Properties

Label 930.2.j.c.683.1
Level $930$
Weight $2$
Character 930.683
Analytic conductor $7.426$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(497,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.497");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1698758656.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 683.1
Root \(-2.16053i\) of defining polynomial
Character \(\chi\) \(=\) 930.683
Dual form 930.2.j.c.497.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(-1.70711 + 0.292893i) q^{3} +1.00000i q^{4} +(-2.23483 - 0.0743018i) q^{5} +(1.41421 + 1.00000i) q^{6} +(0.218591 - 0.218591i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.82843 - 1.00000i) q^{9} +(1.52773 + 1.63280i) q^{10} -0.894921i q^{11} +(-0.292893 - 1.70711i) q^{12} +(3.57474 + 3.57474i) q^{13} -0.309135 q^{14} +(3.83686 - 0.527726i) q^{15} -1.00000 q^{16} +(-4.36459 - 4.36459i) q^{17} +(-2.70711 - 1.29289i) q^{18} -6.55178i q^{19} +(0.0743018 - 2.23483i) q^{20} +(-0.309135 + 0.437183i) q^{21} +(-0.632805 + 0.632805i) q^{22} +(-3.19562 + 3.19562i) q^{23} +(-1.00000 + 1.41421i) q^{24} +(4.98896 + 0.332104i) q^{25} -5.05545i q^{26} +(-4.53553 + 2.53553i) q^{27} +(0.218591 + 0.218591i) q^{28} +2.39124 q^{29} +(-3.08623 - 2.33991i) q^{30} +1.00000 q^{31} +(0.707107 + 0.707107i) q^{32} +(0.262116 + 1.52773i) q^{33} +6.17246i q^{34} +(-0.504757 + 0.472274i) q^{35} +(1.00000 + 2.82843i) q^{36} +(-2.00000 + 2.00000i) q^{37} +(-4.63280 + 4.63280i) q^{38} +(-7.14949 - 5.05545i) q^{39} +(-1.63280 + 1.52773i) q^{40} +4.71231i q^{41} +(0.527726 - 0.0905435i) q^{42} +(-3.37912 - 3.37912i) q^{43} +0.894921 q^{44} +(-6.39536 + 2.02468i) q^{45} +4.51929 q^{46} +(8.98896 + 8.98896i) q^{47} +(1.70711 - 0.292893i) q^{48} +6.90444i q^{49} +(-3.29289 - 3.76256i) q^{50} +(8.72918 + 6.17246i) q^{51} +(-3.57474 + 3.57474i) q^{52} +(-10.1579 + 10.1579i) q^{53} +(5.00000 + 1.41421i) q^{54} +(-0.0664943 + 2.00000i) q^{55} -0.309135i q^{56} +(1.91897 + 11.1846i) q^{57} +(-1.69087 - 1.69087i) q^{58} -6.79073 q^{59} +(0.527726 + 3.83686i) q^{60} -5.61916 q^{61} +(-0.707107 - 0.707107i) q^{62} +(0.399678 - 0.836861i) q^{63} -1.00000i q^{64} +(-7.72335 - 8.25457i) q^{65} +(0.894921 - 1.26561i) q^{66} +(-9.52512 + 9.52512i) q^{67} +(4.36459 - 4.36459i) q^{68} +(4.51929 - 6.39124i) q^{69} +(0.690865 + 0.0229693i) q^{70} -12.5518i q^{71} +(1.29289 - 2.70711i) q^{72} +(-7.83686 - 7.83686i) q^{73} +2.82843 q^{74} +(-8.61396 + 0.894295i) q^{75} +6.55178 q^{76} +(-0.195622 - 0.195622i) q^{77} +(1.48071 + 8.63020i) q^{78} +13.0830i q^{79} +(2.23483 + 0.0743018i) q^{80} +(7.00000 - 5.65685i) q^{81} +(3.33210 - 3.33210i) q^{82} +(-1.55913 + 1.55913i) q^{83} +(-0.437183 - 0.309135i) q^{84} +(9.42983 + 10.0784i) q^{85} +4.77880i q^{86} +(-4.08211 + 0.700379i) q^{87} +(-0.632805 - 0.632805i) q^{88} +1.83947 q^{89} +(5.95387 + 3.09054i) q^{90} +1.56282 q^{91} +(-3.19562 - 3.19562i) q^{92} +(-1.70711 + 0.292893i) q^{93} -12.7123i q^{94} +(-0.486809 + 14.6421i) q^{95} +(-1.41421 - 1.00000i) q^{96} +(-6.81739 + 6.81739i) q^{97} +(4.88217 - 4.88217i) q^{98} +(-0.894921 - 2.53122i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 4 q^{7} - 8 q^{12} - 4 q^{13} + 12 q^{14} + 4 q^{15} - 8 q^{16} + 4 q^{17} - 16 q^{18} + 4 q^{20} + 12 q^{21} + 4 q^{22} - 12 q^{23} - 8 q^{24} - 4 q^{25} - 8 q^{27} + 4 q^{28} - 8 q^{29}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) −1.70711 + 0.292893i −0.985599 + 0.169102i
\(4\) 1.00000i 0.500000i
\(5\) −2.23483 0.0743018i −0.999448 0.0332288i
\(6\) 1.41421 + 1.00000i 0.577350 + 0.408248i
\(7\) 0.218591 0.218591i 0.0826198 0.0826198i −0.664589 0.747209i \(-0.731393\pi\)
0.747209 + 0.664589i \(0.231393\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 1.52773 + 1.63280i 0.483109 + 0.516338i
\(11\) 0.894921i 0.269829i −0.990857 0.134914i \(-0.956924\pi\)
0.990857 0.134914i \(-0.0430760\pi\)
\(12\) −0.292893 1.70711i −0.0845510 0.492799i
\(13\) 3.57474 + 3.57474i 0.991456 + 0.991456i 0.999964 0.00850795i \(-0.00270820\pi\)
−0.00850795 + 0.999964i \(0.502708\pi\)
\(14\) −0.309135 −0.0826198
\(15\) 3.83686 0.527726i 0.990673 0.136258i
\(16\) −1.00000 −0.250000
\(17\) −4.36459 4.36459i −1.05857 1.05857i −0.998175 0.0603934i \(-0.980764\pi\)
−0.0603934 0.998175i \(-0.519236\pi\)
\(18\) −2.70711 1.29289i −0.638071 0.304738i
\(19\) 6.55178i 1.50308i −0.659687 0.751540i \(-0.729311\pi\)
0.659687 0.751540i \(-0.270689\pi\)
\(20\) 0.0743018 2.23483i 0.0166144 0.499724i
\(21\) −0.309135 + 0.437183i −0.0674588 + 0.0954011i
\(22\) −0.632805 + 0.632805i −0.134914 + 0.134914i
\(23\) −3.19562 + 3.19562i −0.666333 + 0.666333i −0.956865 0.290532i \(-0.906168\pi\)
0.290532 + 0.956865i \(0.406168\pi\)
\(24\) −1.00000 + 1.41421i −0.204124 + 0.288675i
\(25\) 4.98896 + 0.332104i 0.997792 + 0.0664208i
\(26\) 5.05545i 0.991456i
\(27\) −4.53553 + 2.53553i −0.872864 + 0.487964i
\(28\) 0.218591 + 0.218591i 0.0413099 + 0.0413099i
\(29\) 2.39124 0.444043 0.222021 0.975042i \(-0.428734\pi\)
0.222021 + 0.975042i \(0.428734\pi\)
\(30\) −3.08623 2.33991i −0.563466 0.427207i
\(31\) 1.00000 0.179605
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0.262116 + 1.52773i 0.0456286 + 0.265943i
\(34\) 6.17246i 1.05857i
\(35\) −0.504757 + 0.472274i −0.0853195 + 0.0798288i
\(36\) 1.00000 + 2.82843i 0.166667 + 0.471405i
\(37\) −2.00000 + 2.00000i −0.328798 + 0.328798i −0.852129 0.523331i \(-0.824689\pi\)
0.523331 + 0.852129i \(0.324689\pi\)
\(38\) −4.63280 + 4.63280i −0.751540 + 0.751540i
\(39\) −7.14949 5.05545i −1.14483 0.809520i
\(40\) −1.63280 + 1.52773i −0.258169 + 0.241555i
\(41\) 4.71231i 0.735939i 0.929838 + 0.367969i \(0.119947\pi\)
−0.929838 + 0.367969i \(0.880053\pi\)
\(42\) 0.527726 0.0905435i 0.0814299 0.0139712i
\(43\) −3.37912 3.37912i −0.515311 0.515311i 0.400838 0.916149i \(-0.368719\pi\)
−0.916149 + 0.400838i \(0.868719\pi\)
\(44\) 0.894921 0.134914
\(45\) −6.39536 + 2.02468i −0.953365 + 0.301821i
\(46\) 4.51929 0.666333
\(47\) 8.98896 + 8.98896i 1.31117 + 1.31117i 0.920550 + 0.390624i \(0.127741\pi\)
0.390624 + 0.920550i \(0.372259\pi\)
\(48\) 1.70711 0.292893i 0.246400 0.0422755i
\(49\) 6.90444i 0.986348i
\(50\) −3.29289 3.76256i −0.465685 0.532106i
\(51\) 8.72918 + 6.17246i 1.22233 + 0.864317i
\(52\) −3.57474 + 3.57474i −0.495728 + 0.495728i
\(53\) −10.1579 + 10.1579i −1.39530 + 1.39530i −0.582385 + 0.812913i \(0.697880\pi\)
−0.812913 + 0.582385i \(0.802120\pi\)
\(54\) 5.00000 + 1.41421i 0.680414 + 0.192450i
\(55\) −0.0664943 + 2.00000i −0.00896609 + 0.269680i
\(56\) 0.309135i 0.0413099i
\(57\) 1.91897 + 11.1846i 0.254174 + 1.48143i
\(58\) −1.69087 1.69087i −0.222021 0.222021i
\(59\) −6.79073 −0.884078 −0.442039 0.896996i \(-0.645745\pi\)
−0.442039 + 0.896996i \(0.645745\pi\)
\(60\) 0.527726 + 3.83686i 0.0681292 + 0.495337i
\(61\) −5.61916 −0.719459 −0.359730 0.933057i \(-0.617131\pi\)
−0.359730 + 0.933057i \(0.617131\pi\)
\(62\) −0.707107 0.707107i −0.0898027 0.0898027i
\(63\) 0.399678 0.836861i 0.0503548 0.105435i
\(64\) 1.00000i 0.125000i
\(65\) −7.72335 8.25457i −0.957963 1.02385i
\(66\) 0.894921 1.26561i 0.110157 0.155786i
\(67\) −9.52512 + 9.52512i −1.16368 + 1.16368i −0.180015 + 0.983664i \(0.557614\pi\)
−0.983664 + 0.180015i \(0.942386\pi\)
\(68\) 4.36459 4.36459i 0.529284 0.529284i
