# Properties

 Label 930.2.i.c.211.1 Level $930$ Weight $2$ Character 930.211 Analytic conductor $7.426$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$930 = 2 \cdot 3 \cdot 5 \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 930.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.42608738798$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 211.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 930.211 Dual form 930.2.i.c.811.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(0.500000 - 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(1.50000 + 2.59808i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(0.500000 - 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(1.50000 + 2.59808i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(1.50000 - 2.59808i) q^{11} +(0.500000 + 0.866025i) q^{12} +(-2.00000 + 3.46410i) q^{13} +(-1.50000 - 2.59808i) q^{14} +1.00000 q^{15} +1.00000 q^{16} +(2.00000 + 3.46410i) q^{17} +(0.500000 - 0.866025i) q^{18} +(0.500000 - 0.866025i) q^{20} +(-1.50000 + 2.59808i) q^{21} +(-1.50000 + 2.59808i) q^{22} +2.00000 q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(2.00000 - 3.46410i) q^{26} -1.00000 q^{27} +(1.50000 + 2.59808i) q^{28} +1.00000 q^{29} -1.00000 q^{30} +(-3.50000 + 4.33013i) q^{31} -1.00000 q^{32} +3.00000 q^{33} +(-2.00000 - 3.46410i) q^{34} +3.00000 q^{35} +(-0.500000 + 0.866025i) q^{36} +(3.00000 + 5.19615i) q^{37} -4.00000 q^{39} +(-0.500000 + 0.866025i) q^{40} +(1.00000 - 1.73205i) q^{41} +(1.50000 - 2.59808i) q^{42} +(-2.00000 - 3.46410i) q^{43} +(1.50000 - 2.59808i) q^{44} +(0.500000 + 0.866025i) q^{45} -2.00000 q^{46} +4.00000 q^{47} +(0.500000 + 0.866025i) q^{48} +(-1.00000 + 1.73205i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-2.00000 + 3.46410i) q^{51} +(-2.00000 + 3.46410i) q^{52} +(1.50000 - 2.59808i) q^{53} +1.00000 q^{54} +(-1.50000 - 2.59808i) q^{55} +(-1.50000 - 2.59808i) q^{56} -1.00000 q^{58} +(4.50000 + 7.79423i) q^{59} +1.00000 q^{60} -2.00000 q^{61} +(3.50000 - 4.33013i) q^{62} -3.00000 q^{63} +1.00000 q^{64} +(2.00000 + 3.46410i) q^{65} -3.00000 q^{66} +(-1.00000 + 1.73205i) q^{67} +(2.00000 + 3.46410i) q^{68} +(1.00000 + 1.73205i) q^{69} -3.00000 q^{70} +(-2.00000 + 3.46410i) q^{71} +(0.500000 - 0.866025i) q^{72} +(-1.00000 + 1.73205i) q^{73} +(-3.00000 - 5.19615i) q^{74} +(0.500000 - 0.866025i) q^{75} +9.00000 q^{77} +4.00000 q^{78} +(2.00000 + 3.46410i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-1.00000 + 1.73205i) q^{82} +(-4.50000 + 7.79423i) q^{83} +(-1.50000 + 2.59808i) q^{84} +4.00000 