Properties

Label 930.2.i.e
Level $930$
Weight $2$
Character orbit 930.i
Analytic conductor $7.426$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\zeta_{6} - 1) q^{3} + q^{4} - \zeta_{6} q^{5} + (\zeta_{6} - 1) q^{6} + q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + (\zeta_{6} - 1) q^{3} + q^{4} - \zeta_{6} q^{5} + (\zeta_{6} - 1) q^{6} + q^{8} - \zeta_{6} q^{9} - \zeta_{6} q^{10} + \zeta_{6} q^{11} + (\zeta_{6} - 1) q^{12} + 6 \zeta_{6} q^{13} + q^{15} + q^{16} + ( - \zeta_{6} + 1) q^{17} - \zeta_{6} q^{18} + (4 \zeta_{6} - 4) q^{19} - \zeta_{6} q^{20} + \zeta_{6} q^{22} + 7 q^{23} + (\zeta_{6} - 1) q^{24} + (\zeta_{6} - 1) q^{25} + 6 \zeta_{6} q^{26} + q^{27} + 6 q^{29} + q^{30} + ( - 6 \zeta_{6} + 5) q^{31} + q^{32} - q^{33} + ( - \zeta_{6} + 1) q^{34} - \zeta_{6} q^{36} + (7 \zeta_{6} - 7) q^{37} + (4 \zeta_{6} - 4) q^{38} - 6 q^{39} - \zeta_{6} q^{40} + 2 \zeta_{6} q^{41} + ( - 7 \zeta_{6} + 7) q^{43} + \zeta_{6} q^{44} + (\zeta_{6} - 1) q^{45} + 7 q^{46} + 3 q^{47} + (\zeta_{6} - 1) q^{48} + 7 \zeta_{6} q^{49} + (\zeta_{6} - 1) q^{50} + \zeta_{6} q^{51} + 6 \zeta_{6} q^{52} + 4 \zeta_{6} q^{53} + q^{54} + ( - \zeta_{6} + 1) q^{55} - 4 \zeta_{6} q^{57} + 6 q^{58} + (12 \zeta_{6} - 12) q^{59} + q^{60} - 14 q^{61} + ( - 6 \zeta_{6} + 5) q^{62} + q^{64} + ( - 6 \zeta_{6} + 6) q^{65} - q^{66} - 5 \zeta_{6} q^{67} + ( - \zeta_{6} + 1) q^{68} + (7 \zeta_{6} - 7) q^{69} - 6 \zeta_{6} q^{71} - \zeta_{6} q^{72} - 2 \zeta_{6} q^{73} + (7 \zeta_{6} - 7) q^{74} - \zeta_{6} q^{75} + (4 \zeta_{6} - 4) q^{76} - 6 q^{78} + (3 \zeta_{6} - 3) q^{79} - \zeta_{6} q^{80} + (\zeta_{6} - 1) q^{81} + 2 \zeta_{6} q^{82} - 16 \zeta_{6} q^{83} - q^{85} + ( - 7 \zeta_{6} + 7) q^{86} + (6 \zeta_{6} - 6) q^{87} + \zeta_{6} q^{88} + 4 q^{89} + (\zeta_{6} - 1) q^{90} + 7 q^{92} + (5 \zeta_{6} + 1) q^{93} + 3 q^{94} + 4 q^{95} + (\zeta_{6} - 1) q^{96} - 6 q^{97} + 7 \zeta_{6} q^{98} + ( - \zeta_{6} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{5} - q^{6} + 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{5} - q^{6} + 2 q^{8} - q^{9} - q^{10} + q^{11} - q^{12} + 6 q^{13} + 2 q^{15} + 2 q^{16} + q^{17} - q^{18} - 4 q^{19} - q^{20} + q^{22} + 14 q^{23} - q^{24} - q^{25} + 6 q^{26} + 2 q^{27} + 12 q^{29} + 2 q^{30} + 4 q^{31} + 2 q^{32} - 2 q^{33} + q^{34} - q^{36} - 7 q^{37} - 4 q^{38} - 12 q^{39} - q^{40} + 2 q^{41} + 7 q^{43} + q^{44} - q^{45} + 14 q^{46} + 6 q^{47} - q^{48} + 7 q^{49} - q^{50} + q^{51} + 6 q^{52} + 4 q^{53} + 2 q^{54} + q^{55} - 4 q^{57} + 12 q^{58} - 12 q^{59} + 2 q^{60} - 28 q^{61} + 4 q^{62} + 2 q^{64} + 6 q^{65} - 2 q^{66} - 5 q^{67} + q^{68} - 7 q^{69} - 6 q^{71} - q^{72} - 2 q^{73} - 7 q^{74} - q^{75} - 4 q^{76} - 12 q^{78} - 3 q^{79} - q^{80} - q^{81} + 2 q^{82} - 16 q^{83} - 2 q^{85} + 7 q^{86} - 6 q^{87} + q^{88} + 8 q^{89} - q^{90} + 14 q^{92} + 7 q^{93} + 6 q^{94} + 8 q^{95} - q^{96} - 12 q^{97} + 7 q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
211.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 −0.500000 0.866025i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i 0 1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
811.1 1.00000 −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i 0 1.00000 −0.500000 0.866025i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 930.2.i.e 2
31.c even 3 1 inner 930.2.i.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.i.e 2 1.a even 1 1 trivial
930.2.i.e 2 31.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} + 1 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$17$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$23$ \( (T - 7)^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T + 31 \) Copy content Toggle raw display
$37$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$41$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$61$ \( (T + 14)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$83$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$89$ \( (T - 4)^{2} \) Copy content Toggle raw display
$97$ \( (T + 6)^{2} \) Copy content Toggle raw display
show more
show less