\(69\) 4.51929 6.39124i 0.544059 0.769415i
\(70\) 0.690865 + 0.0229693i 0.0825742 + 0.00274535i
\(71\) 12.5518i 1.48962i −0.667276 0.744811i \(-0.732540\pi\)
0.667276 0.744811i \(-0.267460\pi\)
\(72\) 1.29289 2.70711i 0.152369 0.319036i
\(73\) −7.83686 7.83686i −0.917235 0.917235i 0.0795923 0.996828i \(-0.474638\pi\)
−0.996828 + 0.0795923i \(0.974638\pi\)
\(74\) 2.82843 0.328798
\(75\) −8.61396 + 0.894295i −0.994654 + 0.103264i
\(76\) 6.55178 0.751540
\(77\) −0.195622 0.195622i −0.0222932 0.0222932i
\(78\) 1.48071 + 8.63020i 0.167657 + 0.977177i
\(79\) 13.0830i 1.47195i 0.677008 + 0.735976i \(0.263276\pi\)
−0.677008 + 0.735976i \(0.736724\pi\)
\(80\) 2.23483 + 0.0743018i 0.249862 + 0.00830719i
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 3.33210 3.33210i 0.367969 0.367969i
\(83\) −1.55913 + 1.55913i −0.171137 + 0.171137i −0.787479 0.616342i \(-0.788614\pi\)
0.616342 + 0.787479i \(0.288614\pi\)
\(84\) −0.437183 0.309135i −0.0477006 0.0337294i
\(85\) 9.42983 + 10.0784i 1.02281 + 1.09316i
\(86\) 4.77880i 0.515311i
\(87\) −4.08211 + 0.700379i −0.437648 + 0.0750885i
\(88\) −0.632805 0.632805i −0.0674572 0.0674572i
\(89\) 1.83947 0.194983 0.0974916 0.995236i \(-0.468918\pi\)
0.0974916 + 0.995236i \(0.468918\pi\)
\(90\) 5.95387 + 3.09054i 0.627593 + 0.325772i
\(91\) 1.56282 0.163828
\(92\) −3.19562 3.19562i −0.333167 0.333167i
\(93\) −1.70711 + 0.292893i −0.177019 + 0.0303716i
\(94\) 12.7123i 1.31117i
\(95\) −0.486809 + 14.6421i −0.0499455 + 1.50225i
\(96\) −1.41421 1.00000i −0.144338 0.102062i
\(97\) −6.81739 + 6.81739i −0.692201 + 0.692201i −0.962716 0.270515i \(-0.912806\pi\)
0.270515 + 0.962716i \(0.412806\pi\)
\(98\) 4.88217 4.88217i 0.493174 0.493174i
\(99\) −0.894921 2.53122i −0.0899430 0.254397i
\(100\) −0.332104 + 4.98896i −0.0332104 + 0.498896i
\(101\) 9.43477i 0.938795i 0.882987 + 0.469397i \(0.155529\pi\)
−0.882987 + 0.469397i \(0.844471\pi\)
\(102\) −1.80787 10.5370i −0.179006 1.04332i
\(103\) −5.08211 5.08211i −0.500755 0.500755i 0.410917 0.911673i \(-0.365208\pi\)
−0.911673 + 0.410917i \(0.865208\pi\)
\(104\) 5.05545 0.495728
\(105\) 0.723349 0.954061i 0.0705916 0.0931069i
\(106\) 14.3655 1.39530
\(107\) −3.16897 3.16897i −0.306355 0.306355i 0.537139 0.843494i \(-0.319505\pi\)
−0.843494 + 0.537139i \(0.819505\pi\)
\(108\) −2.53553 4.53553i −0.243982 0.436432i
\(109\) 17.8618i 1.71085i 0.517927 + 0.855425i \(0.326704\pi\)
−0.517927 + 0.855425i \(0.673296\pi\)
\(110\) 1.46123 1.36720i 0.139323 0.130357i
\(111\) 2.82843 4.00000i 0.268462 0.379663i
\(112\) −0.218591 + 0.218591i −0.0206549 + 0.0206549i
\(113\) 0.0470185 0.0470185i 0.00442313 0.00442313i −0.704892 0.709315i \(-0.749004\pi\)
0.709315 + 0.704892i \(0.249004\pi\)
\(114\) 6.55178 9.26561i 0.613630 0.867804i
\(115\) 7.37912 6.90424i 0.688107 0.643824i
\(116\) 2.39124i 0.222021i
\(117\) 13.6857 + 6.53616i 1.26524 + 0.604268i
\(118\) 4.80177 + 4.80177i 0.442039 + 0.442039i
\(119\) −1.90812 −0.174917
\(120\) 2.33991 3.08623i 0.213604 0.281733i
\(121\) 10.1991 0.927192
\(122\) 3.97334 + 3.97334i 0.359730 + 0.359730i
\(123\) −1.38020 8.04441i −0.124449 0.725340i
\(124\) 1.00000i 0.0898027i
\(125\) −11.1248 1.11289i −0.995034 0.0995396i
\(126\) −0.874366 + 0.309135i −0.0778947 + 0.0275399i
\(127\) 6.40811 6.40811i 0.568628 0.568628i −0.363116 0.931744i \(-0.618287\pi\)
0.931744 + 0.363116i \(0.118287\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 6.75825 + 4.77880i 0.595030 + 0.420750i
\(130\) −0.375629 + 11.2981i −0.0329449 + 0.990908i
\(131\) 13.7521i 1.20153i −0.799426 0.600765i \(-0.794863\pi\)
0.799426 0.600765i \(-0.205137\pi\)
\(132\) −1.52773 + 0.262116i −0.132972 + 0.0228143i
\(133\) −1.43216 1.43216i −0.124184 0.124184i
\(134\) 13.4706 1.16368
\(135\) 10.3246 5.32950i 0.888596 0.458690i
\(136\) −6.17246 −0.529284
\(137\) 3.81650 + 3.81650i 0.326066 + 0.326066i 0.851088 0.525023i \(-0.175943\pi\)
−0.525023 + 0.851088i \(0.675943\pi\)
\(138\) −7.71491 + 1.32367i −0.656737 + 0.112678i
\(139\) 11.2279i 0.952339i −0.879354 0.476170i \(-0.842025\pi\)
0.879354 0.476170i \(-0.157975\pi\)
\(140\) −0.472274 0.504757i −0.0399144 0.0426598i
\(141\) −17.9779 12.7123i −1.51401 1.07057i
\(142\) −8.87545 + 8.87545i −0.744811 + 0.744811i
\(143\) 3.19912 3.19912i 0.267523 0.267523i
\(144\) −2.82843 + 1.00000i −0.235702 + 0.0833333i
\(145\) −5.34403 0.177674i −0.443798 0.0147550i
\(146\) 11.0830i 0.917235i
\(147\) −2.02226 11.7866i −0.166793 0.972143i
\(148\) −2.00000 2.00000i −0.164399 0.164399i
\(149\) 17.1853 1.40787 0.703936 0.710263i \(-0.251424\pi\)
0.703936 + 0.710263i \(0.251424\pi\)
\(150\) 6.72335 + 5.45862i 0.548959 + 0.445695i
\(151\) −19.3474 −1.57447 −0.787236 0.616651i \(-0.788489\pi\)
−0.787236 + 0.616651i \(0.788489\pi\)
\(152\) −4.63280 4.63280i −0.375770 0.375770i
\(153\) −16.7095 7.98033i −1.35088 0.645171i
\(154\) 0.276651i 0.0222932i
\(155\) −2.23483 0.0743018i −0.179506 0.00596806i
\(156\) 5.05545 7.14949i 0.404760 0.572417i
\(157\) −12.6276 + 12.6276i −1.00779 + 1.00779i −0.00782202 + 0.999969i \(0.502490\pi\)
−0.999969 + 0.00782202i \(0.997510\pi\)
\(158\) 9.25107 9.25107i 0.735976 0.735976i
\(159\) 14.3655 20.3158i 1.13926 1.61115i
\(160\) −1.52773 1.63280i −0.120777 0.129085i
\(161\) 1.39707i 0.110105i
\(162\) −8.94975 0.949747i −0.703159 0.0746192i
\(163\) −2.30913 2.30913i −0.180865 0.180865i 0.610867 0.791733i \(-0.290821\pi\)
−0.791733 + 0.610867i \(0.790821\pi\)
\(164\) −4.71231 −0.367969
\(165\) −0.472274 3.43369i −0.0367665 0.267312i
\(166\) 2.20494 0.171137
\(167\) 5.07950 + 5.07950i 0.393064 + 0.393064i 0.875778 0.482714i \(-0.160349\pi\)
−0.482714 + 0.875778i \(0.660349\pi\)
\(168\) 0.0905435 + 0.527726i 0.00698559 + 0.0407150i
\(169\) 12.5576i 0.965969i
\(170\) 0.458625 13.7944i 0.0351749 1.05798i
\(171\) −6.55178 18.5312i −0.501027 1.41712i
\(172\) 3.37912 3.37912i 0.257656 0.257656i
\(173\) 11.9402 11.9402i 0.907798 0.907798i −0.0882962 0.996094i \(-0.528142\pi\)
0.996094 + 0.0882962i \(0.0281422\pi\)
\(174\) 3.38173 + 2.39124i 0.256368 + 0.181280i
\(175\) 1.16314 1.01795i 0.0879250 0.0769497i
\(176\) 0.894921i 0.0674572i
\(177\) 11.5925 1.98896i 0.871346 0.149499i
\(178\) −1.30070 1.30070i −0.0974916 0.0974916i
\(179\) −9.77996 −0.730989 −0.365494 0.930814i \(-0.619100\pi\)
−0.365494 + 0.930814i \(0.619100\pi\)
\(180\) −2.02468 6.39536i −0.150910 0.476682i
\(181\) −17.2485 −1.28207 −0.641034 0.767512i \(-0.721494\pi\)
−0.641034 + 0.767512i \(0.721494\pi\)
\(182\) −1.10508 1.10508i −0.0819139 0.0819139i
\(183\) 9.59250 1.64581i 0.709098 0.121662i
\(184\) 4.51929i 0.333167i
\(185\) 4.61827 4.32106i 0.339542 0.317691i
\(186\) 1.41421 + 1.00000i 0.103695 + 0.0733236i
\(187\) −3.90596 + 3.90596i −0.285632 + 0.285632i
\(188\) −8.98896 + 8.98896i −0.655587 + 0.655587i
\(189\) −0.437183 + 1.54567i −0.0318004 + 0.112431i
\(190\) 10.6978 10.0093i 0.776098 0.726152i
\(191\) 24.0429i 1.73968i 0.493332 + 0.869841i \(0.335779\pi\)
−0.493332 + 0.869841i \(0.664221\pi\)
\(192\) 0.292893 + 1.70711i 0.0211377 + 0.123200i
\(193\) 6.53705 + 6.53705i 0.470547 + 0.470547i 0.902092 0.431545i \(-0.142031\pi\)
−0.431545 + 0.902092i \(0.642031\pi\)
\(194\) 9.64124 0.692201
\(195\) 15.6023 + 11.8293i 1.11730 + 0.847115i
\(196\) −6.90444 −0.493174
\(197\) 6.26650 + 6.26650i 0.446469 + 0.446469i 0.894179 0.447710i \(-0.147760\pi\)