q^{85} +(2.00000 + 3.46410i) q^{86} +(0.500000 + 0.866025i) q^{87} +(-1.50000 + 2.59808i) q^{88} +10.0000 q^{89} +(-0.500000 - 0.866025i) q^{90} -12.0000 q^{91} +2.00000 q^{92} +(-5.50000 - 0.866025i) q^{93} -4.00000 q^{94} +(-0.500000 - 0.866025i) q^{96} +11.0000 q^{97} +(1.00000 - 1.73205i) q^{98} +(1.50000 + 2.59808i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - q^{6} + 3 q^{7} - 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q - 2 * q^2 + q^3 + 2 * q^4 + q^5 - q^6 + 3 * q^7 - 2 * q^8 - q^9 $$2 q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - q^{6} + 3 q^{7} - 2 q^{8} - q^{9} - q^{10} + 3 q^{11} + q^{12} - 4 q^{13} - 3 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{17} + q^{18} + q^{20} - 3 q^{21} - 3 q^{22} + 4 q^{23} - q^{24} - q^{25} + 4 q^{26} - 2 q^{27} + 3 q^{28} + 2 q^{29} - 2 q^{30} - 7 q^{31} - 2 q^{32} + 6 q^{33} - 4 q^{34} + 6 q^{35} - q^{36} + 6 q^{37} - 8 q^{39} - q^{40} + 2 q^{41} + 3 q^{42} - 4 q^{43} + 3 q^{44} + q^{45} - 4 q^{46} + 8 q^{47} + q^{48} - 2 q^{49} + q^{50} - 4 q^{51} - 4 q^{52} + 3 q^{53} + 2 q^{54} - 3 q^{55} - 3 q^{56} - 2 q^{58} + 9 q^{59} + 2 q^{60} - 4 q^{61} + 7 q^{62} - 6 q^{63} + 2 q^{64} + 4 q^{65} - 6 q^{66} - 2 q^{67} + 4 q^{68} + 2 q^{69} - 6 q^{70} - 4 q^{71} + q^{72} - 2 q^{73} - 6 q^{74} + q^{75} + 18 q^{77} + 8 q^{78} + 4 q^{79} + q^{80} - q^{81} - 2 q^{82} - 9 q^{83} - 3 q^{84} + 8 q^{85} + 4 q^{86} + q^{87} - 3 q^{88} + 20 q^{89} - q^{90} - 24 q^{91} + 4 q^{92} - 11 q^{93} - 8 q^{94} - q^{96} + 22 q^{97} + 2 q^{98} + 3 q^{99}+O(q^{100})$$ 2 * q - 2 * q^2 + q^3 + 2 * q^4 + q^5 - q^6 + 3 * q^7 - 2 * q^8 - q^9 - q^10 + 3 * q^11 + q^12 - 4 * q^13 - 3 * q^14 + 2 * q^15 + 2 * q^16 + 4 * q^17 + q^18 + q^20 - 3 * q^21 - 3 * q^22 + 4 * q^23 - q^24 - q^25 + 4 * q^26 - 2 * q^27 + 3 * q^28 + 2 * q^29 - 2 * q^30 - 7 * q^31 - 2 * q^32 + 6 * q^33 - 4 * q^34 + 6 * q^35 - q^36 + 6 * q^37 - 8 * q^39 - q^40 + 2 * q^41 + 3 * q^42 - 4 * q^43 + 3 * q^44 + q^45 - 4 * q^46 + 8 * q^47 + q^48 - 2 * q^49 + q^50 - 4 * q^51 - 4 * q^52 + 3 * q^53 + 2 * q^54 - 3 * q^55 - 3 * q^56 - 2 * q^58 + 9 * q^59 + 2 * q^60 - 4 * q^61 + 7 * q^62 - 6 * q^63 + 2 * q^64 + 4 * q^65 - 6 * q^66 - 2 * q^67 + 4 * q^68 + 2 * q^69 - 6 * q^70 - 4 * q^71 + q^72 - 2 * q^73 - 6 * q^74 + q^75 + 18 * q^77 + 8 * q^78 + 4 * q^79 + q^80 - q^81 - 2 * q^82 - 9 * q^83 - 3 * q^84 + 8 * q^85 + 4 * q^86 + q^87 - 3 * q^88 + 20 * q^89 - q^90 - 24 * q^91 + 4 * q^92 - 11 * q^93 - 8 * q^94 - q^96 + 22 * q^97 + 2 * q^98 + 3 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/930\mathbb{Z}\right)^\times$$.

