Properties

Label 930.2.j.f.497.3
Level $930$
Weight $2$
Character 930.497
Analytic conductor $7.426$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(497,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.497");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1698758656.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 497.3
Root \(-3.16053i\) of defining polynomial
Character \(\chi\) \(=\) 930.497
Dual form 930.2.j.f.683.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.292893 + 1.70711i) q^{3} -1.00000i q^{4} +(-1.52773 - 1.63280i) q^{5} +(1.41421 + 1.00000i) q^{6} +(-1.33991 - 1.33991i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.82843 + 1.00000i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(0.292893 + 1.70711i) q^{3} -1.00000i q^{4} +(-1.52773 - 1.63280i) q^{5} +(1.41421 + 1.00000i) q^{6} +(-1.33991 - 1.33991i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.82843 + 1.00000i) q^{9} +(-2.23483 - 0.0743018i) q^{10} +1.30913i q^{11} +(1.70711 - 0.292893i) q^{12} +(-1.74632 + 1.74632i) q^{13} -1.89492 q^{14} +(2.33991 - 3.08623i) q^{15} -1.00000 q^{16} +(-5.36459 + 5.36459i) q^{17} +(-1.29289 + 2.70711i) q^{18} +4.34772i q^{19} +(-1.63280 + 1.52773i) q^{20} +(1.89492 - 2.67982i) q^{21} +(0.925698 + 0.925698i) q^{22} +(4.75413 + 4.75413i) q^{23} +(1.00000 - 1.41421i) q^{24} +(-0.332104 + 4.98896i) q^{25} +2.46967i q^{26} +(-2.53553 - 4.53553i) q^{27} +(-1.33991 + 1.33991i) q^{28} -5.50825 q^{29} +(-0.527726 - 3.83686i) q^{30} +1.00000 q^{31} +(-0.707107 + 0.707107i) q^{32} +(-2.23483 + 0.383437i) q^{33} +7.58667i q^{34} +(-0.140796 + 4.23483i) q^{35} +(1.00000 + 2.82843i) q^{36} +(-2.00000 - 2.00000i) q^{37} +(3.07430 + 3.07430i) q^{38} +(-3.49264 - 2.46967i) q^{39} +(-0.0743018 + 2.23483i) q^{40} -2.81281i q^{41} +(-0.555010 - 3.23483i) q^{42} +(3.50044 - 3.50044i) q^{43} +1.30913 q^{44} +(5.95387 + 3.09054i) q^{45} +6.72335 q^{46} +(-3.66790 + 3.66790i) q^{47} +(-0.292893 - 1.70711i) q^{48} -3.40927i q^{49} +(3.29289 + 3.76256i) q^{50} +(-10.7292 - 7.58667i) q^{51} +(1.74632 + 1.74632i) q^{52} +(-6.45082 - 6.45082i) q^{53} +(-5.00000 - 1.41421i) q^{54} +(2.13756 - 2.00000i) q^{55} +1.89492i q^{56} +(-7.42202 + 1.27342i) q^{57} +(-3.89492 + 3.89492i) q^{58} -11.3765 q^{59} +(-3.08623 - 2.33991i) q^{60} +12.5481 q^{61} +(0.707107 - 0.707107i) q^{62} +(5.12975 + 2.44993i) q^{63} +1.00000i q^{64} +(5.51929 + 0.183501i) q^{65} +(-1.30913 + 1.85140i) q^{66} +(5.52512 + 5.52512i) q^{67} +(5.36459 + 5.36459i) q^{68} +(-6.72335 + 9.50825i) q^{69} +(2.89492 + 3.09404i) q^{70} -10.3477i q^{71} +(2.70711 + 1.29289i) q^{72} +(-1.87025 + 1.87025i) q^{73} -2.82843 q^{74} +(-8.61396 + 0.894295i) q^{75} +4.34772 q^{76} +(1.75413 - 1.75413i) q^{77} +(-4.21598 + 0.723349i) q^{78} -4.64493i q^{79} +(1.52773 + 1.63280i) q^{80} +(7.00000 - 5.65685i) q^{81} +(-1.98896 - 1.98896i) q^{82} +(-11.2871 - 11.2871i) q^{83} +(-2.67982 - 1.89492i) q^{84} +(16.9549 + 0.563703i) q^{85} -4.95037i q^{86} +(-1.61333 - 9.40317i) q^{87} +(0.925698 - 0.925698i) q^{88} -7.16053 q^{89} +(6.39536 - 2.02468i) q^{90} +4.67982 q^{91} +(4.75413 - 4.75413i) q^{92} +(0.292893 + 1.70711i) q^{93} +5.18719i q^{94} +(7.09898 - 6.64213i) q^{95} +(-1.41421 - 1.00000i) q^{96} +(-1.49632 - 1.49632i) q^{97} +(-2.41072 - 2.41072i) q^{98} +(-1.30913 - 3.70279i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{3} + 4 q^{7} + 8 q^{12} - 4 q^{13} - 12 q^{14} + 4 q^{15} - 8 q^{16} - 4 q^{17} - 16 q^{18} - 4 q^{20} + 12 q^{21} + 4 q^{22} + 12 q^{23} + 8 q^{24} - 4 q^{25} + 8 q^{27} + 4 q^{28} + 8 q^{29} + 8 q^{30} + 8 q^{31} - 24 q^{35} + 8 q^{36} - 16 q^{37} + 28 q^{38} - 8 q^{39} - 4 q^{40} - 16 q^{42} - 8 q^{43} - 4 q^{44} - 4 q^{45} + 28 q^{46} - 28 q^{47} - 8 q^{48} + 32 q^{50} - 8 q^{51} + 4 q^{52} + 12 q^{53} - 40 q^{54} - 20 q^{55} - 32 q^{57} - 28 q^{58} - 24 q^{59} + 56 q^{61} + 20 q^{63} + 36 q^{65} + 4 q^{66} - 16 q^{67} + 4 q^{68} - 28 q^{69} + 20 q^{70} + 16 q^{72} - 36 q^{73} - 32 q^{75} + 4 q^{76} - 12 q^{77} + 12 q^{78} + 56 q^{81} + 28 q^{82} + 12 q^{83} + 8 q^{84} + 32 q^{85} + 36 q^{87} + 4 q^{88} - 36 q^{89} + 12 q^{90} + 8 q^{91} + 12 q^{92} + 8 q^{93} + 36 q^{95} + 12 q^{97} - 32 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.292893 + 1.70711i 0.169102 + 0.985599i
\(4\) 1.00000i 0.500000i
\(5\) −1.52773 1.63280i −0.683220 0.730213i
\(6\) 1.41421 + 1.00000i 0.577350 + 0.408248i
\(7\) −1.33991 1.33991i −0.506439 0.506439i 0.406992 0.913432i \(-0.366578\pi\)
−0.913432 + 0.406992i \(0.866578\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −2.82843 + 1.00000i −0.942809 + 0.333333i
\(10\) −2.23483 0.0743018i −0.706716 0.0234963i
\(11\) 1.30913i 0.394719i 0.980331 + 0.197360i \(0.0632366\pi\)
−0.980331 + 0.197360i \(0.936763\pi\)
\(12\) 1.70711 0.292893i 0.492799 0.0845510i
\(13\) −1.74632 + 1.74632i −0.484341 + 0.484341i −0.906515 0.422174i \(-0.861267\pi\)
0.422174 + 0.906515i \(0.361267\pi\)
\(14\) −1.89492 −0.506439
\(15\) 2.33991 3.08623i 0.604163 0.796861i
\(16\) −1.00000 −0.250000
\(17\) −5.36459 + 5.36459i −1.30110 + 1.30110i −0.373456 + 0.927648i \(0.621827\pi\)
−0.927648 + 0.373456i \(0.878173\pi\)
\(18\) −1.29289 + 2.70711i −0.304738 + 0.638071i
\(19\) 4.34772i 0.997435i 0.866765 + 0.498718i \(0.166196\pi\)
−0.866765 + 0.498718i \(0.833804\pi\)
\(20\) −1.63280 + 1.52773i −0.365106 + 0.341610i
\(21\) 1.89492 2.67982i 0.413506 0.584785i
\(22\) 0.925698 + 0.925698i 0.197360 + 0.197360i
\(23\) 4.75413 + 4.75413i 0.991304 + 0.991304i 0.999963 0.00865885i \(-0.00275623\pi\)
−0.00865885 + 0.999963i \(0.502756\pi\)
\(24\) 1.00000 1.41421i 0.204124 0.288675i
\(25\) −0.332104 + 4.98896i −0.0664208 + 0.997792i
\(26\) 2.46967i 0.484341i
\(27\) −2.53553 4.53553i −0.487964 0.872864i
\(28\) −1.33991 + 1.33991i −0.253220 + 0.253220i