−0.447710 + 0.894179i \(0.647760\pi\)
\(198\) −1.15704 + 2.42265i −0.0822271 + 0.172170i
\(199\) 10.7497i 0.762028i −0.924569 0.381014i \(-0.875575\pi\)
0.924569 0.381014i \(-0.124425\pi\)
\(200\) 3.76256 3.29289i 0.266053 0.232843i
\(201\) 13.4706 19.0502i 0.950140 1.34370i
\(202\) 6.67139 6.67139i 0.469397 0.469397i
\(203\) 0.522705 0.522705i 0.0366867 0.0366867i
\(204\) −6.17246 + 8.72918i −0.432159 + 0.611165i
\(205\) 0.350133 10.5312i 0.0244543 0.735532i
\(206\) 7.18719i 0.500755i
\(207\) −5.84296 + 12.2342i −0.406114 + 0.850336i
\(208\) −3.57474 3.57474i −0.247864 0.247864i
\(209\) −5.86332 −0.405575
\(210\) −1.18611 + 0.163139i −0.0818492 + 0.0112576i
\(211\) −2.91700 −0.200815 −0.100407 0.994946i \(-0.532015\pi\)
−0.100407 + 0.994946i \(0.532015\pi\)
\(212\) −10.1579 10.1579i −0.697649 0.697649i
\(213\) 3.67633 + 21.4272i 0.251898 + 1.46817i
\(214\) 4.48159i 0.306355i
\(215\) 7.30070 + 7.80285i 0.497904 + 0.532150i
\(216\) −1.41421 + 5.00000i −0.0962250 + 0.340207i
\(217\) 0.218591 0.218591i 0.0148390 0.0148390i
\(218\) 12.6302 12.6302i 0.855425 0.855425i
\(219\) 15.6737 + 11.0830i 1.05913 + 0.748919i
\(220\) −2.00000 0.0664943i −0.134840 0.00448304i
\(221\) 31.2046i 2.09905i
\(222\) −4.82843 + 0.828427i −0.324063 + 0.0556004i
\(223\) −13.7181 13.7181i −0.918634 0.918634i 0.0782960 0.996930i \(-0.475052\pi\)
−0.996930 + 0.0782960i \(0.975052\pi\)
\(224\) 0.309135 0.0206549
\(225\) 14.4430 4.04963i 0.962867 0.269975i
\(226\) −0.0664943 −0.00442313
\(227\) −7.35704 7.35704i −0.488304 0.488304i 0.419467 0.907771i \(-0.362217\pi\)
−0.907771 + 0.419467i \(0.862217\pi\)
\(228\) −11.1846 + 1.91897i −0.740717 + 0.127087i
\(229\) 15.6228i 1.03239i 0.856472 + 0.516193i \(0.172651\pi\)
−0.856472 + 0.516193i \(0.827349\pi\)
\(230\) −10.0999 0.335792i −0.665965 0.0221414i
\(231\) 0.391244 + 0.276651i 0.0257420 + 0.0182023i
\(232\) 1.69087 1.69087i 0.111011 0.111011i
\(233\) 1.35857 1.35857i 0.0890027 0.0890027i −0.661204 0.750206i \(-0.729954\pi\)
0.750206 + 0.661204i \(0.229954\pi\)
\(234\) −5.05545 14.2990i −0.330485 0.934754i
\(235\) −19.4209 20.7567i −1.26688 1.35402i
\(236\) 6.79073i 0.442039i
\(237\) −3.83192 22.3341i −0.248910 1.45075i
\(238\) 1.34925 + 1.34925i 0.0874587 + 0.0874587i
\(239\) 4.09226 0.264707 0.132353 0.991203i \(-0.457747\pi\)
0.132353 + 0.991203i \(0.457747\pi\)
\(240\) −3.83686 + 0.527726i −0.247668 + 0.0340646i
\(241\) −2.94455 −0.189675 −0.0948375 0.995493i \(-0.530233\pi\)
−0.0948375 + 0.995493i \(0.530233\pi\)
\(242\) −7.21186 7.21186i −0.463596 0.463596i
\(243\) −10.2929 + 11.7071i −0.660289 + 0.751011i
\(244\) 5.61916i 0.359730i
\(245\) 0.513012 15.4303i 0.0327751 0.985803i
\(246\) −4.71231 + 6.66421i −0.300446 + 0.424894i
\(247\) 23.4209 23.4209i 1.49024 1.49024i
\(248\) 0.707107 0.707107i 0.0449013 0.0449013i
\(249\) 2.20494 3.11826i 0.139733 0.197612i
\(250\) 7.07950 + 8.65336i 0.447747 + 0.547287i
\(251\) 20.9870i 1.32469i 0.749199 + 0.662345i \(0.230439\pi\)
−0.749199 + 0.662345i \(0.769561\pi\)
\(252\) 0.836861 + 0.399678i 0.0527173 + 0.0251774i
\(253\) 2.85983 + 2.85983i 0.179796 + 0.179796i
\(254\) −9.06244 −0.568628
\(255\) −19.0496 14.4430i −1.19293 0.904456i
\(256\) 1.00000 0.0625000
\(257\) 8.75234 + 8.75234i 0.545956 + 0.545956i 0.925269 0.379313i \(-0.123840\pi\)
−0.379313 + 0.925269i \(0.623840\pi\)
\(258\) −1.39968 8.15792i −0.0871402 0.507890i
\(259\) 0.874366i 0.0543304i
\(260\) 8.25457 7.72335i 0.511927 0.478982i
\(261\) 6.76346 2.39124i 0.418648 0.148014i
\(262\) −9.72423 + 9.72423i −0.600765 + 0.600765i
\(263\) 7.25457 7.25457i 0.447336 0.447336i −0.447132 0.894468i \(-0.647555\pi\)
0.894468 + 0.447132i \(0.147555\pi\)
\(264\) 1.26561 + 0.894921i 0.0778929 + 0.0550786i
\(265\) 23.4560 21.9465i 1.44089 1.34816i
\(266\) 2.02538i 0.124184i
\(267\) −3.14017 + 0.538768i −0.192175 + 0.0329721i
\(268\) −9.52512 9.52512i −0.581839 0.581839i
\(269\) −23.1274 −1.41010 −0.705051 0.709156i \(-0.749076\pi\)
−0.705051 + 0.709156i \(0.749076\pi\)
\(270\) −11.0691 3.53204i −0.673643 0.214953i
\(271\) 12.0132 0.729749 0.364874 0.931057i \(-0.381112\pi\)
0.364874 + 0.931057i \(0.381112\pi\)
\(272\) 4.36459 + 4.36459i 0.264642 + 0.264642i
\(273\) −2.66790 + 0.457739i −0.161468 + 0.0277036i
\(274\) 5.39735i 0.326066i
\(275\) 0.297207 4.46473i 0.0179223 0.269233i
\(276\) 6.39124 + 4.51929i 0.384708 + 0.272029i
\(277\) −8.31612 + 8.31612i −0.499667 + 0.499667i −0.911334 0.411667i \(-0.864947\pi\)
0.411667 + 0.911334i \(0.364947\pi\)
\(278\) −7.93933 + 7.93933i −0.476170 + 0.476170i
\(279\) 2.82843 1.00000i 0.169334 0.0598684i
\(280\) −0.0229693 + 0.690865i −0.00137268 + 0.0412871i
\(281\) 18.1759i 1.08428i 0.840288 + 0.542141i \(0.182386\pi\)
−0.840288 + 0.542141i \(0.817614\pi\)
\(282\) 3.72335 + 21.7013i 0.221722 + 1.29229i
\(283\) −2.79442 2.79442i −0.166111 0.166111i 0.619157 0.785267i \(-0.287475\pi\)
−0.785267 + 0.619157i \(0.787475\pi\)
\(284\) 12.5518 0.744811
\(285\) −3.45754 25.1383i −0.204807 1.48906i
\(286\) −4.52423 −0.267523
\(287\) 1.03007 + 1.03007i 0.0608031 + 0.0608031i
\(288\) 2.70711 + 1.29289i 0.159518 + 0.0761845i
\(289\) 21.0993i 1.24113i
\(290\) 3.65317 + 3.90444i 0.214521 + 0.229276i
\(291\) 9.64124 13.6348i 0.565179 0.799284i
\(292\) 7.83686 7.83686i 0.458618 0.458618i
\(293\) −8.65774 + 8.65774i −0.505791 + 0.505791i −0.913232 0.407441i \(-0.866421\pi\)
0.407441 + 0.913232i \(0.366421\pi\)
\(294\) −6.90444 + 9.76435i −0.402675 + 0.569468i
\(295\) 15.1761 + 0.504563i 0.883589 + 0.0293768i
\(296\) 2.82843i 0.164399i
\(297\) 2.26910 + 4.05895i 0.131667 + 0.235524i
\(298\) −12.1518 12.1518i −0.703936 0.703936i
\(299\) −22.8471 −1.32128
\(300\) −0.894295 8.61396i −0.0516321 0.497327i
\(301\) −1.47729 −0.0851498
\(302\) 13.6807 + 13.6807i 0.787236 + 0.787236i
\(303\) −2.76338 16.1062i −0.158752 0.925275i
\(304\) 6.55178i 0.375770i
\(305\) 12.5579 + 0.417513i 0.719062 + 0.0239067i
\(306\) 6.17246 + 17.4584i 0.352856 + 0.998027i
\(307\) −9.70621 + 9.70621i −0.553962 + 0.553962i −0.927582 0.373620i \(-0.878117\pi\)
0.373620 + 0.927582i \(0.378117\pi\)
\(308\) 0.195622 0.195622i 0.0111466 0.0111466i
\(309\) 10.1642 + 7.18719i 0.578222 + 0.408865i
\(310\) 1.52773 + 1.63280i 0.0867690 + 0.0927371i
\(311\) 26.1226i 1.48127i −0.671905 0.740637i \(-0.734524\pi\)
0.671905 0.740637i \(-0.265476\pi\)
\(312\) −8.63020 + 1.48071i −0.488589 + 0.0838286i
\(313\) 6.78374 + 6.78374i 0.383440 + 0.383440i 0.872340 0.488900i \(-0.162602\pi\)
−0.488900 + 0.872340i \(0.662602\pi\)
\(314\) 17.8581 1.00779
\(315\) −0.955395 + 1.84055i −0.0538304 + 0.103703i
\(316\) −13.0830 −0.735976
\(317\) 12.3863 + 12.3863i 0.695684 + 0.695684i 0.963477 0.267792i \(-0.0862942\pi\)
−0.267792 + 0.963477i \(0.586294\pi\)
\(318\) −24.5234 + 4.20755i −1.37520 + 0.235948i
\(319\) 2.13998i 0.119816i
\(320\) −0.0743018 + 2.23483i −0.00415360 + 0.124931i
\(321\) 6.33793 + 4.48159i 0.353749 + 0.250138i
\(322\) 0.987879 0.987879i 0.0550523 0.0550523i
\(323\) −28.5958 + 28.5958i −1.59111 + 1.59111i
\(324\) 5.65685 + 7.00000i 0.314270 + 0.388889i
\(325\) 16.6471 + 19.0214i 0.923413 + 1.05512i
\(326\) 3.26561i 0.180865i
\(327\) −5.23160 30.4920i −0.289308 1.68621i
\(328\) 3.33210 + 3.33210i 0.183985 + 0.183985i
\(329\) 3.92982 0.216658
