 + 0.972336i \(0.575046\pi\)
\(522\) −5.80325 + 2.10852i −0.254001 + 0.0922873i
\(523\) 30.9522i 1.35345i 0.736237 + 0.676723i \(0.236601\pi\)
−0.736237 + 0.676723i \(0.763399\pi\)
\(524\) 1.79983 1.03913i 0.0786260 0.0453947i
\(525\) 5.17362 2.41073i 0.225795 0.105213i
\(526\) 21.5086i 0.937818i
\(527\) 4.77201 + 33.3141i 0.207872 + 1.45118i
\(528\) 7.35524 3.42729i 0.320096 0.149154i
\(529\) −22.9401 −0.997395
\(530\) −0.996554 1.72608i −0.0432875 0.0749762i
\(531\) −1.70161 1.42945i −0.0738435 0.0620328i
\(532\) 3.67293 6.36169i 0.159242 0.275814i
\(533\) −16.3026 28.2369i −0.706142 1.22307i
\(534\) 0.148688 0.212221i 0.00643434 0.00918370i
\(535\) 4.22795 0.182790
\(536\) −3.30418 1.90767i −0.142719 0.0823987i
\(537\) −2.87672 + 32.7749i −0.124139 + 1.41434i
\(538\) −23.4194 13.5212i −1.00968 0.582940i
\(539\) 9.04031 + 15.6583i 0.389394 + 0.674449i
\(540\) −3.67733 + 3.67114i −0.158247 + 0.157981i
\(541\) 21.6449 + 37.4901i 0.930588 + 1.61183i 0.782318 + 0.622879i \(0.214037\pi\)
0.148270 + 0.988947i \(0.452630\pi\)
\(542\) −16.9825 −0.729463
\(543\) −12.1440 26.0620i −0.521149 1.11843i
\(544\) 5.23465 3.02223i 0.224434 0.129577i
\(545\) −5.06324 2.92326i −0.216885 0.125219i
\(546\) −19.3049 13.5255i −0.826172 0.578838i
\(547\) 2.09475 3.62821i 0.0895650 0.155131i −0.817762 0.575556i \(-0.804786\pi\)
0.907327 + 0.420425i \(0.138119\pi\)
\(548\) −9.76518 + 16.9138i −0.417148 + 0.722522i
\(549\) −17.7675 + 6.45554i −0.758300 + 0.275516i
\(550\) 4.68494i 0.199766i
\(551\) −2.29396 3.97326i −0.0977261 0.169267i
\(552\) 0.243278 0.347229i 0.0103546 0.0147790i
\(553\) 36.6461 + 21.1576i 1.55835 + 0.899714i
\(554\) 23.1214 0.982336
\(555\) 12.1207 + 8.49210i 0.514496 + 0.360470i
\(556\) 22.5295i 0.955462i
\(557\) −33.3611 −1.41356 −0.706778 0.707435i \(-0.749852\pi\)
−0.706778 + 0.707435i \(0.749852\pi\)
\(558\) 16.6943 + 0.548100i 0.706726 + 0.0232029i
\(559\) −47.8610 −2.02430
\(560\) 3.29535i 0.139254i
\(561\) −40.1699 28.1441i −1.69597 1.18824i
\(562\) 26.0722 1.09979
\(563\) −3.50089 2.02124i −0.147545 0.0851851i 0.424410 0.905470i \(-0.360482\pi\)
−0.571955 + 0.820285i \(0.693815\pi\)
\(564\) −3.96848 + 5.66419i −0.167103 + 0.238505i
\(565\) −3.22626 5.58805i −0.135730 0.235091i
\(566\) 14.5905i 0.613284i
\(567\) 27.8581 + 10.1750i 1.16993 + 0.427310i
\(568\) 4.83225 8.36971i 0.202757 0.351185i
\(569\) 1.92967 3.34229i 0.0808961 0.140116i −0.822739 0.568419i \(-0.807555\pi\)
0.903635 + 0.428303i \(0.140888\pi\)
\(570\) −3.16214 2.21548i −0.132447 0.0927961i
\(571\) 27.2167 + 15.7136i 1.13898 + 0.657593i 0.946179 0.323644i \(-0.104908\pi\)
0.192805 + 0.981237i \(0.438241\pi\)
\(572\) 16.7556 9.67385i 0.700587 0.404484i
\(573\) 12.3361 + 26.4742i 0.515346 + 1.10598i
\(574\) 26.0172 1.08594
\(575\) 0.122390 + 0.211986i 0.00510402 + 0.00884042i