\(29\) −5.50825 −1.02286 −0.511428 0.859326i \(-0.670883\pi\)
−0.511428 + 0.859326i \(0.670883\pi\)
\(30\) −0.527726 3.83686i −0.0963492 0.700512i
\(31\) 1.00000 0.179605
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −2.23483 + 0.383437i −0.389035 + 0.0667478i
\(34\) 7.58667i 1.30110i
\(35\) −0.140796 + 4.23483i −0.0237989 + 0.715817i
\(36\) 1.00000 + 2.82843i 0.166667 + 0.471405i
\(37\) −2.00000 2.00000i −0.328798 0.328798i 0.523331 0.852129i \(-0.324689\pi\)
−0.852129 + 0.523331i \(0.824689\pi\)
\(38\) 3.07430 + 3.07430i 0.498718 + 0.498718i
\(39\) −3.49264 2.46967i −0.559269 0.395463i
\(40\) −0.0743018 + 2.23483i −0.0117481 + 0.353358i
\(41\) 2.81281i 0.439287i −0.975580 0.219644i \(-0.929511\pi\)
0.975580 0.219644i \(-0.0704895\pi\)
\(42\) −0.555010 3.23483i −0.0856398 0.499146i
\(43\) 3.50044 3.50044i 0.533813 0.533813i −0.387892 0.921705i \(-0.626797\pi\)
0.921705 + 0.387892i \(0.126797\pi\)
\(44\) 1.30913 0.197360
\(45\) 5.95387 + 3.09054i 0.887550 + 0.460711i
\(46\) 6.72335 0.991304
\(47\) −3.66790 + 3.66790i −0.535018 + 0.535018i −0.922061 0.387044i \(-0.873496\pi\)
0.387044 + 0.922061i \(0.373496\pi\)
\(48\) −0.292893 1.70711i −0.0422755 0.246400i
\(49\) 3.40927i 0.487039i
\(50\) 3.29289 + 3.76256i 0.465685 + 0.532106i
\(51\) −10.7292 7.58667i −1.50239 1.06235i
\(52\) 1.74632 + 1.74632i 0.242171 + 0.242171i
\(53\) −6.45082 6.45082i −0.886088 0.886088i 0.108057 0.994145i \(-0.465537\pi\)
−0.994145 + 0.108057i \(0.965537\pi\)
\(54\) −5.00000 1.41421i −0.680414 0.192450i
\(55\) 2.13756 2.00000i 0.288229 0.269680i
\(56\) 1.89492i 0.253220i
\(57\) −7.42202 + 1.27342i −0.983071 + 0.168668i
\(58\) −3.89492 + 3.89492i −0.511428 + 0.511428i
\(59\) −11.3765 −1.48110 −0.740548 0.672003i \(-0.765434\pi\)
−0.740548 + 0.672003i \(0.765434\pi\)
\(60\) −3.08623 2.33991i −0.398431 0.302081i
\(61\) 12.5481 1.60662 0.803309 0.595562i \(-0.203071\pi\)
0.803309 + 0.595562i \(0.203071\pi\)
\(62\) 0.707107 0.707107i 0.0898027 0.0898027i
\(63\) 5.12975 + 2.44993i 0.646288 + 0.308662i
\(64\) 1.00000i 0.125000i
\(65\) 5.51929 + 0.183501i 0.684584 + 0.0227605i
\(66\) −1.30913 + 1.85140i −0.161143 + 0.227891i
\(67\) 5.52512 + 5.52512i 0.675001 + 0.675001i 0.958865 0.283864i \(-0.0916164\pi\)
−0.283864 + 0.958865i \(0.591616\pi\)
\(68\) 5.36459 + 5.36459i 0.650552 + 0.650552i
\(69\) −6.72335 + 9.50825i −0.809396 + 1.14466i
\(70\) 2.89492 + 3.09404i 0.346009 + 0.369808i
\(71\) 10.3477i 1.22805i −0.789287 0.614024i \(-0.789550\pi\)
0.789287 0.614024i \(-0.210450\pi\)
\(72\) 2.70711 + 1.29289i 0.319036 + 0.152369i
\(73\) −1.87025 + 1.87025i −0.218896 + 0.218896i −0.808033 0.589137i \(-0.799468\pi\)
0.589137 + 0.808033i \(0.299468\pi\)
\(74\) −2.82843 −0.328798
\(75\) −8.61396 + 0.894295i −0.994654 + 0.103264i
\(76\) 4.34772 0.498718
\(77\) 1.75413 1.75413i 0.199901 0.199901i
\(78\) −4.21598 + 0.723349i −0.477366 + 0.0819031i
\(79\) 4.64493i 0.522595i −0.965258 0.261298i \(-0.915850\pi\)
0.965258 0.261298i \(-0.0841504\pi\)
\(80\) 1.52773 + 1.63280i 0.170805 + 0.182553i
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) −1.98896 1.98896i −0.219644 0.219644i
\(83\) −11.2871 11.2871i −1.23891 1.23891i −0.960445 0.278470i \(-0.910173\pi\)
−0.278470 0.960445i \(-0.589827\pi\)
\(84\) −2.67982 1.89492i −0.292393 0.206753i
\(85\) 16.9549 + 0.563703i 1.83902 + 0.0611422i
\(86\) 4.95037i 0.533813i
\(87\) −1.61333 9.40317i −0.172967 1.00813i
\(88\) 0.925698 0.925698i 0.0986798 0.0986798i
\(89\) −7.16053 −0.759015 −0.379507 0.925189i \(-0.623907\pi\)
−0.379507 + 0.925189i \(0.623907\pi\)
\(90\) 6.39536 2.02468i 0.674131 0.213420i
\(91\) 4.67982 0.490579
\(92\) 4.75413 4.75413i 0.495652 0.495652i
\(93\) 0.292893 + 1.70711i 0.0303716 + 0.177019i
\(94\) 5.18719i 0.535018i
\(95\) 7.09898 6.64213i 0.728340 0.681468i
\(96\) −1.41421 1.00000i −0.144338 0.102062i
\(97\) −1.49632 1.49632i −0.151929 0.151929i 0.627050 0.778979i \(-0.284262\pi\)
−0.778979 + 0.627050i \(0.784262\pi\)
\(98\) −2.41072 2.41072i −0.243519 0.243519i
\(99\) −1.30913 3.70279i −0.131573 0.372145i
\(100\) 4.98896 + 0.332104i 0.498896 + 0.0332104i
\(101\) 13.4647i 1.33979i 0.742456 + 0.669895i \(0.233661\pi\)
−0.742456 + 0.669895i \(0.766339\pi\)
\(102\) −12.9513 + 2.22208i −1.28237 + 0.220019i
\(103\) −10.4032 + 10.4032i −1.02506 + 1.02506i −0.0253770 + 0.999678i \(0.508079\pi\)
−0.999678 + 0.0253770i \(0.991921\pi\)
\(104\) 2.46967 0.242171
\(105\) −7.27055 + 1.00000i −0.709533 + 0.0975900i
\(106\) −9.12283 −0.886088
\(107\) −8.11871 + 8.11871i −0.784866 + 0.784866i −0.980647 0.195782i \(-0.937276\pi\)
0.195782 + 0.980647i \(0.437276\pi\)
\(108\) −4.53553 + 2.53553i −0.436432 + 0.243982i
\(109\) 0.305448i 0.0292566i 0.999893 + 0.0146283i \(0.00465650\pi\)
−0.999893 + 0.0146283i \(0.995344\pi\)
\(110\) 0.0972711 2.92570i 0.00927443 0.278954i
\(111\) 2.82843 4.00000i 0.268462 0.379663i
\(112\) 1.33991 + 1.33991i 0.126610 + 0.126610i
\(113\) 1.51148 + 1.51148i 0.142189 + 0.142189i 0.774618 0.632429i \(-0.217942\pi\)
−0.632429 + 0.774618i \(0.717942\pi\)
\(114\) −4.34772 + 6.14860i −0.407201 + 0.575869i
\(115\) 0.499557 15.0256i 0.0465839 1.40114i
\(116\) 5.50825i 0.511428i
\(117\) 3.19301 6.68565i 0.295194 0.618089i
\(118\) −8.04441 + 8.04441i −0.740548 + 0.740548i
\(119\) 14.3761 1.31786
\(120\) −3.83686 + 0.527726i −0.350256 + 0.0481746i
\(121\) 9.28617 0.844197
\(122\) 8.87284 8.87284i 0.803309 0.803309i
\(123\) 4.80177 0.823854i 0.432961 0.0742844i
\(124\) 1.00000i 0.0898027i
\(125\) 8.65336 7.07950i 0.773980 0.633210i
\(126\) 5.35965 1.89492i 0.477475 0.168813i
\(127\) −2.40811 2.40811i −0.213685 0.213685i 0.592146 0.805831i \(-0.298281\pi\)
−0.805831 + 0.592146i \(0.798281\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 7.00089 + 4.95037i 0.616394 + 0.435856i
\(130\) 4.03248 3.77297i 0.353672 0.330912i