\(330\) −2.09404 + 2.76193i −0.115273 + 0.152039i
\(331\) 7.16510 0.393830 0.196915 0.980421i \(-0.436908\pi\)
0.196915 + 0.980421i \(0.436908\pi\)
\(332\) −1.55913 1.55913i −0.0855684 0.0855684i
\(333\) −3.65685 + 7.65685i −0.200394 + 0.419593i
\(334\) 7.18350i 0.393064i
\(335\) 21.9948 20.5793i 1.20170 1.12437i
\(336\) 0.309135 0.437183i 0.0168647 0.0238503i
\(337\) 19.8293 19.8293i 1.08017 1.08017i 0.0836787 0.996493i \(-0.473333\pi\)
0.996493 0.0836787i \(-0.0266670\pi\)
\(338\) 8.87957 8.87957i 0.482985 0.482985i
\(339\) −0.0664943 + 0.0940371i −0.00361147 + 0.00510739i
\(340\) −10.0784 + 9.42983i −0.546579 + 0.511404i
\(341\) 0.894921i 0.0484627i
\(342\) −8.47075 + 17.7364i −0.458046 + 0.959072i
\(343\) 3.03939 + 3.03939i 0.164112 + 0.164112i
\(344\) −4.77880 −0.257656
\(345\) −10.5747 + 13.9476i −0.569325 + 0.750912i
\(346\) −16.8860 −0.907798
\(347\) 2.61458 + 2.61458i 0.140358 + 0.140358i 0.773795 0.633437i \(-0.218356\pi\)
−0.633437 + 0.773795i \(0.718356\pi\)
\(348\) −0.700379 4.08211i −0.0375443 0.218824i
\(349\) 5.15937i 0.276175i −0.990420 0.138087i \(-0.955905\pi\)
0.990420 0.138087i \(-0.0440955\pi\)
\(350\) −1.54226 0.102665i −0.0824373 0.00548768i
\(351\) −25.2773 7.14949i −1.34920 0.381612i
\(352\) 0.632805 0.632805i 0.0337286 0.0337286i
\(353\) −5.67982 + 5.67982i −0.302307 + 0.302307i −0.841916 0.539609i \(-0.818572\pi\)
0.539609 + 0.841916i \(0.318572\pi\)
\(354\) −9.60354 6.79073i −0.510422 0.360923i
\(355\) −0.932619 + 28.0511i −0.0494983 + 1.48880i
\(356\) 1.83947i 0.0974916i
\(357\) 3.25737 0.558876i 0.172398 0.0295789i
\(358\) 6.91548 + 6.91548i 0.365494 + 0.365494i
\(359\) −8.87284 −0.468290 −0.234145 0.972202i \(-0.575229\pi\)
−0.234145 + 0.972202i \(0.575229\pi\)
\(360\) −3.09054 + 5.95387i −0.162886 + 0.313796i
\(361\) −23.9258 −1.25925
\(362\) 12.1965 + 12.1965i 0.641034 + 0.641034i
\(363\) −17.4110 + 2.98725i −0.913839 + 0.156790i
\(364\) 1.56282i 0.0819139i
\(365\) 16.9318 + 18.0964i 0.886250 + 0.947207i
\(366\) −7.94669 5.61916i −0.415380 0.293718i
\(367\) 7.33579 7.33579i 0.382925 0.382925i −0.489230 0.872155i \(-0.662722\pi\)
0.872155 + 0.489230i \(0.162722\pi\)
\(368\) 3.19562 3.19562i 0.166583 0.166583i
\(369\) 4.71231 + 13.3284i 0.245313 + 0.693850i
\(370\) −6.32106 0.210157i −0.328616 0.0109256i
\(371\) 4.44087i 0.230558i
\(372\) −0.292893 1.70711i −0.0151858 0.0885094i
\(373\) −11.2342 11.2342i −0.581685 0.581685i 0.353681 0.935366i \(-0.384930\pi\)
−0.935366 + 0.353681i \(0.884930\pi\)
\(374\) 5.52387 0.285632
\(375\) 19.3172 1.35857i 0.997536 0.0701561i
\(376\) 12.7123 0.655587
\(377\) 8.54809 + 8.54809i 0.440249 + 0.440249i
\(378\) 1.40209 0.783822i 0.0721158 0.0403155i
\(379\) 16.6939i 0.857509i 0.903421 + 0.428754i \(0.141047\pi\)
−0.903421 + 0.428754i \(0.858953\pi\)
\(380\) −14.6421 0.486809i −0.751125 0.0249728i
\(381\) −9.06244 + 12.8162i −0.464283 + 0.656595i
\(382\) 17.0009 17.0009i 0.869841 0.869841i
\(383\) −4.38542 + 4.38542i −0.224084 + 0.224084i −0.810216 0.586132i \(-0.800650\pi\)
0.586132 + 0.810216i \(0.300650\pi\)
\(384\) 1.00000 1.41421i 0.0510310 0.0721688i
\(385\) 0.422648 + 0.451718i 0.0215401 + 0.0230217i
\(386\) 9.24478i 0.470547i
\(387\) −12.9367 6.17848i −0.657611 0.314070i
\(388\) −6.81739 6.81739i −0.346100 0.346100i
\(389\) 0.173712 0.00880757 0.00440379 0.999990i \(-0.498598\pi\)
0.00440379 + 0.999990i \(0.498598\pi\)
\(390\) −2.66790 19.3971i −0.135094 0.982209i
\(391\) 27.8951 1.41072
\(392\) 4.88217 + 4.88217i 0.246587 + 0.246587i
\(393\) 4.02791 + 23.4764i 0.203181 + 1.18423i
\(394\) 8.86216i 0.446469i
\(395\) 0.972090 29.2383i 0.0489112 1.47114i
\(396\) 2.53122 0.894921i 0.127199 0.0449715i
\(397\) 10.7268 10.7268i 0.538365 0.538365i −0.384684 0.923048i \(-0.625689\pi\)
0.923048 + 0.384684i \(0.125689\pi\)
\(398\) −7.60121 + 7.60121i −0.381014 + 0.381014i
\(399\) 2.86432 + 2.02538i 0.143396 + 0.101396i
\(400\) −4.98896 0.332104i −0.249448 0.0166052i
\(401\) 6.81309i 0.340229i −0.985424 0.170115i \(-0.945586\pi\)
0.985424 0.170115i \(-0.0544138\pi\)
\(402\) −22.9957 + 3.94543i −1.14692 + 0.196780i
\(403\) 3.57474 + 3.57474i 0.178071 + 0.178071i
\(404\) −9.43477 −0.469397
\(405\) −16.0641 + 12.1220i −0.798234 + 0.602348i
\(406\) −0.739217 −0.0366867
\(407\) 1.78984 + 1.78984i 0.0887192 + 0.0887192i
\(408\) 10.5370 1.80787i 0.521662 0.0895030i
\(409\) 13.8327i 0.683984i 0.939703 + 0.341992i \(0.111102\pi\)
−0.939703 + 0.341992i \(0.888898\pi\)
\(410\) −7.69428 + 7.19912i −0.379993 + 0.355539i
\(411\) −7.63300 5.39735i −0.376508 0.266231i
\(412\) 5.08211 5.08211i 0.250378 0.250378i
\(413\) −1.48440 + 1.48440i −0.0730423 + 0.0730423i
\(414\) 12.7825 4.51929i 0.628225 0.222111i
\(415\) 3.60024 3.36855i 0.176729 0.165356i
\(416\) 5.05545i 0.247864i
\(417\) 3.28858 + 19.1672i 0.161042 + 0.938624i
\(418\) 4.14600 + 4.14600i 0.202787 + 0.202787i
\(419\) −14.3518 −0.701130 −0.350565 0.936538i \(-0.614010\pi\)
−0.350565 + 0.936538i \(0.614010\pi\)
\(420\) 0.954061 + 0.723349i 0.0465534 + 0.0352958i
\(421\) 23.1036 1.12600 0.562999 0.826458i \(-0.309647\pi\)
0.562999 + 0.826458i \(0.309647\pi\)
\(422\) 2.06263 + 2.06263i 0.100407 + 0.100407i
\(423\) 34.4136 + 16.4357i 1.67325 + 0.799129i
\(424\) 14.3655i 0.697649i
\(425\) −20.3252 23.2242i −0.985919 1.12654i
\(426\) 12.5518 17.7509i 0.608136 0.860033i
\(427\) −1.22830 + 1.22830i −0.0594416 + 0.0594416i
\(428\) 3.16897 3.16897i 0.153178 0.153178i
\(429\) −4.52423 + 6.39823i −0.218432 + 0.308910i
\(430\) 0.355074 10.6798i 0.0171232 0.515027i
\(431\) 15.4008i 0.741828i −0.928667 0.370914i \(-0.879044\pi\)
0.928667 0.370914i \(-0.120956\pi\)
\(432\) 4.53553 2.53553i 0.218216 0.121991i
\(433\) 5.07340 + 5.07340i 0.243812 + 0.243812i 0.818425 0.574613i \(-0.194847\pi\)
−0.574613 + 0.818425i \(0.694847\pi\)
\(434\) −0.309135 −0.0148390
\(435\) 9.17487 1.26192i 0.439901 0.0605046i
\(436\) −17.8618 −0.855425
\(437\) 20.9370 + 20.9370i 1.00155 + 1.00155i
\(438\) −3.24613 18.9199i −0.155106 0.904026i
\(439\) 8.76562i 0.418360i −0.977877 0.209180i \(-0.932921\pi\)
0.977877 0.209180i \(-0.0670795\pi\)
\(440\) 1.36720 + 1.46123i 0.0651785 + 0.0696615i
\(441\) 6.90444 + 19.5287i 0.328783 + 0.929938i
\(442\) −22.0650 + 22.0650i −1.04952 + 1.04952i
\(443\) −21.1417 + 21.1417i −1.00447 + 1.00447i −0.00448100 + 0.999990i \(0.501426\pi\)
−0.999990 + 0.00448100i \(0.998574\pi\)
\(444\) 4.00000 + 2.82843i 0.189832 + 0.134231i
\(445\) −4.11091 0.136676i −0.194876 0.00647906i
\(446\) 19.4004i 0.918634i
\(447\) −29.3371 + 5.03345i −1.38760 + 0.238074i
\(448\) −0.218591 0.218591i −0.0103275 0.0103275i
\(449\) 9.58146 0.452177 0.226088 0.974107i \(-0.427406\pi\)
0.226088 + 0.974107i \(0.427406\pi\)
\(450\) −13.0763 7.34923i −0.616421 0.346446i
\(451\) 4.21714 0.198578
\(452\) 0.0470185 + 0.0470185i 0.00221157 + 0.00221157i
\(453\) 33.0282 5.66674i 1.55180 0.266246i
\(454\) 10.4044i 0.488304i
\(455\) −3.49264 0.116120i −0.163737 0.00544380i
\(456\) 9.26561 + 6.55178i 0.433902 + 0.306815i
\(457\) −8.63350 + 8.63350i −0.403858 + 0.403858i −0.879590 0.475732i \(-0.842183\pi\)
0.475732 + 0.879590i \(0.342183\pi\)
\(458\) 11.0470 11.0470i 0.516193 0.516193i
\(459\) 30.8623 + 8.72918i 1.44053 + 0.407443i
\(460\) 6.90424 + 7.37912i 0.321912 + 0.344053i
\(461\) 7.85481i 0.365835i −0.983128 0.182917i \(-0.941446\pi\)