\(576\) −1.02448 2.81965i −0.0426865 0.117486i
\(577\) 0.696828 + 1.20694i 0.0290093 + 0.0502457i 0.880166 0.474667i \(-0.157431\pi\)
−0.851156 + 0.524912i \(0.824098\pi\)
\(578\) −16.9182 9.76772i −0.703703 0.406283i
\(579\) 1.04903 11.9518i 0.0435963 0.496700i
\(580\) 1.78240 + 1.02907i 0.0740103 + 0.0427299i
\(581\) 9.37558 0.388965
\(582\) 7.62622 10.8849i 0.316117 0.451192i
\(583\) −4.66879 8.08658i −0.193362 0.334912i
\(584\) 0.167642 0.290365i 0.00693709 0.0120154i
\(585\) −7.96903 + 9.48628i −0.329479 + 0.392210i
\(586\) 14.2780 + 24.7303i 0.589821 + 1.02160i
\(587\) −44.2243 −1.82533 −0.912666 0.408706i \(-0.865980\pi\)
−0.912666 + 0.408706i \(0.865980\pi\)
\(588\) 6.05903 2.82330i 0.249870 0.116431i
\(589\) 1.75989 + 12.2860i 0.0725149 + 0.506237i
\(590\) 0.740780i 0.0304974i
\(591\) 23.2649 10.8407i 0.956992 0.445925i
\(592\) −7.39979 + 4.27227i −0.304130 + 0.175589i
\(593\) 14.8656i 0.610459i −0.952279 0.305229i \(-0.901267\pi\)
0.952279 0.305229i \(-0.0987332\pi\)
\(594\) −17.2281 + 17.1990i −0.706876 + 0.705685i
\(595\) 17.2500 9.95929i 0.707181 0.408291i
\(596\) −13.4165 + 7.74601i −0.549560 + 0.317289i
\(597\) −13.9082 29.8481i −0.569223 1.22160i
\(598\) 0.505443 0.875452i 0.0206691 0.0357999i
\(599\) 23.8479 + 13.7686i 0.974397 + 0.562568i 0.900574 0.434703i \(-0.143147\pi\)
0.0738230 + 0.997271i \(0.476480\pi\)
\(600\) 1.72542 + 0.151443i 0.0704399 + 0.00618264i
\(601\) −30.8947 + 17.8371i −1.26022 + 0.727589i −0.973117 0.230310i \(-0.926026\pi\)
−0.287105 + 0.957899i \(0.592693\pi\)
\(602\) 19.0953 33.0740i 0.778266 1.34800i
\(603\) 11.2710 + 1.99391i 0.458990 + 0.0811984i
\(604\) 18.2693i 0.743367i
\(605\) 10.9486i 0.445125i
\(606\) 7.19139 + 5.03848i 0.292130 + 0.204674i
\(607\) 22.4644 38.9094i 0.911801 1.57929i 0.100282 0.994959i \(-0.468025\pi\)
0.811519 0.584327i \(-0.198641\pi\)
\(608\) 1.93051 1.11458i 0.0782924 0.0452022i
\(609\) 1.02713 11.7023i 0.0416215 0.474201i
\(610\) 5.45710 + 3.15066i 0.220951 + 0.127566i
\(611\) −8.24507 + 14.2809i −0.333560 + 0.577742i
\(612\) −11.6637 + 13.8844i −0.471477 + 0.561244i
\(613\) 36.0994 20.8420i 1.45804 0.841800i 0.459125 0.888372i \(-0.348163\pi\)
0.998915 + 0.0465721i \(0.0148297\pi\)
\(614\) −8.12397 + 4.69037i −0.327857 + 0.189288i
\(615\) 1.19566 13.6224i 0.0482138 0.549309i
\(616\) 15.4385i 0.622034i
\(617\) 37.6159 21.7175i 1.51436 0.874316i 0.514501 0.857490i \(-0.327977\pi\)
0.999858 0.0168256i \(-0.00535600\pi\)
\(618\) 13.7221 + 29.4488i 0.551985 + 1.18461i
\(619\) 38.4345i 1.54481i 0.635129 + 0.772406i \(0.280947\pi\)
−0.635129 + 0.772406i \(0.719053\pi\)
\(620\) −3.43947 4.37836i −0.138132 0.175839i
\(621\) −0.330231 + 1.22830i −0.0132517 + 0.0492899i
\(622\) −1.63457 −0.0655403
\(623\) 0.246502 + 0.426953i 0.00987587 + 0.0171055i