 $$n$$ $$187$$ $$311$$ $$871$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ 1.00000 0.500000
$$5$$ 0.500000 0.866025i 0.223607 0.387298i
$$6$$ −0.500000 0.866025i −0.204124 0.353553i
$$7$$ 1.50000 + 2.59808i 0.566947 + 0.981981i 0.996866 + 0.0791130i $$0.0252088\pi$$
−0.429919 + 0.902867i $$0.641458\pi$$
$$8$$ −1.00000 −0.353553
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ −0.500000 + 0.866025i −0.158114 + 0.273861i
$$11$$ 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i $$-0.683949\pi$$
0.998526 + 0.0542666i $$0.0172821\pi$$
$$12$$ 0.500000 + 0.866025i 0.144338 + 0.250000i
$$13$$ −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i $$0.353834\pi$$
−0.997927 + 0.0643593i $$0.979500\pi$$
$$14$$ −1.50000 2.59808i −0.400892 0.694365i
$$15$$ 1.00000 0.258199
$$16$$ 1.00000 0.250000
$$17$$ 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i $$-0.00546033\pi$$
−0.514782 + 0.857321i $$0.672127\pi$$
$$18$$ 0.500000 0.866025i 0.117851 0.204124i
$$19$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$20$$ 0.500000 0.866025i 0.111803 0.193649i
$$21$$ −1.50000 + 2.59808i −0.327327 + 0.566947i
$$22$$ −1.50000 + 2.59808i −0.319801 + 0.553912i
$$23$$ 2.00000 0.417029 0.208514 0.978019i $$-0.433137\pi$$
0.208514 + 0.978019i $$0.433137\pi$$
$$24$$ −0.500000 0.866025i −0.102062 0.176777i
$$25$$ −0.500000 0.866025i −0.100000 0.173205i
$$26$$ 2.00000 3.46410i 0.392232 0.679366i
$$27$$ −1.00000 −0.192450
$$28$$ 1.50000 + 2.59808i 0.283473 + 0.490990i
$$29$$ 1.00000 0.185695 0.0928477 0.995680i $$-0.470403\pi$$
0.0928477 + 0.995680i $$0.470403\pi$$
$$30$$ −1.00000 −0.182574
$$31$$ −3.50000 + 4.33013i −0.628619 + 0.777714i
$$32$$ −1.00000 −0.176777
$$33$$ 3.00000 0.522233
$$34$$ −2.00000 3.46410i −0.342997 0.594089i
$$35$$ 3.00000 0.507093
$$36$$ −0.500000 + 0.866025i −0.0833333 + 0.144338i
$$37$$ 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i $$-0.00249486\pi$$
−0.506772 + 0.862080i $$0.669162\pi$$
$$38$$ 0 0
$$39$$ −4.00000 −0.640513
$$40$$ −0.500000 + 0.866025i −0.0790569 + 0.136931i
$$41$$ 1.00000 1.73205i 0.156174 0.270501i −0.777312 0.629115i $$-0.783417\pi$$
0.933486 + 0.358614i $$0.116751\pi$$
$$42$$ 1.50000 2.59808i 0.231455 0.400892i
$$43$$ −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i $$-0.265322\pi$$
−0.977261 + 0.212041i $$0.931989\pi$$
$$44$$ 1.50000 2.59808i 0.226134 0.391675i
$$45$$ 0.500000 + 0.866025i 0.0745356 + 0.129099i
$$46$$ −2.00000 −0.294884
$$47$$ 4.00000 0.583460 0.291730 0.956501i $$-0.405769\pi$$
0.291730 + 0.956501i $$0.405769\pi$$
$$48$$ 0.500000 + 0.866025i 0.0721688 + 0.125000i
$$49$$ −1.00000 + 1.73205i −0.142857 + 0.247436i
$$50$$ 0.500000 + 0.866025i 0.0707107 + 0.122474i
$$51$$ −2.00000 + 3.46410i −0.280056 + 0.485071i
$$52$$ −2.00000 + 3.46410i −0.277350 + 0.480384i
$$53$$ 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i $$-0.767275\pi$$
0.950464 + 0.310835i $$0.100609\pi$$
$$54$$ 1.00000 0.136083
$$55$$ −1.50000 2.59808i −0.202260 0.350325i
$$56$$ −1.50000 2.59808i −0.200446 0.347183i
$$57$$ 0 0
$$58$$ −1.00000 −0.131306
$$59$$ 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i $$0.0325726\pi$$