0.983128 0.182917i \(-0.0585541\pi\)
\(462\) −0.0810293 0.472274i −0.00376983 0.0219722i
\(463\) 21.6311 + 21.6311i 1.00528 + 1.00528i 0.999986 + 0.00529575i \(0.00168570\pi\)
0.00529575 + 0.999986i \(0.498314\pi\)
\(464\) −2.39124 −0.111011
\(465\) 3.83686 0.527726i 0.177930 0.0244727i
\(466\) −1.92130 −0.0890027
\(467\) 2.83706 + 2.83706i 0.131283 + 0.131283i 0.769695 0.638412i \(-0.220408\pi\)
−0.638412 + 0.769695i \(0.720408\pi\)
\(468\) −6.53616 + 13.6857i −0.302134 + 0.632619i
\(469\) 4.16422i 0.192286i
\(470\) −0.944547 + 28.4099i −0.0435687 + 1.31045i
\(471\) 17.8581 25.2552i 0.822858 1.16370i
\(472\) −4.80177 + 4.80177i −0.221019 + 0.221019i
\(473\) −3.02405 + 3.02405i −0.139046 + 0.139046i
\(474\) −13.0830 + 18.5021i −0.600922 + 0.849832i
\(475\) 2.17587 32.6865i 0.0998359 1.49976i
\(476\) 1.90812i 0.0874587i
\(477\) −18.5730 + 38.8889i −0.850400 + 1.78060i
\(478\) −2.89367 2.89367i −0.132353 0.132353i
\(479\) −32.7974 −1.49855 −0.749277 0.662257i \(-0.769599\pi\)
−0.749277 + 0.662257i \(0.769599\pi\)
\(480\) 3.08623 + 2.33991i 0.140866 + 0.106802i
\(481\) −14.2990 −0.651977
\(482\) 2.08211 + 2.08211i 0.0948375 + 0.0948375i
\(483\) −0.409193 2.38495i −0.0186189 0.108519i
\(484\) 10.1991i 0.463596i
\(485\) 15.7423 14.7292i 0.714819 0.668817i
\(486\) 15.5563 1.00000i 0.705650 0.0453609i
\(487\) 5.36953 5.36953i 0.243317 0.243317i −0.574904 0.818221i \(-0.694961\pi\)
0.818221 + 0.574904i \(0.194961\pi\)
\(488\) −3.97334 + 3.97334i −0.179865 + 0.179865i
\(489\) 4.61827 + 3.26561i 0.208845 + 0.147676i
\(490\) −11.2736 + 10.5481i −0.509289 + 0.476514i
\(491\) 16.7932i 0.757865i 0.925424 + 0.378932i \(0.123709\pi\)
−0.925424 + 0.378932i \(0.876291\pi\)
\(492\) 8.04441 1.38020i 0.362670 0.0622243i
\(493\) −10.4368 10.4368i −0.470050 0.470050i
\(494\) −33.1222 −1.49024
\(495\) 1.81193 + 5.72335i 0.0814400 + 0.257245i
\(496\) −1.00000 −0.0449013
\(497\) −2.74371 2.74371i −0.123072 0.123072i
\(498\) −3.76407 + 0.645813i −0.168672 + 0.0289396i
\(499\) 40.3002i 1.80409i 0.431646 + 0.902043i \(0.357933\pi\)
−0.431646 + 0.902043i \(0.642067\pi\)
\(500\) 1.11289 11.1248i 0.0497698 0.497517i
\(501\) −10.1590 7.18350i −0.453871 0.320935i
\(502\) 14.8401 14.8401i 0.662345 0.662345i
\(503\) 14.5686 14.5686i 0.649584 0.649584i −0.303309 0.952892i \(-0.598091\pi\)
0.952892 + 0.303309i \(0.0980913\pi\)
\(504\) −0.309135 0.874366i −0.0137700 0.0389473i
\(505\) 0.701020 21.0851i 0.0311950 0.938276i
\(506\) 4.04441i 0.179796i
\(507\) −3.67804 21.4372i −0.163347 0.952058i
\(508\) 6.40811 + 6.40811i 0.284314 + 0.284314i
\(509\) −27.4584 −1.21707 −0.608535 0.793527i \(-0.708242\pi\)
−0.608535 + 0.793527i \(0.708242\pi\)
\(510\) 3.25737 + 23.6829i 0.144239 + 1.04870i
\(511\) −3.42614 −0.151564
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 16.6122 + 29.7158i 0.733449 + 1.31198i
\(514\) 12.3777i 0.545956i
\(515\) 10.9801 + 11.7353i 0.483839 + 0.517118i
\(516\) −4.77880 + 6.75825i −0.210375 + 0.297515i
\(517\) 8.04441 8.04441i 0.353793 0.353793i
\(518\) 0.618270 0.618270i 0.0271652 0.0271652i
\(519\) −16.8860 + 23.8804i −0.741214 + 1.04823i
\(520\) −11.2981 0.375629i −0.495454 0.0164724i
\(521\) 1.83617i 0.0804440i 0.999191 + 0.0402220i \(0.0128065\pi\)
−0.999191 + 0.0402220i \(0.987193\pi\)
\(522\) −6.47335 3.09162i −0.283331 0.135317i
\(523\) −20.3678 20.3678i −0.890622 0.890622i 0.103960 0.994582i \(-0.466849\pi\)
−0.994582 + 0.103960i \(0.966849\pi\)
\(524\) 13.7521 0.600765
\(525\) −1.68745 + 2.07842i −0.0736464 + 0.0907098i
\(526\) −10.2595 −0.447336
\(527\) −4.36459 4.36459i −0.190124 0.190124i
\(528\) −0.262116 1.52773i −0.0114072 0.0664858i
\(529\) 2.57600i 0.112000i
\(530\) −32.1044 1.06738i −1.39453 0.0463640i
\(531\) −19.2071 + 6.79073i −0.833516 + 0.294693i
\(532\) 1.43216 1.43216i 0.0620921 0.0620921i
\(533\) −16.8453 + 16.8453i −0.729651 + 0.729651i
\(534\) 2.60140 + 1.83947i 0.112574 + 0.0796016i
\(535\) 6.84665 + 7.31757i 0.296006 + 0.316366i
\(536\) 13.4706i 0.581839i
\(537\) 16.6954 2.86448i 0.720461 0.123612i
\(538\) 16.3535 + 16.3535i 0.705051 + 0.705051i
\(539\) 6.17893 0.266145
\(540\) 5.32950 + 10.3246i 0.229345 + 0.444298i
\(541\) 14.4899 0.622972 0.311486 0.950251i \(-0.399173\pi\)
0.311486 + 0.950251i \(0.399173\pi\)
\(542\) −8.49460 8.49460i −0.364874 0.364874i
\(543\) 29.4450 5.05196i 1.26360 0.216800i
\(544\) 6.17246i 0.264642i
\(545\) 1.32716 39.9181i 0.0568494 1.70991i
\(546\) 2.21016 + 1.56282i 0.0945860 + 0.0668824i
\(547\) 5.73896 5.73896i 0.245380 0.245380i −0.573691 0.819072i \(-0.694489\pi\)
0.819072 + 0.573691i \(0.194489\pi\)
\(548\) −3.81650 + 3.81650i −0.163033 + 0.163033i
\(549\) −15.8934 + 5.61916i −0.678313 + 0.239820i
\(550\) −3.36720 + 2.94688i −0.143578 + 0.125655i
\(551\) 15.6669i 0.667432i
\(552\) −1.32367 7.71491i −0.0563391 0.328369i
\(553\) 2.85983 + 2.85983i 0.121612 + 0.121612i
\(554\) 11.7608 0.499667
\(555\) −6.61827 + 8.72918i −0.280930 + 0.370533i
\(556\) 11.2279 0.476170
\(557\) −0.0691016 0.0691016i −0.00292793 0.00292793i 0.705641 0.708569i \(-0.250659\pi\)
−0.708569 + 0.705641i \(0.750659\pi\)
\(558\) −2.70711 1.29289i −0.114601 0.0547325i
\(559\) 24.1590i 1.02182i
\(560\) 0.504757 0.472274i 0.0213299 0.0199572i
\(561\) 5.52387 7.81193i 0.233218 0.329820i
\(562\) 12.8523 12.8523i 0.542141 0.542141i
\(563\) 24.3232 24.3232i 1.02510 1.02510i 0.0254249 0.999677i \(-0.491906\pi\)
0.999677 0.0254249i \(-0.00809386\pi\)
\(564\) 12.7123 17.9779i 0.535285 0.757007i
\(565\) −0.108572 + 0.101585i −0.00456767 + 0.00427371i
\(566\) 3.95190i 0.166111i
\(567\) 0.293600 2.76668i 0.0123300 0.116190i
\(568\) −8.87545 8.87545i −0.372405 0.372405i
\(569\) −35.1115 −1.47195 −0.735976 0.677008i \(-0.763276\pi\)
−0.735976 + 0.677008i \(0.763276\pi\)
\(570\) −15.3306 + 20.2203i −0.642127 + 0.846934i
\(571\) 6.21180 0.259956 0.129978 0.991517i \(-0.458509\pi\)
0.129978 + 0.991517i \(0.458509\pi\)
\(572\) 3.19912 + 3.19912i 0.133762 + 0.133762i
\(573\) −7.04200 41.0438i −0.294184 1.71463i
\(574\) 1.45674i 0.0608031i
\(575\) −17.0041 + 14.8815i −0.709120 + 0.620603i
\(576\) −1.00000 2.82843i −0.0416667 0.117851i
\(577\) 23.7019 23.7019i 0.986722 0.986722i −0.0131909 0.999913i \(-0.504199\pi\)
0.999913 + 0.0131909i \(0.00419892\pi\)
\(578\) 14.9194 14.9194i 0.620566 0.620566i
\(579\) −13.0741 9.24478i −0.543341 0.384200i
\(580\) 0.177674 5.34403i 0.00737750 0.221899i
\(581\) 0.681625i 0.0282786i
\(582\) −16.4586 + 2.82385i −0.682232 + 0.117052i
\(583\) 9.09054 + 9.09054i 0.376492 + 0.376492i
\(584\) −11.0830 −0.458618
\(585\) −30.0995 15.6241i −1.24446 0.645977i
\(586\) 12.2439 0.505791
\(587\) 16.7138 + 16.7138i 0.689854 + 0.689854i 0.962199 0.272346i \(-0.0877994\pi\)
−0.272346 + 0.962199i \(0.587799\pi\)
\(588\) 11.7866 2.02226i 0.486072 0.0833967i
\(589\) 6.55178i 0.269961i
\(590\) −10.3744 11.0879i −0.427106 0.456483i
\(591\) −12.5330 8.86216i −0.515538 0.364541i
\(592\) 2.00000 2.00000i 0.0821995 0.0821995i
\(593\) 23.3939 23.3939i 0.960672 0.960672i −0.0385829 0.999255i \(-0.512284\pi\)
0.999255 + 0.0385829i \(0.0122844\pi\)
\(594\) 1.26561 4.47461i 0.0519286 0.183595i
\(595\) 4.26434 + 0.141777i 0.174821 + 0.00581229i
\(596\) 17.1853i 0.703936i
\(597\) 3.14852 + 18.3509i 0.128860 + 0.751054i
\(598\) 16.1553 + 16.1553i 0.660640 + 0.660640i