\(624\) −3.02115 6.48364i −0.120943 0.259553i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 6.17384 + 10.6934i 0.246756 + 0.427394i
\(627\) −14.8144 10.3794i −0.591630 0.414512i
\(628\) 18.3537 0.732391
\(629\) 44.7277 + 25.8236i 1.78341 + 1.02965i
\(630\) −3.37600 9.29174i −0.134503 0.370192i
\(631\) 5.86942 + 3.38871i 0.233658 + 0.134902i 0.612258 0.790658i \(-0.290261\pi\)
−0.378601 + 0.925560i \(0.623595\pi\)
\(632\) 6.42046 + 11.1206i 0.255392 + 0.442352i
\(633\) 0.0483923 0.551342i 0.00192342 0.0219139i
\(634\) −17.0459 29.5244i −0.676979 1.17256i
\(635\) −0.423367 −0.0168008
\(636\) −3.12913 + 1.45807i −0.124078 + 0.0578162i
\(637\) 13.8028 7.96903i 0.546885 0.315744i
\(638\) 8.35045 + 4.82113i 0.330597 + 0.190870i
\(639\) −5.05072 + 28.5502i −0.199803 + 1.12943i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −1.51314 + 2.62083i −0.0597653 + 0.103517i −0.894360 0.447348i \(-0.852369\pi\)
0.834595 + 0.550865i \(0.185702\pi\)
\(642\) 0.640293 7.29497i 0.0252704 0.287910i
\(643\) 8.47085i 0.334058i 0.985952 + 0.167029i \(0.0534173\pi\)
−0.985952 + 0.167029i \(0.946583\pi\)
\(644\) 0.403318 + 0.698566i 0.0158929 + 0.0275274i
\(645\) −16.4397 11.5181i −0.647314 0.453526i
\(646\) −11.6689 6.73702i −0.459106 0.265065i
\(647\) −30.7071 −1.20722 −0.603611 0.797279i \(-0.706272\pi\)
−0.603611 + 0.797279i \(0.706272\pi\)
\(648\) 5.77733 + 6.90090i 0.226955 + 0.271093i
\(649\) 3.47051i 0.136229i
\(650\) 4.12977 0.161983
\(651\) −14.3604 + 28.3495i −0.562827 + 1.11111i
\(652\) −1.70445 −0.0667515
\(653\) 20.6155i 0.806748i 0.915035 + 0.403374i \(0.132163\pi\)
−0.915035 + 0.403374i \(0.867837\pi\)
\(654\) −5.81064 + 8.29350i −0.227214 + 0.324301i
\(655\) 2.07827 0.0812046
\(656\) 6.83739 + 3.94757i 0.266955 + 0.154127i
\(657\) −0.175222 + 0.990475i −0.00683604 + 0.0386421i
\(658\) −6.57914 11.3954i −0.256482 0.444239i
\(659\) 45.9699i 1.79073i 0.445331 + 0.895366i \(0.353086\pi\)
−0.445331 + 0.895366i \(0.646914\pi\)
\(660\) 8.08347 + 0.709501i 0.314649 + 0.0276173i
\(661\) −1.62902 + 2.82155i −0.0633616 + 0.109745i −0.895966 0.444123i \(-0.853515\pi\)
0.832604 + 0.553868i \(0.186849\pi\)
\(662\) −11.0835 + 19.1972i −0.430773 + 0.746121i
\(663\) −24.8090 + 35.4097i −0.963502 + 1.37520i
\(664\) 2.46393 + 1.42255i 0.0956189 + 0.0552056i
\(665\) 6.36169 3.67293i 0.246696 0.142430i
\(666\) 16.4880 19.6272i 0.638898 0.760540i
\(667\) 0.503792 0.0195069
\(668\) −6.28618 10.8880i −0.243220 0.421269i
\(669\) −2.38992 0.209767i −0.0923995 0.00811008i
\(670\) −1.90767 3.30418i −0.0736996 0.127651i
\(671\) 25.5662 + 14.7606i 0.986970 + 0.569828i
\(672\) 5.68585 + 0.499058i 0.219336 + 0.0192516i
\(673\) −28.5117 16.4612i −1.09905 0.634534i −0.163076 0.986614i \(-0.552141\pi\)
−0.935970 + 0.352079i \(0.885475\pi\)