−0.408919 + 0.912571i $$0.634094\pi$$
$$60$$ 1.00000 0.129099
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 3.50000 4.33013i 0.444500 0.549927i
$$63$$ −3.00000 −0.377964
$$64$$ 1.00000 0.125000
$$65$$ 2.00000 + 3.46410i 0.248069 + 0.429669i
$$66$$ −3.00000 −0.369274
$$67$$ −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i $$-0.872318\pi$$
0.798454 + 0.602056i $$0.205652\pi$$
$$68$$ 2.00000 + 3.46410i 0.242536 + 0.420084i
$$69$$ 1.00000 + 1.73205i 0.120386 + 0.208514i
$$70$$ −3.00000 −0.358569
$$71$$ −2.00000 + 3.46410i −0.237356 + 0.411113i −0.959955 0.280155i $$-0.909614\pi$$
0.722599 + 0.691268i $$0.242948\pi$$
$$72$$ 0.500000 0.866025i 0.0589256 0.102062i
$$73$$ −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i $$-0.870674\pi$$
0.801553 + 0.597924i $$0.204008\pi$$
$$74$$ −3.00000 5.19615i −0.348743 0.604040i
$$75$$ 0.500000 0.866025i 0.0577350 0.100000i
$$76$$ 0 0
$$77$$ 9.00000 1.02565
$$78$$ 4.00000 0.452911
$$79$$ 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i $$-0.0944227\pi$$
−0.731307 + 0.682048i $$0.761089\pi$$
$$80$$ 0.500000 0.866025i 0.0559017 0.0968246i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −1.00000 + 1.73205i −0.110432 + 0.191273i
$$83$$ −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i $$-0.997777\pi$$
0.506036 + 0.862512i $$0.331110\pi$$
$$84$$ −1.50000 + 2.59808i −0.163663 + 0.283473i
$$85$$ 4.00000 0.433861
$$86$$ 2.00000 + 3.46410i 0.215666 + 0.373544i
$$87$$ 0.500000 + 0.866025i 0.0536056 + 0.0928477i
$$88$$ −1.50000 + 2.59808i −0.159901 + 0.276956i
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ −0.500000 0.866025i −0.0527046 0.0912871i
$$91$$ −12.0000 −1.25794
$$92$$ 2.00000 0.208514
$$93$$ −5.50000 0.866025i −0.570323 0.0898027i
$$94$$ −4.00000 −0.412568
$$95$$ 0 0
$$96$$ −0.500000 0.866025i −0.0510310 0.0883883i
$$97$$ 11.0000 1.11688 0.558440 0.829545i $$-0.311400\pi$$
0.558440 + 0.829545i $$0.311400\pi$$
$$98$$ 1.00000 1.73205i 0.101015 0.174964i
$$99$$ 1.50000 + 2.59808i 0.150756 + 0.261116i
$$100$$ −0.500000 0.866025i −0.0500000 0.0866025i
$$101$$ −19.0000 −1.89057 −0.945285 0.326245i $$-0.894217\pi$$
−0.945285 + 0.326245i $$0.894217\pi$$
$$102$$ 2.00000 3.46410i 0.198030 0.342997i
$$103$$ −6.50000 + 11.2583i −0.640464 + 1.10932i 0.344865 + 0.938652i $$0.387925\pi$$
−0.985329 + 0.170664i $$0.945409\pi$$
$$104$$ 2.00000 3.46410i 0.196116 0.339683i
$$105$$ 1.50000 + 2.59808i 0.146385 + 0.253546i
$$106$$ −1.50000 + 2.59808i −0.145693 + 0.252347i
$$107$$ 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i $$-0.120345\pi$$
−0.784366 + 0.620298i $$0.787012\pi$$
$$108$$ −1.00000 −0.0962250
$$109$$ −4.00000 −0.383131 −0.191565 0.981480i $$-0.561356\pi$$
−0.191565 + 0.981480i $$0.561356\pi$$
$$110$$ 1.50000 + 2.59808i 0.143019 + 0.247717i
$$111$$ −3.00000 + 5.19615i −0.284747 + 0.493197i
$$112$$ 1.50000 + 2.59808i 0.141737 + 0.245495i
$$113$$ 6.00000 10.3923i 0.564433 0.977626i −0.432670 0.901553i $$-0.642428\pi$$
0.997102 0.0760733i $$-0.0242383\pi$$
$$114$$ 0 0
$$115$$ 1.00000 1.73205i 0.0932505 0.161515i
$$116$$ 1.00000 0.0928477