\(599\) −21.9457 −0.896677 −0.448339 0.893864i \(-0.647984\pi\)
−0.448339 + 0.893864i \(0.647984\pi\)
\(600\) −5.45862 + 6.72335i −0.222847 + 0.274480i
\(601\) 12.5120 0.510376 0.255188 0.966891i \(-0.417863\pi\)
0.255188 + 0.966891i \(0.417863\pi\)
\(602\) 1.04460 + 1.04460i 0.0425749 + 0.0425749i
\(603\) −17.4160 + 36.4662i −0.709234 + 1.48502i
\(604\) 19.3474i 0.787236i
\(605\) −22.7933 0.757813i −0.926680 0.0308095i
\(606\) −9.43477 + 13.3428i −0.383261 + 0.542013i
\(607\) 0.824660 0.824660i 0.0334719 0.0334719i −0.690173 0.723645i \(-0.742465\pi\)
0.723645 + 0.690173i \(0.242465\pi\)
\(608\) 4.63280 4.63280i 0.187885 0.187885i
\(609\) −0.739217 + 1.04541i −0.0299546 + 0.0423622i
\(610\) −8.58453 9.17499i −0.347578 0.371484i
\(611\) 64.2665i 2.59994i
\(612\) 7.98033 16.7095i 0.322586 0.675442i
\(613\) −30.7528 30.7528i −1.24209 1.24209i −0.959132 0.282961i \(-0.908683\pi\)
−0.282961 0.959132i \(-0.591317\pi\)
\(614\) 13.7266 0.553962
\(615\) 2.48681 + 18.0805i 0.100278 + 0.729075i
\(616\) −0.276651 −0.0111466
\(617\) 7.17227 + 7.17227i 0.288745 + 0.288745i 0.836584 0.547839i \(-0.184549\pi\)
−0.547839 + 0.836584i \(0.684549\pi\)
\(618\) −2.10508 12.2693i −0.0846787 0.493544i
\(619\) 29.0416i 1.16728i −0.812012 0.583640i \(-0.801628\pi\)
0.812012 0.583640i \(-0.198372\pi\)
\(620\) 0.0743018 2.23483i 0.00298403 0.0897531i
\(621\) 6.39124 22.5965i 0.256472 0.906765i
\(622\) −18.4714 + 18.4714i −0.740637 + 0.740637i
\(623\) 0.402092 0.402092i 0.0161095 0.0161095i
\(624\) 7.14949 + 5.05545i 0.286209 + 0.202380i
\(625\) 24.7794 + 3.31371i 0.991177 + 0.132548i
\(626\) 9.59366i 0.383440i
\(627\) 10.0093 1.71733i 0.399734 0.0685835i
\(628\) −12.6276 12.6276i −0.503896 0.503896i
\(629\) 17.4584 0.696110
\(630\) 1.97703 0.625898i 0.0787668 0.0249364i
\(631\) −29.2810 −1.16566 −0.582828 0.812595i \(-0.698054\pi\)
−0.582828 + 0.812595i \(0.698054\pi\)
\(632\) 9.25107 + 9.25107i 0.367988 + 0.367988i
\(633\) 4.97964 0.854371i 0.197923 0.0339582i
\(634\) 17.5169i 0.695684i
\(635\) −14.7972 + 13.8449i −0.587209 + 0.549419i
\(636\) 20.3158 + 14.3655i 0.805576 + 0.569628i
\(637\) −24.6816 + 24.6816i −0.977920 + 0.977920i
\(638\) −1.51319 + 1.51319i −0.0599078 + 0.0599078i
\(639\) −12.5518 35.5018i −0.496541 1.40443i
\(640\) 1.63280 1.52773i 0.0645423 0.0603887i
\(641\) 48.2990i 1.90770i 0.300291 + 0.953848i \(0.402916\pi\)
−0.300291 + 0.953848i \(0.597084\pi\)
\(642\) −1.31263 7.65056i −0.0518053 0.301944i
\(643\) −12.7695 12.7695i −0.503579 0.503579i 0.408969 0.912548i \(-0.365888\pi\)
−0.912548 + 0.408969i \(0.865888\pi\)
\(644\) −1.39707 −0.0550523
\(645\) −14.7485 11.1820i −0.580721 0.440290i
\(646\) 40.4406 1.59111
\(647\) 5.60373 + 5.60373i 0.220306 + 0.220306i 0.808627 0.588322i \(-0.200211\pi\)
−0.588322 + 0.808627i \(0.700211\pi\)
\(648\) 0.949747 8.94975i 0.0373096 0.351579i
\(649\) 6.07717i 0.238550i
\(650\) 1.67894 25.2214i 0.0658533 0.989266i
\(651\) −0.309135 + 0.437183i −0.0121160 + 0.0171345i
\(652\) 2.30913 2.30913i 0.0904327 0.0904327i
\(653\) −5.29935 + 5.29935i −0.207379 + 0.207379i −0.803153 0.595773i \(-0.796846\pi\)
0.595773 + 0.803153i \(0.296846\pi\)
\(654\) −17.8618 + 25.2604i −0.698452 + 0.987760i
\(655\) −1.02181 + 30.7337i −0.0399254 + 1.20087i
\(656\) 4.71231i 0.183985i
\(657\) −30.0029 14.3291i −1.17052 0.559033i
\(658\) −2.77880 2.77880i −0.108329 0.108329i
\(659\) 40.4185 1.57448 0.787241 0.616646i \(-0.211509\pi\)
0.787241 + 0.616646i \(0.211509\pi\)
\(660\) 3.43369 0.472274i 0.133656 0.0183832i
\(661\) 8.54986 0.332551 0.166276 0.986079i \(-0.446826\pi\)
0.166276 + 0.986079i \(0.446826\pi\)
\(662\) −5.06649 5.06649i −0.196915 0.196915i
\(663\) 9.13961 + 53.2695i 0.354953 + 2.06882i
\(664\) 2.20494i 0.0855684i
\(665\) 3.09423 + 3.30706i 0.119989 + 0.128242i
\(666\) 8.00000 2.82843i 0.309994 0.109599i
\(667\) −7.64151 + 7.64151i −0.295881 + 0.295881i
\(668\) −5.07950 + 5.07950i −0.196532 + 0.196532i
\(669\) 27.4363 + 19.4004i 1.06075 + 0.750062i
\(670\) −30.1044 1.00089i −1.16304 0.0386676i
\(671\) 5.02870i 0.194131i
\(672\) −0.527726 + 0.0905435i −0.0203575 + 0.00349279i
\(673\) −25.2231 25.2231i −0.972278 0.972278i 0.0273475 0.999626i \(-0.491294\pi\)
−0.999626 + 0.0273475i \(0.991294\pi\)
\(674\) −28.0429 −1.08017
\(675\) −23.4697 + 11.1434i −0.903347 + 0.428910i
\(676\) −12.5576 −0.482985
\(677\) −32.2155 32.2155i −1.23814 1.23814i −0.960759 0.277384i \(-0.910533\pi\)
−0.277384 0.960759i \(-0.589467\pi\)
\(678\) 0.113513 0.0194757i 0.00435943 0.000747961i
\(679\) 2.98044i 0.114379i
\(680\) 13.7944 + 0.458625i 0.528992 + 0.0175875i
\(681\) 14.7141 + 10.4044i 0.563845 + 0.398698i
\(682\) −0.632805 + 0.632805i −0.0242314 + 0.0242314i
\(683\) 6.13560 6.13560i 0.234772 0.234772i −0.579909 0.814681i \(-0.696912\pi\)
0.814681 + 0.579909i \(0.196912\pi\)
\(684\) 18.5312 6.55178i 0.708559 0.250513i
\(685\) −8.24567 8.81281i −0.315051 0.336720i
\(686\) 4.29835i 0.164112i
\(687\) −4.57582 26.6699i −0.174579 1.01752i
\(688\) 3.37912 + 3.37912i 0.128828 + 0.128828i
\(689\) −72.6240 −2.76675
\(690\) 17.3399 2.38495i 0.660119 0.0907935i
\(691\) −26.6510 −1.01385 −0.506926 0.861989i \(-0.669218\pi\)
−0.506926 + 0.861989i \(0.669218\pi\)
\(692\) 11.9402 + 11.9402i 0.453899 + 0.453899i
\(693\) −0.748925 0.357681i −0.0284493 0.0135872i
\(694\) 3.69758i 0.140358i
\(695\) −0.834254 + 25.0925i −0.0316451 + 0.951813i
\(696\) −2.39124 + 3.38173i −0.0906399 + 0.128184i
\(697\) 20.5673 20.5673i 0.779041 0.779041i
\(698\) −3.64823 + 3.64823i −0.138087 + 0.138087i
\(699\) −1.92130 + 2.71713i −0.0726704 + 0.102771i
\(700\) 1.01795 + 1.16314i 0.0384748 + 0.0439625i
\(701\) 50.7429i 1.91653i −0.285878 0.958266i \(-0.592285\pi\)
0.285878 0.958266i \(-0.407715\pi\)
\(702\) 12.8183 + 22.9292i 0.483794 + 0.865406i
\(703\) 13.1036 + 13.1036i 0.494210 + 0.494210i
\(704\) −0.894921 −0.0337286
\(705\) 39.2331 + 29.7457i 1.47760 + 1.12029i
\(706\) 8.03248 0.302307
\(707\) 2.06236 + 2.06236i 0.0775630 + 0.0775630i
\(708\) 1.98896 + 11.5925i 0.0747496 + 0.435673i
\(709\) 12.7840i 0.480113i −0.970759 0.240056i \(-0.922834\pi\)
0.970759 0.240056i \(-0.0771659\pi\)
\(710\) 20.4946 19.1757i 0.769149 0.719650i
\(711\) 13.0830 + 37.0043i 0.490651 + 1.38777i
\(712\) 1.30070 1.30070i 0.0487458 0.0487458i
\(713\) −3.19562 + 3.19562i −0.119677 + 0.119677i
\(714\) −2.69849 1.90812i −0.100989 0.0714097i
\(715\) −7.38719 + 6.91179i −0.276265 + 0.258486i
\(716\) 9.77996i 0.365494i
\(717\) −6.98593 + 1.19860i −0.260894 + 0.0447624i
\(718\) 6.27404 + 6.27404i 0.234145 + 0.234145i
\(719\) 37.4700 1.39740 0.698698 0.715417i \(-0.253763\pi\)
0.698698 + 0.715417i \(0.253763\pi\)
\(720\) 6.39536 2.02468i 0.238341 0.0754552i
\(721\) −2.22181 −0.0827446
\(722\) 16.9181 + 16.9181i 0.629625 + 0.629625i
\(723\) 5.02666 0.862438i 0.186943 0.0320744i
\(724\) 17.2485i 0.641034i
\(725\) 11.9298 + 0.794142i 0.443062 + 0.0294937i
\(726\) 14.4237 + 10.1991i 0.535315 + 0.378525i
\(727\) 14.9790 14.9790i 0.555540 0.555540i −0.372494 0.928034i \(-0.621497\pi\)
0.928034 + 0.372494i \(0.121497\pi\)
\(728\) 1.10508 1.10508i 0.0409569 0.0409569i
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0.823486 24.7686i 0.0304786 0.916729i
\(731\) 29.4970i 1.09098i
\(732\) 1.64581 + 9.59250i 0.0608310 + 0.354549i