\(131\) 8.82321i 0.770888i 0.922731 + 0.385444i \(0.125952\pi\)
−0.922731 + 0.385444i \(0.874048\pi\)
\(132\) 0.383437 + 2.23483i 0.0333739 + 0.194517i
\(133\) 5.82556 5.82556i 0.505140 0.505140i
\(134\) 7.81370 0.675001
\(135\) −3.53204 + 11.0691i −0.303990 + 0.952675i
\(136\) 7.58667 0.650552
\(137\) −12.2546 + 12.2546i −1.04698 + 1.04698i −0.0481377 + 0.998841i \(0.515329\pi\)
−0.998841 + 0.0481377i \(0.984671\pi\)
\(138\) 1.96922 + 11.4775i 0.167631 + 0.977027i
\(139\) 10.0563i 0.852968i −0.904495 0.426484i \(-0.859752\pi\)
0.904495 0.426484i \(-0.140248\pi\)
\(140\) 4.23483 + 0.140796i 0.357909 + 0.0118994i
\(141\) −7.33579 5.18719i −0.617785 0.436840i
\(142\) −7.31694 7.31694i −0.614024 0.614024i
\(143\) −2.28617 2.28617i −0.191179 0.191179i
\(144\) 2.82843 1.00000i 0.235702 0.0833333i
\(145\) 8.41510 + 8.99390i 0.698836 + 0.746903i
\(146\) 2.64493i 0.218896i
\(147\) 5.81999 0.998553i 0.480025 0.0823593i
\(148\) −2.00000 + 2.00000i −0.164399 + 0.164399i
\(149\) 18.7711 1.53779 0.768893 0.639378i \(-0.220808\pi\)
0.768893 + 0.639378i \(0.220808\pi\)
\(150\) −5.45862 + 6.72335i −0.445695 + 0.548959i
\(151\) 4.51902 0.367752 0.183876 0.982949i \(-0.441135\pi\)
0.183876 + 0.982949i \(0.441135\pi\)
\(152\) 3.07430 3.07430i 0.249359 0.249359i
\(153\) 9.80876 20.5379i 0.792991 1.66039i
\(154\) 2.48071i 0.199901i
\(155\) −1.52773 1.63280i −0.122710 0.131150i
\(156\) −2.46967 + 3.49264i −0.197732 + 0.279635i
\(157\) 11.5063 + 11.5063i 0.918300 + 0.918300i 0.996906 0.0786055i \(-0.0250467\pi\)
−0.0786055 + 0.996906i \(0.525047\pi\)
\(158\) −3.28446 3.28446i −0.261298 0.261298i
\(159\) 9.12283 12.9016i 0.723488 1.02317i
\(160\) 2.23483 + 0.0743018i 0.176679 + 0.00587407i
\(161\) 12.7402i 1.00407i
\(162\) 0.949747 8.94975i 0.0746192 0.703159i
\(163\) −0.105079 + 0.105079i −0.00823039 + 0.00823039i −0.711210 0.702980i \(-0.751852\pi\)
0.702980 + 0.711210i \(0.251852\pi\)
\(164\) −2.81281 −0.219644
\(165\) 4.04029 + 3.06326i 0.314536 + 0.238474i
\(166\) −15.9623 −1.23891
\(167\) 0.887114 0.887114i 0.0686469 0.0686469i −0.671950 0.740597i \(-0.734543\pi\)
0.740597 + 0.671950i \(0.234543\pi\)
\(168\) −3.23483 + 0.555010i −0.249573 + 0.0428199i
\(169\) 6.90075i 0.530827i
\(170\) 12.3876 11.5904i 0.950082 0.888940i
\(171\) −4.34772 12.2972i −0.332478 0.940391i
\(172\) −3.50044 3.50044i −0.266906 0.266906i
\(173\) 16.8692 + 16.8692i 1.28254 + 1.28254i 0.939219 + 0.343319i \(0.111551\pi\)
0.343319 + 0.939219i \(0.388449\pi\)
\(174\) −7.78984 5.50825i −0.590546 0.417579i
\(175\) 7.12975 6.23977i 0.538959 0.471683i
\(176\) 1.30913i 0.0986798i
\(177\) −3.33210 19.4209i −0.250456 1.45977i
\(178\) −5.06326 + 5.06326i −0.379507 + 0.379507i
\(179\) 12.3622 0.923992 0.461996 0.886882i \(-0.347133\pi\)
0.461996 + 0.886882i \(0.347133\pi\)
\(180\) 3.09054 5.95387i 0.230356 0.443775i
\(181\) 0.00582690 0.000433110 0.000216555 1.00000i \(-0.499931\pi\)
0.000216555 1.00000i \(0.499931\pi\)
\(182\) 3.30913 3.30913i 0.245289 0.245289i
\(183\) 3.67525 + 21.4209i 0.271682 + 1.58348i
\(184\) 6.72335i 0.495652i
\(185\) −0.210157 + 6.32106i −0.0154511 + 0.464734i
\(186\) 1.41421 + 1.00000i 0.103695 + 0.0733236i
\(187\) −7.02297 7.02297i −0.513570 0.513570i
\(188\) 3.66790 + 3.66790i 0.267509 + 0.267509i
\(189\) −2.67982 + 9.47461i −0.194928 + 0.689176i
\(190\) 0.323043 9.71643i 0.0234360 0.704904i
\(191\) 4.58453i 0.331725i 0.986149 + 0.165863i \(0.0530408\pi\)
−0.986149 + 0.165863i \(0.946959\pi\)
\(192\) −1.70711 + 0.292893i −0.123200 + 0.0211377i
\(193\) −16.9513 + 16.9513i −1.22018 + 1.22018i −0.252610 + 0.967568i \(0.581289\pi\)
−0.967568 + 0.252610i \(0.918711\pi\)
\(194\) −2.11612 −0.151929
\(195\) 1.30331 + 9.47577i 0.0933318 + 0.678574i
\(196\) −3.40927 −0.243519
\(197\) 10.6096 10.6096i 0.755906 0.755906i −0.219669 0.975575i \(-0.570498\pi\)
0.975575 + 0.219669i \(0.0704977\pi\)
\(198\) −3.54397 1.69257i −0.251859 0.120286i
\(199\) 4.67866i 0.331662i −0.986154 0.165831i \(-0.946969\pi\)
0.986154 0.165831i \(-0.0530306\pi\)
\(200\) 3.76256 3.29289i 0.266053 0.232843i
\(201\) −7.81370 + 11.0502i −0.551136 + 0.779424i
\(202\) 9.52100 + 9.52100i 0.669895 + 0.669895i
\(203\) 7.38057 + 7.38057i 0.518014 + 0.518014i
\(204\) −7.58667 + 10.7292i −0.531173 + 0.751193i
\(205\) −4.59277 + 4.29721i −0.320773 + 0.300130i
\(206\) 14.7123i 1.02506i
\(207\) −18.2008 8.69257i −1.26504 0.604175i
\(208\) 1.74632 1.74632i 0.121085 0.121085i
\(209\) −5.69175 −0.393707
\(210\) −4.43395 + 5.84816i −0.305972 + 0.403562i
\(211\) −11.3551 −0.781715 −0.390858 0.920451i \(-0.627822\pi\)
−0.390858 + 0.920451i \(0.627822\pi\)
\(212\) −6.45082 + 6.45082i −0.443044 + 0.443044i
\(213\) 17.6647 3.03078i 1.21036 0.207665i
\(214\) 11.4816i 0.784866i
\(215\) −11.0633 0.367822i −0.754508 0.0250852i
\(216\) −1.41421 + 5.00000i −0.0962250 + 0.340207i
\(217\) −1.33991 1.33991i −0.0909591 0.0909591i
\(218\) 0.215984 + 0.215984i 0.0146283 + 0.0146283i
\(219\) −3.74049 2.64493i −0.252759 0.178728i
\(220\) −2.00000 2.13756i −0.134840 0.144114i
\(221\) 18.7365i 1.26036i
\(222\) −0.828427 4.82843i −0.0556004 0.324063i
\(223\) 11.0613 11.0613i 0.740718 0.740718i −0.231998 0.972716i \(-0.574526\pi\)
0.972716 + 0.231998i \(0.0745263\pi\)
\(224\) 1.89492 0.126610
\(225\) −4.04963 14.4430i −0.269975 0.962867i
\(226\) 2.13756 0.142189
\(227\) −10.1647 + 10.1647i −0.674652 + 0.674652i −0.958785 0.284133i \(-0.908294\pi\)
0.284133 + 0.958785i \(0.408294\pi\)
\(228\) 1.27342 + 7.42202i 0.0843341 + 0.491535i
\(229\) 13.4188i 0.886738i −0.896339 0.443369i \(-0.853783\pi\)
0.896339 0.443369i \(-0.146217\pi\)
\(230\) −10.2714 10.9779i −0.677278 0.723862i
\(231\) 3.50825 + 2.48071i 0.230826 + 0.163219i
\(232\) 3.89492 + 3.89492i 0.255714 + 0.255714i
\(233\) 9.55096 + 9.55096i 0.625704 + 0.625704i 0.946984 0.321280i \(-0.104113\pi\)