$$117$$ −2.00000 3.46410i −0.184900 0.320256i
$$118$$ −4.50000 7.79423i −0.414259 0.717517i
$$119$$ −6.00000 + 10.3923i −0.550019 + 0.952661i
$$120$$ −1.00000 −0.0912871
$$121$$ 1.00000 + 1.73205i 0.0909091 + 0.157459i
$$122$$ 2.00000 0.181071
$$123$$ 2.00000 0.180334
$$124$$ −3.50000 + 4.33013i −0.314309 + 0.388857i
$$125$$ −1.00000 −0.0894427
$$126$$ 3.00000 0.267261
$$127$$ 6.50000 + 11.2583i 0.576782 + 0.999015i 0.995846 + 0.0910585i $$0.0290250\pi$$
−0.419064 + 0.907957i $$0.637642\pi$$
$$128$$ −1.00000 −0.0883883
$$129$$ 2.00000 3.46410i 0.176090 0.304997i
$$130$$ −2.00000 3.46410i −0.175412 0.303822i
$$131$$ −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i $$-0.991023\pi$$
0.475380 0.879781i $$-0.342311\pi$$
$$132$$ 3.00000 0.261116
$$133$$ 0 0
$$134$$ 1.00000 1.73205i 0.0863868 0.149626i
$$135$$ −0.500000 + 0.866025i −0.0430331 + 0.0745356i
$$136$$ −2.00000 3.46410i −0.171499 0.297044i
$$137$$ 8.00000 13.8564i 0.683486 1.18383i −0.290424 0.956898i $$-0.593796\pi$$
0.973910 0.226935i $$-0.0728704\pi$$
$$138$$ −1.00000 1.73205i −0.0851257 0.147442i
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 3.00000 0.253546
$$141$$ 2.00000 + 3.46410i 0.168430 + 0.291730i
$$142$$ 2.00000 3.46410i 0.167836 0.290701i
$$143$$ 6.00000 + 10.3923i 0.501745 + 0.869048i
$$144$$ −0.500000 + 0.866025i −0.0416667 + 0.0721688i
$$145$$ 0.500000 0.866025i 0.0415227 0.0719195i
$$146$$ 1.00000 1.73205i 0.0827606 0.143346i
$$147$$ −2.00000 −0.164957
$$148$$ 3.00000 + 5.19615i 0.246598 + 0.427121i
$$149$$ −9.50000 16.4545i −0.778270 1.34800i −0.932938 0.360037i $$-0.882764\pi$$
0.154668 0.987967i $$-0.450569\pi$$
$$150$$ −0.500000 + 0.866025i −0.0408248 + 0.0707107i
$$151$$ 9.00000 0.732410 0.366205 0.930534i $$-0.380657\pi$$
0.366205 + 0.930534i $$0.380657\pi$$
$$152$$ 0 0
$$153$$ −4.00000 −0.323381
$$154$$ −9.00000 −0.725241
$$155$$ 2.00000 + 5.19615i 0.160644 + 0.417365i
$$156$$ −4.00000 −0.320256
$$157$$ 22.0000 1.75579 0.877896 0.478852i $$-0.158947\pi$$
0.877896 + 0.478852i $$0.158947\pi$$
$$158$$ −2.00000 3.46410i −0.159111 0.275589i
$$159$$ 3.00000 0.237915
$$160$$ −0.500000 + 0.866025i −0.0395285 + 0.0684653i
$$161$$ 3.00000 + 5.19615i 0.236433 + 0.409514i
$$162$$ 0.500000 + 0.866025i 0.0392837 + 0.0680414i
$$163$$ −10.0000 −0.783260 −0.391630 0.920123i $$-0.628089\pi$$
−0.391630 + 0.920123i $$0.628089\pi$$
$$164$$ 1.00000 1.73205i 0.0780869 0.135250i
$$165$$ 1.50000 2.59808i 0.116775 0.202260i
$$166$$ 4.50000 7.79423i 0.349268 0.604949i
$$167$$ −1.00000 1.73205i −0.0773823 0.134030i 0.824737 0.565516i $$-0.191323\pi$$
−0.902120 + 0.431486i $$0.857990\pi$$
$$168$$ 1.50000 2.59808i 0.115728 0.200446i
$$169$$ −1.50000 2.59808i −0.115385 0.199852i
$$170$$ −4.00000 −0.306786
$$171$$ 0 0
$$172$$ −2.00000 3.46410i −0.152499 0.264135i
$$173$$ 0.500000 0.866025i 0.0380143 0.0658427i −0.846392 0.532560i $$-0.821230\pi$$
0.884407 + 0.466717i $$0.154563\pi$$
$$174$$ −0.500000 0.866025i −0.0379049 0.0656532i
$$175$$ 1.50000 2.59808i 0.113389 0.196396i
$$176$$ 1.50000 2.59808i 0.113067 0.195837i
$$177$$ −4.50000 + 7.79423i −0.338241 + 0.585850i
$$178$$ −10.0000 −0.749532