\(733\) 12.0888 + 12.0888i 0.446511 + 0.446511i 0.894193 0.447682i \(-0.147750\pi\)
−0.447682 + 0.894193i \(0.647750\pi\)
\(734\) −10.3744 −0.382925
\(735\) 3.64365 + 26.4914i 0.134398 + 0.977149i
\(736\) −4.51929 −0.166583
\(737\) 8.52423 + 8.52423i 0.313994 + 0.313994i
\(738\) 6.09251 12.7567i 0.224268 0.469581i
\(739\) 6.73275i 0.247668i −0.992303 0.123834i \(-0.960481\pi\)
0.992303 0.123834i \(-0.0395191\pi\)
\(740\) 4.32106 + 4.61827i 0.158845 + 0.169771i
\(741\) −33.1222 + 46.8419i −1.21677 + 1.72078i
\(742\) 3.14017 3.14017i 0.115279 0.115279i
\(743\) −15.0314 + 15.0314i −0.551449 + 0.551449i −0.926859 0.375410i \(-0.877502\pi\)
0.375410 + 0.926859i \(0.377502\pi\)
\(744\) −1.00000 + 1.41421i −0.0366618 + 0.0518476i
\(745\) −38.4062 1.27690i −1.40709 0.0467819i
\(746\) 15.8876i 0.581685i
\(747\) −2.85076 + 5.96902i −0.104304 + 0.218395i
\(748\) −3.90596 3.90596i −0.142816 0.142816i
\(749\) −1.38542 −0.0506220
\(750\) −14.6200 12.6987i −0.533846 0.463690i
\(751\) 34.0716 1.24329 0.621645 0.783299i \(-0.286465\pi\)
0.621645 + 0.783299i \(0.286465\pi\)
\(752\) −8.98896 8.98896i −0.327794 0.327794i
\(753\) −6.14696 35.8271i −0.224008 1.30561i
\(754\) 12.0888i 0.440249i
\(755\) 43.2383 + 1.43755i 1.57360 + 0.0523178i
\(756\) −1.54567 0.437183i −0.0562156 0.0159002i
\(757\) −13.4109 + 13.4109i −0.487428 + 0.487428i −0.907494 0.420066i \(-0.862007\pi\)
0.420066 + 0.907494i \(0.362007\pi\)
\(758\) 11.8044 11.8044i 0.428754 0.428754i
\(759\) −5.71966 4.04441i −0.207611 0.146803i
\(760\) 10.0093 + 10.6978i 0.363076 + 0.388049i
\(761\) 51.2537i 1.85794i −0.370151 0.928972i \(-0.620694\pi\)
0.370151 0.928972i \(-0.379306\pi\)
\(762\) 15.4706 2.65433i 0.560439 0.0961561i
\(763\) 3.90444 + 3.90444i 0.141350 + 0.141350i
\(764\) −24.0429 −0.869841
\(765\) 36.7500 + 19.0763i 1.32870 + 0.689703i
\(766\) 6.20192 0.224084
\(767\) −24.2751 24.2751i −0.876524 0.876524i
\(768\) −1.70711 + 0.292893i −0.0615999 + 0.0105689i
\(769\) 21.1359i 0.762181i −0.924538 0.381090i \(-0.875549\pi\)
0.924538 0.381090i \(-0.124451\pi\)
\(770\) 0.0205557 0.618270i 0.000740776 0.0222809i
\(771\) −17.5047 12.3777i −0.630416 0.445771i
\(772\) −6.53705 + 6.53705i −0.235273 + 0.235273i
\(773\) −5.10946 + 5.10946i −0.183774 + 0.183774i −0.792998 0.609224i \(-0.791481\pi\)
0.609224 + 0.792998i \(0.291481\pi\)
\(774\) 4.77880 + 13.5165i 0.171770 + 0.485840i
\(775\) 4.98896 + 0.332104i 0.179209 + 0.0119295i
\(776\) 9.64124i 0.346100i
\(777\) −0.256096 1.49264i −0.00918738 0.0535480i
\(778\) −0.122833 0.122833i −0.00440379 0.00440379i
\(779\) 30.8740 1.10618
\(780\) −11.8293 + 15.6023i −0.423557 + 0.558652i
\(781\) −11.2329 −0.401943
\(782\) −19.7248 19.7248i −0.705359 0.705359i
\(783\) −10.8456 + 6.06308i −0.387589 + 0.216677i
\(784\) 6.90444i 0.246587i
\(785\) 29.1588 27.2823i 1.04072 0.973747i
\(786\) 13.7521 19.4485i 0.490523 0.693704i
\(787\) 5.33840 5.33840i 0.190293 0.190293i −0.605529 0.795823i \(-0.707039\pi\)
0.795823 + 0.605529i \(0.207039\pi\)
\(788\) −6.26650 + 6.26650i −0.223235 + 0.223235i
\(789\) −10.2595 + 14.5091i −0.365248 + 0.516539i
\(790\) −21.3620 + 19.9872i −0.760025 + 0.711114i
\(791\) 0.0205557i 0.000730877i
\(792\) −2.42265 1.15704i −0.0860850 0.0411135i
\(793\) −20.0870 20.0870i −0.713312 0.713312i
\(794\) −15.1700 −0.538365
\(795\) −33.6139 + 44.3352i −1.19216 + 1.57241i
\(796\) 10.7497 0.381014
\(797\) −2.18933 2.18933i −0.0775500 0.0775500i 0.667268 0.744818i \(-0.267464\pi\)
−0.744818 + 0.667268i \(0.767464\pi\)
\(798\) −0.593221 3.45754i −0.0209998 0.122396i
\(799\) 78.4662i 2.77593i
\(800\) 3.29289 + 3.76256i 0.116421 + 0.133027i
\(801\) 5.20280 1.83947i 0.183832 0.0649944i
\(802\) −4.81758 + 4.81758i −0.170115 + 0.170115i
\(803\) −7.01337 + 7.01337i −0.247497 + 0.247497i
\(804\) 19.0502 + 13.4706i 0.671850 + 0.475070i
\(805\) 0.103805 3.12222i 0.00365864 0.110044i
\(806\) 5.05545i 0.178071i
\(807\) 39.4810 6.77386i 1.38980 0.238451i
\(808\) 6.67139 + 6.67139i 0.234699 + 0.234699i
\(809\) 2.54711 0.0895516 0.0447758 0.998997i \(-0.485743\pi\)
0.0447758 + 0.998997i \(0.485743\pi\)
\(810\) 19.9306 + 2.78751i 0.700291 + 0.0979431i
\(811\) −5.43529 −0.190859 −0.0954294 0.995436i \(-0.530422\pi\)
−0.0954294 + 0.995436i \(0.530422\pi\)
\(812\) 0.522705 + 0.522705i 0.0183434 + 0.0183434i
\(813\) −20.5078 + 3.51858i −0.719239 + 0.123402i
\(814\) 2.53122i 0.0887192i
\(815\) 4.98896 + 5.33210i 0.174756 + 0.186775i
\(816\) −8.72918 6.17246i −0.305582 0.216079i
\(817\) −22.1393 + 22.1393i −0.774554 + 0.774554i
\(818\) 9.78121 9.78121i 0.341992 0.341992i
\(819\) 4.42031 1.56282i 0.154458 0.0546093i
\(820\) 10.5312 + 0.350133i 0.367766 + 0.0122272i
\(821\) 15.6179i 0.545069i −0.962146 0.272534i \(-0.912138\pi\)
0.962146 0.272534i \(-0.0878618\pi\)
\(822\) 1.58085 + 9.21384i 0.0551383 + 0.321370i
\(823\) 24.6369 + 24.6369i 0.858789 + 0.858789i 0.991195 0.132407i \(-0.0422705\pi\)
−0.132407 + 0.991195i \(0.542271\pi\)
\(824\) −7.18719 −0.250378
\(825\) 0.800323 + 7.70881i 0.0278637 + 0.268386i
\(826\) 2.09925 0.0730423
\(827\) −16.9360 16.9360i −0.588924 0.588924i 0.348416 0.937340i \(-0.386720\pi\)
−0.937340 + 0.348416i \(0.886720\pi\)
\(828\) −12.2342 5.84296i −0.425168 0.203057i
\(829\) 16.4317i 0.570696i −0.958424 0.285348i \(-0.907891\pi\)
0.958424 0.285348i \(-0.0921092\pi\)
\(830\) −4.92768 0.163831i −0.171042 0.00568666i
\(831\) 11.7608 16.6322i 0.407977 0.576966i
\(832\) 3.57474 3.57474i 0.123932 0.123932i
\(833\) 30.1350 30.1350i 1.04412 1.04412i
\(834\) 11.2279 15.8787i 0.388791 0.549833i
\(835\) −10.9744 11.7293i −0.379786 0.405908i
\(836\) 5.86332i 0.202787i
\(837\) −4.53553 + 2.53553i −0.156771 + 0.0876409i
\(838\) 10.1482 + 10.1482i 0.350565 + 0.350565i
\(839\) −35.2129 −1.21569 −0.607843 0.794057i \(-0.707965\pi\)
−0.607843 + 0.794057i \(0.707965\pi\)
\(840\) −0.163139 1.18611i −0.00562882 0.0409246i
\(841\) −23.2820 −0.802826
\(842\) −16.3367 16.3367i −0.562999 0.562999i
\(843\) −5.32359 31.0282i −0.183354 1.06867i
\(844\) 2.91700i 0.100407i
\(845\) 0.933052 28.0641i 0.0320980 0.965436i
\(846\) −12.7123 35.9558i −0.437058 1.23619i
\(847\) 2.22944 2.22944i 0.0766044 0.0766044i
\(848\) 10.1579 10.1579i 0.348825 0.348825i
\(849\) 5.58883 + 3.95190i 0.191808 + 0.135629i
\(850\) −2.04990 + 30.7941i −0.0703110 + 1.05623i
\(851\) 12.7825i 0.438178i
\(852\) −21.4272 + 3.67633i −0.734085 + 0.125949i
\(853\) 14.1055 + 14.1055i 0.482964 + 0.482964i 0.906077 0.423113i \(-0.139063\pi\)
−0.423113 + 0.906077i \(0.639063\pi\)
\(854\) 1.73708 0.0594416
\(855\) 13.2652 + 41.9010i 0.453661 + 1.43298i
\(856\) −4.48159 −0.153178
\(857\) −34.6304 34.6304i −1.18295 1.18295i −0.978975 0.203978i \(-0.934613\pi\)
−0.203978 0.978975i \(-0.565387\pi\)
\(858\) 7.72335 1.32512i 0.263671 0.0452388i
\(859\) 11.2737i 0.384653i 0.981331 + 0.192327i \(0.0616033\pi\)
−0.981331 + 0.192327i \(0.938397\pi\)
\(860\) −7.80285 + 7.30070i −0.266075 + 0.248952i
\(861\) −2.06014 1.45674i −0.0702094 0.0496455i
\(862\) −10.8900 + 10.8900i −0.370914 + 0.370914i
\(863\) 24.7143 24.7143i 0.841284 0.841284i −0.147742 0.989026i \(-0.547201\pi\)
0.989026 + 0.147742i \(0.0472006\pi\)
\(864\) −5.00000 1.41421i −0.170103 0.0481125i
\(865\) −27.5716 + 25.7972i −0.937462 + 0.877132i
\(866\) 7.17487i 0.243812i
\(867\) −6.17983 36.0187i −0.209878 1.22326i