−0.321280 + 0.946984i \(0.604113\pi\)
\(234\) −2.46967 6.98527i −0.161447 0.456641i
\(235\) 11.5925 + 0.385417i 0.756211 + 0.0251419i
\(236\) 11.3765i 0.740548i
\(237\) 7.92939 1.36047i 0.515069 0.0883719i
\(238\) 10.1655 10.1655i 0.658930 0.658930i
\(239\) −28.4935 −1.84309 −0.921546 0.388268i \(-0.873073\pi\)
−0.921546 + 0.388268i \(0.873073\pi\)
\(240\) −2.33991 + 3.08623i −0.151041 + 0.199215i
\(241\) −10.4697 −0.674410 −0.337205 0.941431i \(-0.609482\pi\)
−0.337205 + 0.941431i \(0.609482\pi\)
\(242\) 6.56631 6.56631i 0.422098 0.422098i
\(243\) 11.7071 + 10.2929i 0.751011 + 0.660289i
\(244\) 12.5481i 0.803309i
\(245\) −5.56668 + 5.20844i −0.355642 + 0.332755i
\(246\) 2.81281 3.97792i 0.179338 0.253623i
\(247\) −7.59250 7.59250i −0.483099 0.483099i
\(248\) −0.707107 0.707107i −0.0449013 0.0449013i
\(249\) 15.9623 22.5741i 1.01157 1.43058i
\(250\) 1.11289 11.1248i 0.0703851 0.703595i
\(251\) 27.8155i 1.75570i −0.478938 0.877848i \(-0.658978\pi\)
0.478938 0.877848i \(-0.341022\pi\)
\(252\) 2.44993 5.12975i 0.154331 0.323144i
\(253\) −6.22379 + 6.22379i −0.391286 + 0.391286i
\(254\) −3.40559 −0.213685
\(255\) 4.00369 + 29.1090i 0.250721 + 1.82288i
\(256\) 1.00000 0.0625000
\(257\) −4.61162 + 4.61162i −0.287665 + 0.287665i −0.836156 0.548491i \(-0.815202\pi\)
0.548491 + 0.836156i \(0.315202\pi\)
\(258\) 8.45082 1.44993i 0.526125 0.0902688i
\(259\) 5.35965i 0.333032i
\(260\) 0.183501 5.51929i 0.0113802 0.342292i
\(261\) 15.5797 5.50825i 0.964358 0.340952i
\(262\) 6.23895 + 6.23895i 0.385444 + 0.385444i
\(263\) 1.18350 + 1.18350i 0.0729778 + 0.0729778i 0.742654 0.669676i \(-0.233567\pi\)
−0.669676 + 0.742654i \(0.733567\pi\)
\(264\) 1.85140 + 1.30913i 0.113946 + 0.0805717i
\(265\) −0.677843 + 20.3880i −0.0416396 + 1.25243i
\(266\) 8.23859i 0.505140i
\(267\) −2.09727 12.2238i −0.128351 0.748084i
\(268\) 5.52512 5.52512i 0.337500 0.337500i
\(269\) 1.84316 0.112379 0.0561896 0.998420i \(-0.482105\pi\)
0.0561896 + 0.998420i \(0.482105\pi\)
\(270\) 5.32950 + 10.3246i 0.324343 + 0.628332i
\(271\) −15.8832 −0.964838 −0.482419 0.875941i \(-0.660242\pi\)
−0.482419 + 0.875941i \(0.660242\pi\)
\(272\) 5.36459 5.36459i 0.325276 0.325276i
\(273\) 1.37069 + 7.98896i 0.0829578 + 0.483514i
\(274\) 17.3306i 1.04698i
\(275\) −6.53122 0.434769i −0.393847 0.0262176i
\(276\) 9.50825 + 6.72335i 0.572329 + 0.404698i
\(277\) −1.16916 1.16916i −0.0702480 0.0702480i 0.671110 0.741358i \(-0.265818\pi\)
−0.741358 + 0.671110i \(0.765818\pi\)
\(278\) −7.11091 7.11091i −0.426484 0.426484i
\(279\) −2.82843 + 1.00000i −0.169334 + 0.0598684i
\(280\) 3.09404 2.89492i 0.184904 0.173005i
\(281\) 5.69059i 0.339472i −0.985490 0.169736i \(-0.945708\pi\)
0.985490 0.169736i \(-0.0542915\pi\)
\(282\) −8.85508 + 1.51929i −0.527313 + 0.0904725i
\(283\) −0.590360 + 0.590360i −0.0350933 + 0.0350933i −0.724436 0.689342i \(-0.757900\pi\)
0.689342 + 0.724436i \(0.257900\pi\)
\(284\) −10.3477 −0.614024
\(285\) 13.4181 + 10.1733i 0.794817 + 0.602613i
\(286\) −3.23313 −0.191179
\(287\) −3.76892 + 3.76892i −0.222472 + 0.222472i
\(288\) 1.29289 2.70711i 0.0761845 0.159518i
\(289\) 40.5576i 2.38574i
\(290\) 12.3100 + 0.409273i 0.722869 + 0.0240333i
\(291\) 2.11612 2.99265i 0.124049 0.175432i
\(292\) 1.87025 + 1.87025i 0.109448 + 0.109448i
\(293\) −5.10139 5.10139i −0.298026 0.298026i 0.542214 0.840240i \(-0.317586\pi\)
−0.840240 + 0.542214i \(0.817586\pi\)
\(294\) 3.40927 4.82144i 0.198833 0.281192i
\(295\) 17.3802 + 18.5756i 1.01191 + 1.08152i
\(296\) 2.82843i 0.164399i
\(297\) 5.93763 3.31936i 0.344536 0.192609i
\(298\) 13.2731 13.2731i 0.768893 0.768893i
\(299\) −16.6044 −0.960259
\(300\) 0.894295 + 8.61396i 0.0516321 + 0.497327i
\(301\) −9.38057 −0.540687
\(302\) 3.19543 3.19543i 0.183876 0.183876i
\(303\) −22.9857 + 3.94373i −1.32050 + 0.226561i
\(304\) 4.34772i 0.249359i
\(305\) −19.1700 20.4886i −1.09767 1.17317i
\(306\) −7.58667 21.4584i −0.433701 1.22669i
\(307\) 6.63514 + 6.63514i 0.378687 + 0.378687i 0.870628 0.491941i \(-0.163712\pi\)
−0.491941 + 0.870628i \(0.663712\pi\)
\(308\) −1.75413 1.75413i −0.0999506 0.0999506i
\(309\) −20.8063 14.7123i −1.18363 0.836954i
\(310\) −2.23483 0.0743018i −0.126930 0.00422006i
\(311\) 23.4363i 1.32895i 0.747311 + 0.664474i \(0.231345\pi\)
−0.747311 + 0.664474i \(0.768655\pi\)
\(312\) 0.723349 + 4.21598i 0.0409515 + 0.238683i
\(313\) −6.44060 + 6.44060i −0.364044 + 0.364044i −0.865299 0.501255i \(-0.832872\pi\)
0.501255 + 0.865299i \(0.332872\pi\)
\(314\) 16.2723 0.918300
\(315\) −3.83660 12.1187i −0.216168 0.682812i
\(316\) −4.64493 −0.261298
\(317\) −18.9985 + 18.9985i −1.06706 + 1.06706i −0.0694770 + 0.997584i \(0.522133\pi\)
−0.997584 + 0.0694770i \(0.977867\pi\)
\(318\) −2.67202 15.5737i −0.149839 0.873327i
\(319\) 7.21104i 0.403741i
\(320\) 1.63280 1.52773i 0.0912766 0.0854025i
\(321\) −16.2374 11.4816i −0.906285 0.640840i
\(322\) −9.00869 9.00869i −0.502035 0.502035i
\(323\) −23.3237 23.3237i −1.29777 1.29777i
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) −8.13235 9.29227i −0.451101 0.515442i
\(326\) 0.148604i 0.00823039i
\(327\) −0.521432 + 0.0894635i −0.0288352 + 0.00494735i
\(328\) −1.98896 + 1.98896i −0.109822 + 0.109822i
\(329\) 9.82931 0.541908
\(330\) 5.02297 0.690865i 0.276505 0.0380309i
\(331\) 4.04810 0.222504 0.111252 0.993792i \(-0.464514\pi\)
0.111252 + 0.993792i \(0.464514\pi\)
\(332\) −11.2871 + 11.2871i −0.619457 + 0.619457i
\(333\) 7.65685 + 3.65685i 0.419593 + 0.200394i
\(334\) 1.25457i 0.0686469i
\(335\) 0.580572 17.4623i 0.0317200 0.954068i
\(336\) −1.89492 + 2.67982i −0.103376 + 0.146196i
\(337\) 6.07018 + 6.07018i 0.330664 + 0.330664i 0.852839 0.522175i \(-0.174879\pi\)
−0.522175 + 0.852839i \(0.674879\pi\)
\(338\) 4.87957 + 4.87957i 0.265413 + 0.265413i
\(339\) −2.13756 + 3.02297i −0.116096 + 0.164185i