\(674\) −24.0073 −0.924727
\(675\) −5.02023 + 1.34063i −0.193229 + 0.0516009i
\(676\) −2.02750 3.51174i −0.0779808 0.135067i
\(677\) −2.98095 + 5.16316i −0.114567 + 0.198436i −0.917607 0.397490i \(-0.869882\pi\)
0.803039 + 0.595926i \(0.203215\pi\)
\(678\) −10.1303 + 4.72038i −0.389052 + 0.181285i
\(679\) 12.6431 + 21.8985i 0.485198 + 0.840388i
\(680\) 6.04445 0.231794
\(681\) 6.65999 + 14.2929i 0.255211 + 0.547705i
\(682\) −16.1137 20.5123i −0.617025 0.785458i
\(683\) 32.4819i 1.24289i 0.783459 + 0.621443i \(0.213453\pi\)
−0.783459 + 0.621443i \(0.786547\pi\)
\(684\) −4.30151 + 5.12049i −0.164472 + 0.195787i
\(685\) −16.9138 + 9.76518i −0.646243 + 0.373109i
\(686\) 10.3497i 0.395152i
\(687\) 13.7827 + 1.20973i 0.525841 + 0.0461541i
\(688\) 10.0366 5.79463i 0.382641 0.220918i
\(689\) −7.12832 + 4.11554i −0.271567 + 0.156790i
\(690\) 0.384299 0.179070i 0.0146300 0.00681708i
\(691\) 8.97812 15.5506i 0.341544 0.591571i −0.643176 0.765719i \(-0.722384\pi\)
0.984720 + 0.174147i \(0.0557169\pi\)
\(692\) −2.25868 1.30405i −0.0858621 0.0495725i
\(693\) −15.8164 43.5312i −0.600814 1.65361i
\(694\) −24.4539 + 14.1185i −0.928257 + 0.535929i
\(695\) −11.2647 + 19.5111i −0.427296 + 0.740098i
\(696\) 2.04551 2.91954i 0.0775349 0.110665i
\(697\) 47.7218i 1.80759i
\(698\) 14.1084i 0.534010i
\(699\) −15.8550 + 22.6297i −0.599690 + 0.855933i
\(700\) −1.64767 + 2.85385i −0.0622762 + 0.107866i
\(701\) 17.0045 9.81756i 0.642251 0.370804i −0.143230 0.989689i \(-0.545749\pi\)
0.785481 + 0.618885i \(0.212416\pi\)
\(702\) 15.1609 + 15.1865i 0.572213 + 0.573179i
\(703\) 16.4953 + 9.52357i 0.622133 + 0.359188i
\(704\) −2.34247 + 4.05727i −0.0882851 + 0.152914i
\(705\) −6.26890 + 2.92109i −0.236100 + 0.110015i
\(706\) −19.3283 + 11.1592i −0.727428 + 0.419981i
\(707\) −14.4679 + 8.35303i −0.544120 + 0.314148i
\(708\) 1.27816 + 0.112186i 0.0480360 + 0.00421621i
\(709\) 2.09339i 0.0786187i −0.999227 0.0393094i \(-0.987484\pi\)
0.999227 0.0393094i \(-0.0125158\pi\)
\(710\) 8.36971 4.83225i 0.314110 0.181351i
\(711\) −29.4962 24.7785i −1.10619 0.929267i
\(712\) 0.149606i 0.00560672i
\(713\) −1.26499 0.507194i −0.0473741 0.0189946i
\(714\) −14.5715 31.2717i −0.545326 1.17031i
\(715\) 19.3477 0.723563
\(716\) −9.49768 16.4505i −0.354945 0.614783i
\(717\) 14.2018 6.61753i 0.530375 0.247136i
\(718\) −2.85152 + 4.93899i −0.106418 + 0.184321i
\(719\) 4.88475 + 8.46063i 0.182170 + 0.315528i 0.942619 0.333869i \(-0.108354\pi\)
−0.760449 + 0.649398i \(0.775021\pi\)
\(720\) 0.522605 2.95413i 0.0194763 0.110094i
\(721\) −61.8124 −2.30202
\(722\) 12.1511 + 7.01543i 0.452216 + 0.261087i
\(723\) 26.6219 + 2.33665i 0.990079 + 0.0869011i
\(724\) 14.3763 + 8.30014i 0.534289 + 0.308472i
\(725\) 1.02907 + 1.78240i 0.0382188 + 0.0661968i
\(726\) 18.8909 + 1.65809i 0.701109 + 0.0615376i
