Properties

Label 930.2.o.b
Level $930$
Weight $2$
Character orbit 930.o
Analytic conductor $7.426$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12}^{3} q^{2} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} - q^{4} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( -1 - \zeta_{12}^{2} ) q^{6} + ( 1 - \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} -3 \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{12}^{3} q^{2} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} - q^{4} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( -1 - \zeta_{12}^{2} ) q^{6} + ( 1 - \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} -3 \zeta_{12}^{2} q^{9} -\zeta_{12}^{2} q^{10} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{11} + ( \zeta_{12} - 2 \zeta_{12}^{3} ) q^{12} + ( 8 - 4 \zeta_{12}^{2} ) q^{13} + \zeta_{12} q^{14} + ( 1 - 2 \zeta_{12}^{2} ) q^{15} + q^{16} + ( 3 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{18} + ( 2 - 2 \zeta_{12}^{2} ) q^{19} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{20} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{21} + ( 2 - \zeta_{12}^{2} ) q^{22} + ( 1 + \zeta_{12}^{2} ) q^{24} + ( 1 - \zeta_{12}^{2} ) q^{25} + ( 4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{26} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( -1 + \zeta_{12}^{2} ) q^{28} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{29} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{30} + ( -5 - \zeta_{12}^{2} ) q^{31} + \zeta_{12}^{3} q^{32} + 3 q^{33} + \zeta_{12}^{3} q^{35} + 3 \zeta_{12}^{2} q^{36} + ( -2 - 2 \zeta_{12}^{2} ) q^{37} + 2 \zeta_{12} q^{38} + 12 \zeta_{12}^{3} q^{39} + \zeta_{12}^{2} q^{40} + ( -2 + \zeta_{12}^{2} ) q^{42} + ( 2 + 2 \zeta_{12}^{2} ) q^{43} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{44} + 3 \zeta_{12} q^{45} -6 \zeta_{12}^{3} q^{47} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{48} + 6 \zeta_{12}^{2} q^{49} + \zeta_{12} q^{50} + ( -8 + 4 \zeta_{12}^{2} ) q^{52} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{53} + ( -3 + 6 \zeta_{12}^{2} ) q^{54} + ( 1 + \zeta_{12}^{2} ) q^{55} -\zeta_{12} q^{56} + ( 2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{57} + ( -3 + 6 \zeta_{12}^{2} ) q^{58} + 3 \zeta_{12} q^{59} + ( -1 + 2 \zeta_{12}^{2} ) q^{60} + ( 2 - 4 \zeta_{12}^{2} ) q^{61} + ( \zeta_{12} - 6 \zeta_{12}^{3} ) q^{62} -3 q^{63} - q^{64} + ( -4 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{65} + 3 \zeta_{12}^{3} q^{66} -4 \zeta_{12}^{2} q^{67} - q^{70} + ( -3 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{72} + ( 8 - 4 \zeta_{12}^{2} ) q^{73} + ( 2 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{74} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{75} + ( -2 + 2 \zeta_{12}^{2} ) q^{76} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{77} -12 q^{78} + ( 6 + 6 \zeta_{12}^{2} ) q^{79} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{80} + ( -9 + 9 \zeta_{12}^{2} ) q^{81} + ( -7 \zeta_{12} - 7 \zeta_{12}^{3} ) q^{83} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{84} + ( -2 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{86} + ( -9 + 9 \zeta_{12}^{2} ) q^{87} + ( -2 + \zeta_{12}^{2} ) q^{88} + ( 16 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{89} + ( -3 + 3 \zeta_{12}^{2} ) q^{90} + ( 4 - 8 \zeta_{12}^{2} ) q^{91} + ( 7 \zeta_{12} - 11 \zeta_{12}^{3} ) q^{93} + 6 q^{94} + 2 \zeta_{12}^{3} q^{95} + ( -1 - \zeta_{12}^{2} ) q^{96} - q^{97} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{98} + ( -3 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} - 6q^{6} + 2q^{7} - 6q^{9} + O(q^{10}) \) \( 4q - 4q^{4} - 6q^{6} + 2q^{7} - 6q^{9} - 2q^{10} + 24q^{13} + 4q^{16} + 4q^{19} + 6q^{22} + 6q^{24} + 2q^{25} - 2q^{28} - 22q^{31} + 12q^{33} + 6q^{36} - 12q^{37} + 2q^{40} - 6q^{42} + 12q^{43} + 12q^{49} - 24q^{52} + 6q^{55} - 12q^{63} - 4q^{64} - 8q^{67} - 4q^{70} + 24q^{73} - 4q^{76} - 48q^{78} + 36q^{79} - 18q^{81} - 18q^{87} - 6q^{88} - 6q^{90} + 24q^{94} - 6q^{96} - 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
1.00000i −0.866025 1.50000i −1.00000 −0.866025 0.500000i −1.50000 + 0.866025i 0.500000 + 0.866025i 1.00000i −1.50000 + 2.59808i −0.500000 + 0.866025i
161.2 1.00000i 0.866025 + 1.50000i −1.00000 0.866025 + 0.500000i −1.50000 + 0.866025i 0.500000 + 0.866025i 1.00000i −1.50000 + 2.59808i −0.500000 + 0.866025i
491.1 1.00000i 0.866025 1.50000i −1.00000 0.866025 0.500000i −1.50000 0.866025i 0.500000 0.866025i 1.00000i −1.50000 2.59808i −0.500000 0.866025i
491.2 1.00000i −0.866025 + 1.50000i −1.00000 −0.866025 + 0.500000i −1.50000 0.866025i 0.500000 0.866025i 1.00000i −1.50000 2.59808i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
31.e odd 6 1 inner
93.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 930.2.o.b 4
3.b odd 2 1 inner 930.2.o.b 4
31.e odd 6 1 inner 930.2.o.b 4
93.g even 6 1 inner 930.2.o.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.o.b 4 1.a even 1 1 trivial
930.2.o.b 4 3.b odd 2 1 inner
930.2.o.b 4 31.e odd 6 1 inner
930.2.o.b 4 93.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\):

\( T_{7}^{2} - T_{7} + 1 \)
\( T_{11}^{4} + 3 T_{11}^{2} + 9 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{2} \)
$3$ \( 9 + 3 T^{2} + T^{4} \)
$5$ \( 1 - T^{2} + T^{4} \)
$7$ \( ( 1 - T + T^{2} )^{2} \)
$11$ \( 9 + 3 T^{2} + T^{4} \)
$13$ \( ( 48 - 12 T + T^{2} )^{2} \)
$17$ \( T^{4} \)
$19$ \( ( 4 - 2 T + T^{2} )^{2} \)
$23$ \( T^{4} \)
$29$ \( ( -27 + T^{2} )^{2} \)
$31$ \( ( 31 + 11 T + T^{2} )^{2} \)
$37$ \( ( 12 + 6 T + T^{2} )^{2} \)
$41$ \( T^{4} \)
$43$ \( ( 12 - 6 T + T^{2} )^{2} \)
$47$ \( ( 36 + T^{2} )^{2} \)
$53$ \( 9 + 3 T^{2} + T^{4} \)
$59$ \( 81 - 9 T^{2} + T^{4} \)
$61$ \( ( 12 + T^{2} )^{2} \)
$67$ \( ( 16 + 4 T + T^{2} )^{2} \)
$71$ \( T^{4} \)
$73$ \( ( 48 - 12 T + T^{2} )^{2} \)
$79$ \( ( 108 - 18 T + T^{2} )^{2} \)
$83$ \( 21609 + 147 T^{2} + T^{4} \)
$89$ \( ( -192 + T^{2} )^{2} \)
$97$ \( ( 1 + T )^{4} \)
show more
show less