\(340\) 0.563703 16.9549i 0.0305711 0.919511i
\(341\) 1.30913i 0.0708936i
\(342\) −11.7697 5.62114i −0.636435 0.303956i
\(343\) −13.9475 + 13.9475i −0.753095 + 0.753095i
\(344\) −4.95037 −0.266906
\(345\) 25.7966 3.54809i 1.38884 0.191023i
\(346\) 23.8566 1.28254
\(347\) 17.7567 17.7567i 0.953231 0.953231i −0.0457236 0.998954i \(-0.514559\pi\)
0.998954 + 0.0457236i \(0.0145593\pi\)
\(348\) −9.40317 + 1.61333i −0.504063 + 0.0864835i
\(349\) 12.4731i 0.667669i −0.942632 0.333834i \(-0.891657\pi\)
0.942632 0.333834i \(-0.108343\pi\)
\(350\) 0.629311 9.45368i 0.0336381 0.505321i
\(351\) 12.3483 + 3.49264i 0.659105 + 0.186423i
\(352\) −0.925698 0.925698i −0.0493399 0.0493399i
\(353\) 2.56282 + 2.56282i 0.136405 + 0.136405i 0.772012 0.635607i \(-0.219250\pi\)
−0.635607 + 0.772012i \(0.719250\pi\)
\(354\) −16.0888 11.3765i −0.855111 0.604655i
\(355\) −16.8958 + 15.8085i −0.896736 + 0.839027i
\(356\) 7.16053i 0.379507i
\(357\) 4.21068 + 24.5416i 0.222853 + 1.29888i
\(358\) 8.74138 8.74138i 0.461996 0.461996i
\(359\) −3.97334 −0.209705 −0.104853 0.994488i \(-0.533437\pi\)
−0.104853 + 0.994488i \(0.533437\pi\)
\(360\) −2.02468 6.39536i −0.106710 0.337065i
\(361\) 0.0973369 0.00512300
\(362\) 0.00412024 0.00412024i 0.000216555 0.000216555i
\(363\) 2.71985 + 15.8525i 0.142755 + 0.832039i
\(364\) 4.67982i 0.245289i
\(365\) 5.91097 + 0.196523i 0.309394 + 0.0102865i
\(366\) 17.7457 + 12.5481i 0.927581 + 0.655899i
\(367\) 17.9779 + 17.9779i 0.938440 + 0.938440i 0.998212 0.0597724i \(-0.0190375\pi\)
−0.0597724 + 0.998212i \(0.519037\pi\)
\(368\) −4.75413 4.75413i −0.247826 0.247826i
\(369\) 2.81281 + 7.95583i 0.146429 + 0.414164i
\(370\) 4.32106 + 4.61827i 0.224641 + 0.240092i
\(371\) 17.2871i 0.897499i
\(372\) 1.70711 0.292893i 0.0885094 0.0151858i
\(373\) −17.2008 + 17.2008i −0.890625 + 0.890625i −0.994582 0.103957i \(-0.966850\pi\)
0.103957 + 0.994582i \(0.466850\pi\)
\(374\) −9.93198 −0.513570
\(375\) 14.6200 + 12.6987i 0.754972 + 0.655757i
\(376\) 5.18719 0.267509
\(377\) 9.61916 9.61916i 0.495412 0.495412i
\(378\) 4.80464 + 8.59448i 0.247124 + 0.442052i
\(379\) 14.4899i 0.744294i −0.928174 0.372147i \(-0.878622\pi\)
0.928174 0.372147i \(-0.121378\pi\)
\(380\) −6.64213 7.09898i −0.340734 0.364170i
\(381\) 3.40559 4.81623i 0.174473 0.246743i
\(382\) 3.24175 + 3.24175i 0.165863 + 0.165863i
\(383\) 24.7567 + 24.7567i 1.26501 + 1.26501i 0.948634 + 0.316375i \(0.102466\pi\)
0.316375 + 0.948634i \(0.397534\pi\)
\(384\) −1.00000 + 1.41421i −0.0510310 + 0.0721688i
\(385\) −5.54397 0.184321i −0.282547 0.00939387i
\(386\) 23.9727i 1.22018i
\(387\) −6.40031 + 13.4012i −0.325346 + 0.681221i
\(388\) −1.49632 + 1.49632i −0.0759643 + 0.0759643i
\(389\) 33.0438 1.67539 0.837693 0.546142i \(-0.183904\pi\)
0.837693 + 0.546142i \(0.183904\pi\)
\(390\) 7.62196 + 5.77880i 0.385953 + 0.292621i
\(391\) −51.0078 −2.57958
\(392\) −2.41072 + 2.41072i −0.121760 + 0.121760i
\(393\) −15.0622 + 2.58426i −0.759786 + 0.130359i
\(394\) 15.0043i 0.755906i
\(395\) −7.58426 + 7.09618i −0.381605 + 0.357047i
\(396\) −3.70279 + 1.30913i −0.186072 + 0.0657865i
\(397\) 6.05133 + 6.05133i 0.303708 + 0.303708i 0.842463 0.538755i \(-0.181105\pi\)
−0.538755 + 0.842463i \(0.681105\pi\)
\(398\) −3.30831 3.30831i −0.165831 0.165831i
\(399\) 11.6511 + 8.23859i 0.583286 + 0.412445i
\(400\) 0.332104 4.98896i 0.0166052 0.249448i
\(401\) 25.3585i 1.26634i −0.774012 0.633171i \(-0.781753\pi\)
0.774012 0.633171i \(-0.218247\pi\)
\(402\) 2.28858 + 13.3388i 0.114144 + 0.665280i
\(403\) −1.74632 + 1.74632i −0.0869903 + 0.0869903i
\(404\) 13.4647 0.669895
\(405\) −19.9306 2.78751i −0.990361 0.138512i
\(406\) 10.4377 0.518014
\(407\) 2.61827 2.61827i 0.129783 0.129783i
\(408\) 2.22208 + 12.9513i 0.110010 + 0.641183i
\(409\) 10.0337i 0.496136i 0.968743 + 0.248068i \(0.0797957\pi\)
−0.968743 + 0.248068i \(0.920204\pi\)
\(410\) −0.208997 + 6.28617i −0.0103216 + 0.310452i
\(411\) −24.5091 17.3306i −1.20895 0.854854i
\(412\) 10.4032 + 10.4032i 0.512528 + 0.512528i
\(413\) 15.2435 + 15.2435i 0.750085 + 0.750085i
\(414\) −19.0165 + 6.72335i −0.934610 + 0.330435i
\(415\) −1.18603 + 35.6731i −0.0582198 + 1.75112i
\(416\) 2.46967i 0.121085i
\(417\) 17.1672 2.94543i 0.840684 0.144238i
\(418\) −4.02468 + 4.02468i −0.196853 + 0.196853i
\(419\) 26.8198 1.31023 0.655116 0.755528i \(-0.272620\pi\)
0.655116 + 0.755528i \(0.272620\pi\)
\(420\) 1.00000 + 7.27055i 0.0487950 + 0.354767i
\(421\) 18.6954 0.911160 0.455580 0.890195i \(-0.349432\pi\)
0.455580 + 0.890195i \(0.349432\pi\)
\(422\) −8.02925 + 8.02925i −0.390858 + 0.390858i
\(423\) 6.70648 14.0423i 0.326080 0.682759i
\(424\) 9.12283i 0.443044i
\(425\) −24.9821 28.5453i −1.21181 1.38465i
\(426\) 10.3477 14.6339i 0.501349 0.709014i
\(427\) −16.8133 16.8133i −0.813654 0.813654i
\(428\) 8.11871 + 8.11871i 0.392433 + 0.392433i
\(429\) 3.23313 4.57233i 0.156097 0.220754i
\(430\) −8.08300 + 7.56282i −0.389797 + 0.364711i
\(431\) 17.2267i 0.829779i −0.909872 0.414889i \(-0.863820\pi\)
0.909872 0.414889i \(-0.136180\pi\)
\(432\) 2.53553 + 4.53553i 0.121991 + 0.218216i
\(433\) −9.70944 + 9.70944i −0.466606 + 0.466606i −0.900813 0.434207i \(-0.857029\pi\)
0.434207 + 0.900813i \(0.357029\pi\)
\(434\) −1.89492 −0.0909591
\(435\) −12.8888 + 16.9997i −0.617972 + 0.815074i
\(436\) 0.305448 0.0146283
\(437\) −20.6696 + 20.6696i −0.988761 + 0.988761i
\(438\) −4.51517 + 0.774681i −0.215743 + 0.0370157i
\(439\) 26.9329i 1.28544i 0.766103 + 0.642718i \(0.222193\pi\)
−0.766103 + 0.642718i \(0.777807\pi\)
\(440\) −2.92570 0.0972711i −0.139477 0.00463722i
\(441\) 3.40927 + 9.64288i 0.162346 + 0.459185i
\(442\) −13.2487 13.2487i −0.630178 0.630178i
\(443\) −23.3635 23.3635i −1.11003 1.11003i −0.993145 0.116888i \(-0.962708\pi\)
−0.116888 0.993145i \(-0.537292\pi\)
\(444\) −4.00000 2.82843i −0.189832 0.134231i