\(727\) −9.42776 16.3294i −0.349656 0.605622i 0.636532 0.771250i \(-0.280368\pi\)
−0.986188 + 0.165628i \(0.947035\pi\)
\(728\) 13.6090 0.504384
\(729\) −23.3599 13.5394i −0.865181 0.501460i
\(730\) 0.290365 0.167642i 0.0107469 0.00620472i
\(731\) −60.6657 35.0254i −2.24380 1.29546i
\(732\) 6.26264 8.93863i 0.231474 0.330381i
\(733\) −7.30224 + 12.6479i −0.269714 + 0.467159i −0.968788 0.247891i \(-0.920263\pi\)
0.699074 + 0.715050i \(0.253596\pi\)
\(734\) −16.0261 + 27.7580i −0.591534 + 1.02457i
\(735\) 6.65892 + 0.584466i 0.245618 + 0.0215583i
\(736\) 0.244780i 0.00902271i
\(737\) −8.93730 15.4799i −0.329210 0.570208i
\(738\) −23.3233 4.12604i −0.858541 0.151882i
\(739\) −41.8282 24.1495i −1.53868 0.888355i −0.998917 0.0465355i \(-0.985182\pi\)
−0.539759 0.841819i \(-0.681485\pi\)
\(740\) −8.54454 −0.314104
\(741\) −9.14941 + 13.0589i −0.336112 + 0.479731i
\(742\) 6.56798i 0.241118i
\(743\) −6.41688 −0.235412 −0.117706 0.993048i \(-0.537554\pi\)
−0.117706 + 0.993048i \(0.537554\pi\)
\(744\) −8.07539 + 5.27144i −0.296058 + 0.193261i
\(745\) −15.4920 −0.567584
\(746\) 22.0309i 0.806609i
\(747\) −8.40478 1.48686i −0.307515 0.0544014i
\(748\) 28.3179 1.03540
\(749\) 12.0659 + 6.96627i 0.440880 + 0.254542i
\(750\) 1.41853 + 0.993862i 0.0517975 + 0.0362907i
\(751\) −8.51988 14.7569i −0.310895 0.538486i 0.667661 0.744465i \(-0.267295\pi\)
−0.978556 + 0.205979i \(0.933962\pi\)
\(752\) 3.99299i 0.145609i
\(753\) 0.574853 6.54940i 0.0209488 0.238673i
\(754\) 4.24983 7.36092i 0.154770 0.268069i
\(755\) 9.13464 15.8217i 0.332444 0.575809i
\(756\) −16.5434 + 4.41784i −0.601678 + 0.160675i
\(757\) 17.9616 + 10.3701i 0.652826 + 0.376909i 0.789538 0.613701i \(-0.210320\pi\)
−0.136712 + 0.990611i \(0.543653\pi\)
\(758\) −19.8741 + 11.4743i −0.721861 + 0.416767i
\(759\) 1.80042 0.838932i 0.0653510 0.0304513i
\(760\) 2.22916 0.0808601
\(761\) 11.5689 + 20.0379i 0.419372 + 0.726373i 0.995876 0.0907205i \(-0.0289170\pi\)
−0.576504 + 0.817094i \(0.695584\pi\)
\(762\) −0.0641160 + 0.730484i −0.00232268 + 0.0264626i
\(763\) −9.63317 16.6851i −0.348744 0.604043i
\(764\) −14.6036 8.43140i −0.528340 0.305037i
\(765\) −17.0433 + 6.19240i −0.616201 + 0.223887i
\(766\) 8.93453 + 5.15835i 0.322818 + 0.186379i
\(767\) 3.05925 0.110463
\(768\) 1.41853 + 0.993862i 0.0511869 + 0.0358629i
\(769\) 19.5619 + 33.8822i 0.705420 + 1.22182i 0.966540 + 0.256517i \(0.0825749\pi\)
−0.261120 + 0.965306i \(0.584092\pi\)
\(770\) −7.71924 + 13.3701i −0.278182 + 0.481826i
\(771\) −22.6936 48.7023i −0.817289 1.75397i
\(772\) 3.46345 + 5.99887i 0.124652 + 0.215904i
\(773\) −17.0109 −0.611839 −0.305920 0.952057i \(-0.598964\pi\)
−0.305920 + 0.952057i \(0.598964\pi\)
\(774\) −22.3633 + 26.6211i −0.803831 + 0.956875i
\(775\) −0.789485 5.51151i −0.0283592 0.197979i
\(776\) 7.67331i