\(868\) 0.218591 + 0.218591i 0.00741948 + 0.00741948i
\(869\) 11.7083 0.397175
\(870\) −7.37993 5.59530i −0.250203 0.189698i
\(871\) −68.0997 −2.30747
\(872\) 12.6302 + 12.6302i 0.427712 + 0.427712i
\(873\) −12.4651 + 26.0999i −0.421879 + 0.883347i
\(874\) 29.6094i 1.00155i
\(875\) −2.67506 + 2.18852i −0.0904334 + 0.0739855i
\(876\) −11.0830 + 15.6737i −0.374460 + 0.529566i
\(877\) −21.9874 + 21.9874i −0.742462 + 0.742462i −0.973051 0.230589i \(-0.925935\pi\)
0.230589 + 0.973051i \(0.425935\pi\)
\(878\) −6.19823 + 6.19823i −0.209180 + 0.209180i
\(879\) 12.2439 17.3155i 0.412976 0.584037i
\(880\) 0.0664943 2.00000i 0.00224152 0.0674200i
\(881\) 50.8515i 1.71323i 0.515954 + 0.856616i \(0.327437\pi\)
−0.515954 + 0.856616i \(0.672563\pi\)
\(882\) 8.92670 18.6910i 0.300578 0.629360i
\(883\) −18.7011 18.7011i −0.629341 0.629341i 0.318561 0.947902i \(-0.396800\pi\)
−0.947902 + 0.318561i \(0.896800\pi\)
\(884\) 31.2046 1.04952
\(885\) −26.0551 + 3.58365i −0.875832 + 0.120463i
\(886\) 29.8988 1.00447
\(887\) −14.9041 14.9041i −0.500430 0.500430i 0.411142 0.911571i \(-0.365130\pi\)
−0.911571 + 0.411142i \(0.865130\pi\)
\(888\) −0.828427 4.82843i −0.0278002 0.162031i
\(889\) 2.80152i 0.0939599i
\(890\) 2.81020 + 3.00349i 0.0941983 + 0.100677i
\(891\) −5.06244 6.26445i −0.169598 0.209867i
\(892\) 13.7181 13.7181i 0.459317 0.459317i
\(893\) 58.8936 58.8936i 1.97080 1.97080i
\(894\) 24.3036 + 17.1853i 0.812836 + 0.574762i
\(895\) 21.8566 + 0.726669i 0.730585 + 0.0242899i
\(896\) 0.309135i 0.0103275i
\(897\) 39.0024 6.69175i 1.30225 0.223431i
\(898\) −6.77511 6.77511i −0.226088 0.226088i
\(899\) 2.39124 0.0797525
\(900\) 4.04963 + 14.4430i 0.134988 + 0.481434i
\(901\) 88.6703 2.95404
\(902\) −2.98197 2.98197i −0.0992888 0.0992888i
\(903\) 2.52190 0.432690i 0.0839236 0.0143990i
\(904\) 0.0664943i 0.00221157i
\(905\) 38.5474 + 1.28159i 1.28136 + 0.0426016i
\(906\) −27.3614 19.3474i −0.909022 0.642776i
\(907\) 28.6764 28.6764i 0.952184 0.952184i −0.0467242 0.998908i \(-0.514878\pi\)
0.998908 + 0.0467242i \(0.0148782\pi\)
\(908\) 7.35704 7.35704i 0.244152 0.244152i
\(909\) 9.43477 + 26.6856i 0.312932 + 0.885104i
\(910\) 2.38756 + 2.55178i 0.0791467 + 0.0845905i
\(911\) 31.2435i 1.03514i −0.855640 0.517572i \(-0.826836\pi\)
0.855640 0.517572i \(-0.173164\pi\)
\(912\) −1.91897 11.1846i −0.0635435 0.370358i
\(913\) 1.39530 + 1.39530i 0.0461776 + 0.0461776i
\(914\) 12.2096 0.403858
\(915\) −21.5599 + 2.96538i −0.712749 + 0.0980323i
\(916\) −15.6228 −0.516193
\(917\) −3.00610 3.00610i −0.0992702 0.0992702i
\(918\) −15.6505 27.9954i −0.516543 0.923986i
\(919\) 35.4719i 1.17011i 0.810993 + 0.585056i \(0.198927\pi\)
−0.810993 + 0.585056i \(0.801073\pi\)
\(920\) 0.335792 10.0999i 0.0110707 0.332983i
\(921\) 13.7266 19.4124i 0.452308 0.639661i
\(922\) −5.55419 + 5.55419i −0.182917 + 0.182917i
\(923\) 44.8694 44.8694i 1.47689 1.47689i
\(924\) −0.276651 + 0.391244i −0.00910117 + 0.0128710i
\(925\) −10.6421 + 9.31371i −0.349911 + 0.306233i
\(926\) 30.5910i 1.00528i
\(927\) −19.4565 9.29227i −0.639035 0.305198i
\(928\) 1.69087 + 1.69087i 0.0555054 + 0.0555054i
\(929\) −12.0618 −0.395736 −0.197868 0.980229i \(-0.563402\pi\)
−0.197868 + 0.980229i \(0.563402\pi\)
\(930\) −3.08623 2.33991i −0.101201 0.0767287i
\(931\) 45.2363 1.48256
\(932\) 1.35857 + 1.35857i 0.0445013 + 0.0445013i
\(933\) 7.65112 + 44.5940i 0.250486 + 1.45994i
\(934\) 4.01220i 0.131283i
\(935\) 9.01940 8.43896i 0.294966 0.275983i
\(936\) 14.2990 5.05545i 0.467377 0.165243i
\(937\) 29.9584 29.9584i 0.978697 0.978697i −0.0210808 0.999778i \(-0.506711\pi\)
0.999778 + 0.0210808i \(0.00671072\pi\)
\(938\) 2.94455 2.94455i 0.0961429 0.0961429i
\(939\) −13.5675 9.59366i −0.442758 0.313077i
\(940\) 20.7567 19.4209i 0.677010 0.633441i
\(941\) 19.1066i 0.622858i 0.950269 + 0.311429i \(0.100808\pi\)
−0.950269 + 0.311429i \(0.899192\pi\)
\(942\) −30.4857 + 5.23052i −0.993278 + 0.170420i
\(943\) −15.0588 15.0588i −0.490380 0.490380i
\(944\) 6.79073 0.221019
\(945\) 1.09188 3.42184i 0.0355188 0.111313i
\(946\) 4.27665 0.139046
\(947\) −5.88211 5.88211i −0.191143 0.191143i 0.605047 0.796190i \(-0.293154\pi\)
−0.796190 + 0.605047i \(0.793154\pi\)
\(948\) 22.3341 3.83192i 0.725377 0.124455i
\(949\) 56.0296i 1.81880i
\(950\) −24.6514 + 21.5743i −0.799799 + 0.699963i
\(951\) −24.7726 17.5169i −0.803307 0.568024i
\(952\) −1.34925 + 1.34925i −0.0437293 + 0.0437293i
\(953\) −5.01193 + 5.01193i −0.162352 + 0.162352i −0.783608 0.621256i \(-0.786623\pi\)
0.621256 + 0.783608i \(0.286623\pi\)
\(954\) 40.6317 14.3655i 1.31550 0.465099i
\(955\) 1.78643 53.7318i 0.0578075 1.73872i
\(956\) 4.09226i 0.132353i
\(957\) 0.626784 + 3.65317i 0.0202611 + 0.118090i
\(958\) 23.1913 + 23.1913i 0.749277 + 0.749277i
\(959\) 1.66851 0.0538789
\(960\) −0.527726 3.83686i −0.0170323 0.123834i
\(961\) 1.00000 0.0322581
\(962\) 10.1109 + 10.1109i 0.325989 + 0.325989i
\(963\) −12.1322 5.79422i −0.390953 0.186716i
\(964\) 2.94455i 0.0948375i
\(965\) −14.1235 15.0949i −0.454651 0.485923i
\(966\) −1.39707 + 1.97576i −0.0449500 + 0.0635689i
\(967\) −17.6499 + 17.6499i −0.567581 + 0.567581i −0.931450 0.363869i \(-0.881456\pi\)
0.363869 + 0.931450i \(0.381456\pi\)
\(968\) 7.21186 7.21186i 0.231798 0.231798i
\(969\) 40.4406 57.1916i 1.29914 1.83726i
\(970\) −21.5466 0.716361i −0.691818 0.0230010i
\(971\) 8.99838i 0.288772i −0.989521 0.144386i \(-0.953879\pi\)
0.989521 0.144386i \(-0.0461207\pi\)
\(972\) −11.7071 10.2929i −0.375506 0.330145i
\(973\) −2.45433 2.45433i −0.0786821 0.0786821i
\(974\) −7.59366 −0.243317
\(975\) −33.9896 27.5958i −1.08854 0.883774i
\(976\) 5.61916 0.179865
\(977\) 10.3778 + 10.3778i 0.332015 + 0.332015i 0.853351 0.521336i \(-0.174566\pi\)
−0.521336 + 0.853351i \(0.674566\pi\)
\(978\) −0.956475 5.57474i −0.0305847 0.178261i
\(979\) 1.64618i 0.0526121i
\(980\) 15.4303 + 0.513012i 0.492902 + 0.0163876i
\(981\) 17.8618 + 50.5208i 0.570283 + 1.61300i
\(982\) 11.8746 11.8746i 0.378932 0.378932i
\(983\) −28.4058 + 28.4058i −0.906005 + 0.906005i −0.995947 0.0899417i \(-0.971332\pi\)
0.0899417 + 0.995947i \(0.471332\pi\)
\(984\) −6.66421 4.71231i −0.212447 0.150223i
\(985\) −13.5390 14.4702i −0.431387 0.461058i
\(986\) 14.7599i 0.470050i
\(987\) −6.70862 + 1.15102i −0.213538 + 0.0366373i
\(988\) 23.4209 + 23.4209i 0.745119 + 0.745119i
\(989\) 21.5968 0.686738
\(990\) 2.76579 5.32824i 0.0879027 0.169343i
\(991\) −22.2759 −0.707618 −0.353809 0.935318i \(-0.615114\pi\)
−0.353809 + 0.935318i \(0.615114\pi\)
\(992\) 0.707107 + 0.707107i 0.0224507 + 0.0224507i
\(993\) −12.2316 + 2.09861i −0.388158 + 0.0665974i
\(994\) 3.88019i 0.123072i
\(995\) −0.798724 + 24.0239i −0.0253213 + 0.761607i
\(996\) 3.11826 + 2.20494i 0.0988058 + 0.0698663i
\(997\) 24.3930 24.3930i 0.772535 0.772535i −0.206014 0.978549i \(-0.566049\pi\)
0.978549 + 0.206014i \(0.0660494\pi\)
\(998\) 28.4966 28.4966i 0.902043 0.902043i
\(999\) 4.00000 14.1421i 0.126554 0.447437i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 930.2.j.c.683.1 yes 8
3.2 odd 2 930.2.j.f.683.4 yes 8
5.2 odd 4 930.2.j.f.497.4 yes 8
15.2 even 4 inner 930.2.j.c.497.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.j.c.497.1 8 15.2 even 4 inner
930.2.j.c.683.1 yes 8 1.1 even 1 trivial
930.2.j.f.497.4 yes 8 5.2 odd 4
930.2.j.f.683.4 yes 8 3.2 odd 2