\(445\) 10.9393 + 11.6918i 0.518574 + 0.554242i
\(446\) 15.6430i 0.740718i
\(447\) 5.49792 + 32.0442i 0.260043 + 1.51564i
\(448\) 1.33991 1.33991i 0.0633049 0.0633049i
\(449\) 26.7530 1.26255 0.631277 0.775558i \(-0.282531\pi\)
0.631277 + 0.775558i \(0.282531\pi\)
\(450\) −13.0763 7.34923i −0.616421 0.346446i
\(451\) 3.68235 0.173395
\(452\) 1.51148 1.51148i 0.0710943 0.0710943i
\(453\) 1.32359 + 7.71445i 0.0621877 + 0.362456i
\(454\) 14.3750i 0.674652i
\(455\) −7.14949 7.64124i −0.335173 0.358227i
\(456\) 6.14860 + 4.34772i 0.287935 + 0.203601i
\(457\) 25.1188 + 25.1188i 1.17501 + 1.17501i 0.981000 + 0.194007i \(0.0621484\pi\)
0.194007 + 0.981000i \(0.437852\pi\)
\(458\) −9.48852 9.48852i −0.443369 0.443369i
\(459\) 37.9334 + 10.7292i 1.77058 + 0.500795i
\(460\) −15.0256 0.499557i −0.700570 0.0232920i
\(461\) 5.36953i 0.250084i 0.992151 + 0.125042i \(0.0399065\pi\)
−0.992151 + 0.125042i \(0.960093\pi\)
\(462\) 4.23483 0.726583i 0.197022 0.0338037i
\(463\) −4.97423 + 4.97423i −0.231172 + 0.231172i −0.813182 0.582010i \(-0.802267\pi\)
0.582010 + 0.813182i \(0.302267\pi\)
\(464\) 5.50825 0.255714
\(465\) 2.33991 3.08623i 0.108511 0.143120i
\(466\) 13.5071 0.625704
\(467\) −15.3051 + 15.3051i −0.708235 + 0.708235i −0.966164 0.257929i \(-0.916960\pi\)
0.257929 + 0.966164i \(0.416960\pi\)
\(468\) −6.68565 3.19301i −0.309044 0.147597i
\(469\) 14.8063i 0.683693i
\(470\) 8.46967 7.92460i 0.390677 0.365535i
\(471\) −16.2723 + 23.0125i −0.749789 + 1.06036i
\(472\) 8.04441 + 8.04441i 0.370274 + 0.370274i
\(473\) 4.58255 + 4.58255i 0.210706 + 0.210706i
\(474\) 4.64493 6.56892i 0.213349 0.301720i
\(475\) −21.6906 1.44390i −0.995233 0.0662505i
\(476\) 14.3761i 0.658930i
\(477\) 24.6965 + 11.7948i 1.13077 + 0.540049i
\(478\) −20.1480 + 20.1480i −0.921546 + 0.921546i
\(479\) −16.3832 −0.748569 −0.374284 0.927314i \(-0.622112\pi\)
−0.374284 + 0.927314i \(0.622112\pi\)
\(480\) 0.527726 + 3.83686i 0.0240873 + 0.175128i
\(481\) 6.98527 0.318501
\(482\) −7.40317 + 7.40317i −0.337205 + 0.337205i
\(483\) 21.7489 3.73152i 0.989610 0.169790i
\(484\) 9.28617i 0.422098i
\(485\) −0.157232 + 4.72918i −0.00713952 + 0.214741i
\(486\) 15.5563 1.00000i 0.705650 0.0453609i
\(487\) −7.85481 7.85481i −0.355935 0.355935i 0.506377 0.862312i \(-0.330984\pi\)
−0.862312 + 0.506377i \(0.830984\pi\)
\(488\) −8.87284 8.87284i −0.401655 0.401655i
\(489\) −0.210157 0.148604i −0.00950364 0.00672009i
\(490\) −0.253315 + 7.61916i −0.0114436 + 0.344198i
\(491\) 34.0475i 1.53654i 0.640126 + 0.768270i \(0.278882\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(492\) −0.823854 4.80177i −0.0371422 0.216481i
\(493\) 29.5495 29.5495i 1.33084 1.33084i
\(494\) −10.7374 −0.483099
\(495\) −4.04594 + 7.79442i −0.181851 + 0.350333i
\(496\) −1.00000 −0.0449013
\(497\) −13.8650 + 13.8650i −0.621932 + 0.621932i
\(498\) −4.67525 27.2494i −0.209503 1.22107i
\(499\) 0.442369i 0.0198031i 0.999951 + 0.00990157i \(0.00315182\pi\)
−0.999951 + 0.00990157i \(0.996848\pi\)
\(500\) −7.07950 8.65336i −0.316605 0.386990i
\(501\) 1.77423 + 1.25457i 0.0792666 + 0.0560500i
\(502\) −19.6685 19.6685i −0.877848 0.877848i
\(503\) −0.431356 0.431356i −0.0192332 0.0192332i 0.697425 0.716658i \(-0.254329\pi\)
−0.716658 + 0.697425i \(0.754329\pi\)
\(504\) −1.89492 5.35965i −0.0844065 0.238738i
\(505\) 21.9853 20.5704i 0.978332 0.915372i
\(506\) 8.80177i 0.391286i
\(507\) −11.7803 + 2.02118i −0.523182 + 0.0897639i
\(508\) −2.40811 + 2.40811i −0.106843 + 0.106843i
\(509\) −11.4584 −0.507882 −0.253941 0.967220i \(-0.581727\pi\)
−0.253941 + 0.967220i \(0.581727\pi\)
\(510\) 23.4142 + 17.7521i 1.03680 + 0.786078i
\(511\) 5.01193 0.221715
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 19.7192 11.0238i 0.870625 0.486712i
\(514\) 6.52182i 0.287665i
\(515\) 32.8796 + 1.09315i 1.44885 + 0.0481700i
\(516\) 4.95037 7.00089i 0.217928 0.308197i
\(517\) −4.80177 4.80177i −0.211182 0.211182i
\(518\) 3.78984 + 3.78984i 0.166516 + 0.166516i
\(519\) −23.8566 + 33.7383i −1.04719 + 1.48095i
\(520\) −3.77297 4.03248i −0.165456 0.176836i
\(521\) 28.0633i 1.22948i 0.788731 + 0.614738i \(0.210738\pi\)
−0.788731 + 0.614738i \(0.789262\pi\)
\(522\) 7.12158 14.9114i 0.311703 0.652655i
\(523\) 17.9033 17.9033i 0.782858 0.782858i −0.197454 0.980312i \(-0.563267\pi\)
0.980312 + 0.197454i \(0.0632672\pi\)
\(524\) 8.82321 0.385444
\(525\) 12.7402 + 10.3437i 0.556029 + 0.451435i
\(526\) 1.67372 0.0729778
\(527\) −5.36459 + 5.36459i −0.233685 + 0.233685i
\(528\) 2.23483 0.383437i 0.0972586 0.0166869i
\(529\) 22.2034i 0.965366i
\(530\) 13.9372 + 14.8958i 0.605393 + 0.647033i
\(531\) 32.1776 11.3765i 1.39639 0.493699i
\(532\) −5.82556 5.82556i −0.252570 0.252570i
\(533\) 4.91206 + 4.91206i 0.212765 + 0.212765i
\(534\) −10.1265 7.16053i −0.438217 0.309866i
\(535\) 25.6594 + 0.853103i 1.10935 + 0.0368829i
\(536\) 7.81370i 0.337500i
\(537\) 3.62080 + 21.1036i 0.156249 + 0.910685i
\(538\) 1.30331 1.30331i 0.0561896 0.0561896i
\(539\) 4.46320 0.192244
\(540\) 11.0691 + 3.53204i 0.476338 + 0.151995i
\(541\) −15.0757 −0.648156 −0.324078 0.946030i \(-0.605054\pi\)
−0.324078 + 0.946030i \(0.605054\pi\)
\(542\) −11.2311 + 11.2311i −0.482419 + 0.482419i
\(543\) 0.00170666 + 0.00994714i 7.32397e−5 + 0.000426873i
\(544\) 7.58667i 0.325276i
\(545\) 0.498736 0.466640i 0.0213635 0.0199887i
\(546\) 6.61827 + 4.67982i 0.283236 + 0.200278i
\(547\) 11.0600 + 11.0600i 0.472893 + 0.472893i 0.902849 0.429957i \(-0.141471\pi\)
−0.429957 + 0.902849i \(0.641471\pi\)
\(548\) 12.2546 + 12.2546i 0.523489 + 0.523489i
\(549\) −35.4914 + 12.5481i −1.51473 + 0.535539i
\(550\) −4.92570 + 4.31084i −0.210032 + 0.183815i
\(551\) 23.9483i 1.02023i
\(552\) 11.4775 1.96922i 0.488514 0.0838157i
\(553\) −6.22379 + 6.22379i −0.264663 + 0.264663i
\(554\) −1.65344 −0.0702480
\(555\) −10.8523 + 1.49264i −0.460654 + 0.0633589i
\(556\) −10.0563 −0.426484
\(557\) 9.15272 9.15272i 0.387813 0.387813i −0.486093 0.873907i \(-0.661579\pi\)
0.873907 + 0.486093i \(0.161579\pi\)
\(558\) −1.29289 + 2.70711i −0.0547325 + 0.114601i
\(559\) 12.2258i 0.517095i
\(560\) 0.140796 4.23483i 0.00594972 0.178954i
\(561\) 9.93198 14.0459i 0.419328 0.593020i
\(562\) −4.02386 4.02386i −0.169736 0.169736i
\(563\) −23.0321 23.0321i −0.970688 0.970688i 0.0288945 0.999582i \(-0.490801\pi\)
−0.999582 + 0.0288945i \(0.990801\pi\)
\(564\) −5.18719 + 7.33579i −0.218420 + 0.308893i
\(565\) 0.158825 4.77709i 0.00668181 0.200974i
\(566\) 0.834895i 0.0350933i
\(567\) −16.9591 1.79970i −0.712214 0.0755802i
\(568\) −7.31694 + 7.31694i −0.307012 + 0.307012i
\(569\) −19.7684 −0.828733 −0.414367 0.910110i \(-0.635997\pi\)
−0.414367 + 0.910110i \(0.635997\pi\)
\(570\) 16.6816 2.29441i 0.698715 0.0961021i
\(571\) 28.0308 1.17305 0.586527 0.809930i \(-0.300495\pi\)
0.586527 + 0.809930i \(0.300495\pi\)
\(572\) −2.28617 + 2.28617i −0.0955894 + 0.0955894i
\(573\) −7.82629 + 1.34278i −0.326948 + 0.0560954i
\(574\) 5.33006i 0.222472i
\(575\) −25.2970 + 22.1393i −1.05496 + 0.923271i
\(576\) −1.00000 2.82843i −0.0416667 0.117851i
\(577\) −28.9740 28.9740i −1.20620 1.20620i −0.972248 0.233954i \(-0.924834\pi\)
−0.233954 0.972248i \(-0.575166\pi\)
\(578\) −28.6786 28.6786i −1.19287 1.19287i
\(579\) −33.9025 23.9727i −1.40894 0.996272i
\(580\) 8.99390 8.41510i 0.373451 0.349418i
\(581\) 30.2473i 1.25487i
\(582\) −0.619797 3.61244i −0.0256914 0.149741i
\(583\) 8.44499 8.44499i 0.349756 0.349756i
\(584\) 2.64493 0.109448
\(585\) −15.7944 + 5.00027i −0.653019 + 0.206736i
\(586\) −7.21446 −0.298026
\(587\) −15.8009 + 15.8009i −0.652172 + 0.652172i −0.953516 0.301343i \(-0.902565\pi\)
0.301343 + 0.953516i \(0.402565\pi\)
\(588\) −0.998553 5.81999i −0.0411796 0.240012i
\(589\) 4.34772i 0.179145i
\(590\) 25.4246 + 0.845296i 1.04671 + 0.0348003i
\(591\) 21.2193 + 15.0043i 0.872845 + 0.617194i
\(592\) 2.00000 + 2.00000i 0.0821995 + 0.0821995i
\(593\) 14.7665 + 14.7665i 0.606387 + 0.606387i 0.942000 0.335613i \(-0.108943\pi\)
−0.335613 + 0.942000i \(0.608943\pi\)
\(594\) 1.85140 6.54567i 0.0759637 0.268572i
\(595\) −21.9628 23.4734i −0.900388 0.962317i
\(596\) 18.7711i 0.768893i
\(597\) 7.98698 1.37035i 0.326885 0.0560846i
\(598\) −11.7411 + 11.7411i −0.480129 + 0.480129i
\(599\) 41.7822 1.70718 0.853588 0.520949i \(-0.174422\pi\)
0.853588 + 0.520949i \(0.174422\pi\)
\(600\) 6.72335 + 5.45862i 0.274480 + 0.222847i
\(601\) −6.41153 −0.261532 −0.130766 0.991413i \(-0.541744\pi\)
−0.130766 + 0.991413i \(0.541744\pi\)
\(602\) −6.63306 + 6.63306i −0.270344 + 0.270344i
\(603\) −21.1525 10.1023i −0.861397 0.411397i
\(604\) 4.51902i 0.183876i
\(605\) −14.1867 15.1625i −0.576772 0.616443i
\(606\) −13.4647 + 19.0420i −0.546967 + 0.773528i
\(607\) −22.7744 22.7744i −0.924385 0.924385i 0.0729509 0.997336i \(-0.476758\pi\)
−0.997336 + 0.0729509i \(0.976758\pi\)
\(608\) −3.07430 3.07430i −0.124679 0.124679i
\(609\) −10.4377 + 14.7611i −0.422957 + 0.598152i
\(610\) −28.0429 0.932346i −1.13542 0.0377496i
\(611\) 12.8106i 0.518262i
\(612\) −20.5379 9.80876i −0.830197 0.396496i
\(613\) 31.6523 31.6523i 1.27842 1.27842i 0.336872 0.941550i \(-0.390631\pi\)
0.941550 0.336872i \(-0.109369\pi\)
\(614\) 9.38350 0.378687
\(615\) −8.68098 6.58173i −0.350051 0.265401i
\(616\) −2.48071 −0.0999506
\(617\) 25.0215 25.0215i 1.00733 1.00733i 0.00735502 0.999973i \(-0.497659\pi\)
0.999973 0.00735502i \(-0.00234120\pi\)
\(618\) −25.1155 + 4.30913i −1.01029 + 0.173339i
\(619\) 13.5269i 0.543692i −0.962341 0.271846i \(-0.912366\pi\)
0.962341 0.271846i \(-0.0876341\pi\)
\(620\) −1.63280 + 1.52773i −0.0655750 + 0.0613550i
\(621\) 9.50825 33.6167i 0.381553 1.34899i
\(622\) 16.5719 + 16.5719i 0.664474 + 0.664474i
\(623\) 9.59448 + 9.59448i 0.384395 + 0.384395i
\(624\) 3.49264 + 2.46967i 0.139817 + 0.0988658i
\(625\) −24.7794 3.31371i −0.991177 0.132548i
\(626\) 9.10838i 0.364044i
\(627\) −1.66708 9.71643i −0.0665766 0.388037i
\(628\) 11.5063 11.5063i 0.459150 0.459150i
\(629\) 21.4584 0.855600
\(630\) −11.2821 5.85634i −0.449490 0.233322i
\(631\) −7.61854 −0.303289 −0.151645 0.988435i \(-0.548457\pi\)
−0.151645 + 0.988435i \(0.548457\pi\)
\(632\) −3.28446 + 3.28446i −0.130649 + 0.130649i
\(633\) −3.32582 19.3843i −0.132190 0.770458i
\(634\) 26.8679i 1.06706i
\(635\) −0.253041 + 7.61092i −0.0100416 + 0.302030i
\(636\) −12.9016 9.12283i −0.511583 0.361744i
\(637\) 5.95367 + 5.95367i 0.235893 + 0.235893i
\(638\) −5.09898 5.09898i −0.201870 0.201870i
\(639\) 10.3477 + 29.2678i 0.409349 + 1.15782i
\(640\) 0.0743018 2.23483i 0.00293704 0.0883395i
\(641\) 27.0147i 1.06702i 0.845795 + 0.533509i \(0.179127\pi\)
−0.845795 + 0.533509i \(0.820873\pi\)
\(642\) −19.6003 + 3.36288i −0.773562 + 0.132722i
\(643\) −22.7661 + 22.7661i −0.897805 + 0.897805i −0.995242 0.0974363i \(-0.968936\pi\)
0.0974363 + 0.995242i \(0.468936\pi\)
\(644\) −12.7402 −0.502035
\(645\) −2.61244 18.9939i −0.102865 0.747884i
\(646\) −32.9847 −1.29777
\(647\) 1.65399 1.65399i 0.0650250 0.0650250i −0.673846 0.738871i \(-0.735359\pi\)
0.738871 + 0.673846i \(0.235359\pi\)
\(648\) −8.94975 0.949747i −0.351579 0.0373096i
\(649\) 14.8934i 0.584617i
\(650\) −12.3211 0.820187i −0.483272 0.0321704i
\(651\) 1.89492 2.67982i 0.0742678 0.105031i
\(652\) 0.105079 + 0.105079i 0.00411520 + 0.00411520i
\(653\) −21.6841 21.6841i −0.848565 0.848565i 0.141389 0.989954i \(-0.454843\pi\)
−0.989954 + 0.141389i \(0.954843\pi\)
\(654\) −0.305448 + 0.431968i −0.0119439 + 0.0168913i
\(655\) 14.4066 13.4795i 0.562912 0.526686i
\(656\) 2.81281i 0.109822i
\(657\) 3.41961 7.16010i 0.133412 0.279342i
\(658\) 6.95037 6.95037i 0.270954 0.270954i
\(659\) −16.5520 −0.644776 −0.322388 0.946608i \(-0.604486\pi\)
−0.322388 + 0.946608i \(0.604486\pi\)
\(660\) 3.06326 4.04029i 0.119237 0.157268i
\(661\) −37.1356 −1.44441 −0.722205 0.691679i \(-0.756871\pi\)
−0.722205 + 0.691679i \(0.756871\pi\)
\(662\) 2.86244 2.86244i 0.111252 0.111252i
\(663\) 31.9853 5.48781i 1.24221 0.213129i
\(664\) 15.9623i 0.619457i
\(665\) −18.4119 0.612142i −0.713982 0.0237378i
\(666\) 8.00000 2.82843i 0.309994 0.109599i
\(667\) −26.1869 26.1869i −1.01396 1.01396i
\(668\) −0.887114 0.887114i −0.0343235 0.0343235i
\(669\) 22.1226 + 15.6430i 0.855308 + 0.604794i
\(670\) −11.9372 12.7582i −0.461174 0.492894i
\(671\) 16.4271i 0.634163i
\(672\) 0.555010 + 3.23483i 0.0214100 + 0.124786i
\(673\) −18.2328 + 18.2328i −0.702821 + 0.702821i −0.965015 0.262194i \(-0.915554\pi\)
0.262194 + 0.965015i \(0.415554\pi\)
\(674\) 8.58453 0.330664
\(675\) 23.4697 11.1434i 0.903347 0.428910i
\(676\) 6.90075 0.265413
\(677\) −25.1358 + 25.1358i −0.966048 + 0.966048i −0.999442 0.0333940i \(-0.989368\pi\)
0.0333940 + 0.999442i \(0.489368\pi\)
\(678\) 0.626077 + 3.64905i 0.0240444 + 0.140141i
\(679\) 4.00988i 0.153885i
\(680\) −11.5904 12.3876i −0.444470 0.475041i
\(681\) −20.3293 14.3750i −0.779021 0.550851i
\(682\) 0.925698 + 0.925698i 0.0354468 + 0.0354468i
\(683\) −13.0152 13.0152i −0.498011 0.498011i 0.412807 0.910818i \(-0.364548\pi\)
−0.910818 + 0.412807i \(0.864548\pi\)
\(684\) −12.2972 + 4.34772i −0.470195 + 0.166239i
\(685\) 38.7309 + 1.28769i 1.47983 + 0.0492002i
\(686\) 19.7248i 0.753095i
\(687\) 22.9073 3.93027i 0.873968 0.149949i
\(688\) −3.50044 + 3.50044i −0.133453 + 0.133453i
\(689\) 22.5304 0.858338
\(690\) 15.7320 20.7498i 0.598909 0.789931i
\(691\) −43.9053 −1.67024 −0.835119 0.550070i \(-0.814601\pi\)
−0.835119 + 0.550070i \(0.814601\pi\)
\(692\) 16.8692 16.8692i 0.641269 0.641269i
\(693\) −3.20729 + 6.71554i −0.121835 + 0.255102i
\(694\) 25.1118i 0.953231i
\(695\) −16.4200 + 15.3633i −0.622848 + 0.582764i
\(696\) −5.50825 + 7.78984i −0.208790 + 0.295273i
\(697\) 15.0896 + 15.0896i 0.571558 + 0.571558i
\(698\) −8.81980 8.81980i −0.333834 0.333834i
\(699\) −13.5071 + 19.1019i −0.510885 + 0.722501i
\(700\) −6.23977 7.12975i −0.235841 0.269479i
\(701\) 4.67181i 0.176452i 0.996100 + 0.0882259i \(0.0281197\pi\)
−0.996100 + 0.0882259i \(0.971880\pi\)
\(702\) 11.2013 6.26192i 0.422764 0.236341i
\(703\) 8.69544 8.69544i 0.327955 0.327955i
\(704\) −1.30913 −0.0493399
\(705\) 2.73742 + 19.9025i 0.103097 + 0.749572i
\(706\) 3.62437 0.136405
\(707\) 18.0415 18.0415i 0.678522 0.678522i
\(708\) −19.4209 + 3.33210i −0.729883 + 0.125228i
\(709\) 34.5708i 1.29833i −0.760646 0.649167i \(-0.775118\pi\)
0.760646 0.649167i \(-0.224882\pi\)
\(710\) −0.768854 + 23.1254i −0.0288546 + 0.867882i
\(711\) 4.64493 + 13.1378i 0.174198 + 0.492707i
\(712\) 5.06326 + 5.06326i 0.189754 + 0.189754i
\(713\) 4.75413 + 4.75413i 0.178043 + 0.178043i
\(714\) 20.3309 + 14.3761i 0.760866 + 0.538014i
\(715\) −0.240227 + 7.22550i −0.00898398 + 0.270218i
\(716\) 12.3622i 0.461996i
\(717\) −8.34556 48.6415i −0.311671 1.81655i
\(718\) −2.80958 + 2.80958i −0.104853 + 0.104853i
\(719\) 35.9553 1.34091 0.670453 0.741952i \(-0.266100\pi\)
0.670453 + 0.741952i \(0.266100\pi\)
\(720\) −5.95387 3.09054i −0.221888 0.115178i
\(721\) 27.8787 1.03826
\(722\) 0.0688276 0.0688276i 0.00256150 0.00256150i
\(723\) −3.06649 17.8728i −0.114044 0.664698i
\(724\) 0.00582690i 0.000216555i
\(725\) 1.82931 27.4804i 0.0679390 1.02060i
\(726\) 13.1326 + 9.28617i 0.487397 + 0.344642i
\(727\) 9.01238 + 9.01238i 0.334251 + 0.334251i 0.854198 0.519948i \(-0.174049\pi\)
−0.519948 + 0.854198i \(0.674049\pi\)
\(728\) −3.30913 3.30913i −0.122645 0.122645i
\(729\) −14.1421 + 23.0000i −0.523783 + 0.851852i
\(730\) 4.31865 4.04072i 0.159840 0.149554i
\(731\) 37.5569i 1.38909i
\(732\) 21.4209 3.67525i 0.791740 0.135841i
\(733\) −13.6035 + 13.6035i −0.502458 + 0.502458i −0.912201 0.409743i \(-0.865618\pi\)
0.409743 + 0.912201i \(0.365618\pi\)
\(734\) 25.4246 0.938440
\(735\) −10.5218 7.97740i −0.388102 0.294251i
\(736\) −6.72335 −0.247826
\(737\) −7.23313 + 7.23313i −0.266436 + 0.266436i
\(738\) 7.61458 + 3.63667i 0.280297 + 0.133868i
\(739\) 7.56118i 0.278142i −0.990282 0.139071i \(-0.955588\pi\)
0.990282 0.139071i \(-0.0444117\pi\)
\(740\) 6.32106 + 0.210157i 0.232367 + 0.00772553i
\(741\) 10.7374 15.1850i 0.394449 0.557835i
\(742\) 12.2238 + 12.2238i 0.448750 + 0.448750i
\(743\) 5.94778 + 5.94778i 0.218203 + 0.218203i 0.807741 0.589538i \(-0.200690\pi\)
−0.589538 + 0.807741i \(0.700690\pi\)
\(744\) 1.00000 1.41421i 0.0366618 0.0518476i
\(745\) −28.6770 30.6495i −1.05065 1.12291i
\(746\) 24.3256i 0.890625i
\(747\) 43.2117 + 20.6376i 1.58103 + 0.755089i
\(748\) −7.02297 + 7.02297i −0.256785 + 0.256785i
\(749\) 21.7567 0.794973
\(750\) 19.3172 1.35857i 0.705364 0.0496079i
\(751\) −16.5568 −0.604168 −0.302084 0.953281i \(-0.597682\pi\)
−0.302084 + 0.953281i \(0.597682\pi\)
\(752\) 3.66790 3.66790i 0.133754 0.133754i
\(753\) 47.4840 8.14696i 1.73041 0.296892i
\(754\) 13.6035i 0.495412i
\(755\) −6.90382 7.37868i −0.251256 0.268537i
\(756\) 9.47461 + 2.67982i 0.344588 + 0.0974642i
\(757\) −34.3170 34.3170i −1.24727 1.24727i −0.956919 0.290353i \(-0.906227\pi\)
−0.290353 0.956919i \(-0.593773\pi\)
\(758\) −10.2459 10.2459i −0.372147 0.372147i
\(759\) −12.4476 8.80177i −0.451819 0.319484i
\(760\) −9.71643 0.323043i −0.352452 0.0117180i
\(761\) 3.62624i 0.131451i 0.997838 + 0.0657255i \(0.0209362\pi\)
−0.997838 + 0.0657255i \(0.979064\pi\)
\(762\) −0.997473 5.81370i −0.0361346 0.210608i
\(763\) 0.409273 0.409273i 0.0148167 0.0148167i
\(764\) 4.58453 0.165863
\(765\) −48.5195 + 15.3606i −1.75423 + 0.555362i
\(766\) 35.0113 1.26501
\(767\) 19.8670 19.8670i 0.717356 0.717356i
\(768\) 0.292893 + 1.70711i 0.0105689 + 0.0615999i
\(769\) 1.52093i 0.0548462i 0.999624