$$179$$ −9.50000 16.4545i −0.710063 1.22987i −0.964833 0.262864i $$-0.915333\pi$$
0.254770 0.967002i $$-0.418000\pi$$
$$180$$ 0.500000 + 0.866025i 0.0372678 + 0.0645497i
$$181$$ −1.00000 + 1.73205i −0.0743294 + 0.128742i −0.900794 0.434246i $$-0.857015\pi$$
0.826465 + 0.562988i $$0.190348\pi$$
$$182$$ 12.0000 0.889499
$$183$$ −1.00000 1.73205i −0.0739221 0.128037i
$$184$$ −2.00000 −0.147442
$$185$$ 6.00000 0.441129
$$186$$ 5.50000 + 0.866025i 0.403280 + 0.0635001i
$$187$$ 12.0000 0.877527
$$188$$ 4.00000 0.291730
$$189$$ −1.50000 2.59808i −0.109109 0.188982i
$$190$$ 0 0
$$191$$ 7.00000 12.1244i 0.506502 0.877288i −0.493469 0.869763i $$-0.664272\pi$$
0.999972 0.00752447i $$-0.00239513\pi$$
$$192$$ 0.500000 + 0.866025i 0.0360844 + 0.0625000i
$$193$$ −10.5000 18.1865i −0.755807 1.30910i −0.944972 0.327150i $$-0.893912\pi$$
0.189166 0.981945i $$-0.439422\pi$$
$$194$$ −11.0000 −0.789754
$$195$$ −2.00000 + 3.46410i −0.143223 + 0.248069i
$$196$$ −1.00000 + 1.73205i −0.0714286 + 0.123718i
$$197$$ 9.00000 15.5885i 0.641223 1.11063i −0.343937 0.938993i $$-0.611761\pi$$
0.985160 0.171639i $$-0.0549062\pi$$
$$198$$ −1.50000 2.59808i −0.106600 0.184637i
$$199$$ 5.50000 9.52628i 0.389885 0.675300i −0.602549 0.798082i $$-0.705848\pi$$
0.992434 + 0.122782i $$0.0391815\pi$$
$$200$$ 0.500000 + 0.866025i 0.0353553 + 0.0612372i
$$201$$ −2.00000 −0.141069
$$202$$ 19.0000 1.33684
$$203$$ 1.50000 + 2.59808i 0.105279 + 0.182349i
$$204$$ −2.00000 + 3.46410i −0.140028 + 0.242536i
$$205$$ −1.00000 1.73205i −0.0698430 0.120972i
$$206$$ 6.50000 11.2583i 0.452876 0.784405i
$$207$$ −1.00000 + 1.73205i −0.0695048 + 0.120386i
$$208$$ −2.00000 + 3.46410i −0.138675 + 0.240192i
$$209$$ 0 0
$$210$$ −1.50000 2.59808i −0.103510 0.179284i
$$211$$ −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i $$-0.255467\pi$$
−0.970229 + 0.242190i $$0.922134\pi$$
$$212$$ 1.50000 2.59808i 0.103020 0.178437i
$$213$$ −4.00000 −0.274075
$$214$$ −1.50000 2.59808i −0.102538 0.177601i
$$215$$ −4.00000 −0.272798
$$216$$ 1.00000 0.0680414
$$217$$ −16.5000 2.59808i −1.12009 0.176369i
$$218$$ 4.00000 0.270914
$$219$$ −2.00000 −0.135147
$$220$$ −1.50000 2.59808i −0.101130 0.175162i
$$221$$ −16.0000 −1.07628
$$222$$ 3.00000 5.19615i 0.201347 0.348743i
$$223$$ −4.50000 7.79423i −0.301342 0.521940i 0.675098 0.737728i $$-0.264101\pi$$
−0.976440 + 0.215788i $$0.930768\pi$$
$$224$$ −1.50000 2.59808i −0.100223 0.173591i
$$225$$ 1.00000 0.0666667
$$226$$ −6.00000 + 10.3923i −0.399114 + 0.691286i
$$227$$ 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i $$-0.801590\pi$$
0.911502 + 0.411296i $$0.134924\pi$$
$$228$$ 0 0
$$229$$ −11.0000 19.0526i −0.726900 1.25903i −0.958187 0.286143i $$-0.907627\pi$$
0.231287 0.972886i $$-0.425707\pi$$
$$230$$ −1.00000 + 1.73205i −0.0659380 + 0.114208i
$$231$$ 4.50000 + 7.79423i 0.296078 + 0.512823i
$$232$$ −1.00000 −0.0656532
$$233$$ −6.00000 −0.393073 −0.196537 0.980497i $$-0.562969\pi$$
−0.196537 + 0.980497i $$0.562969\pi$$
$$234$$ 2.00000 + 3.46410i 0.130744 + 0.226455i
$$235$$ 2.00000 3.46410i 0.130466 0.225973i
$$236$$ 4.50000 + 7.79423i 0.292925 + 0.507361i
$$237$$ −2.00000 + 3.46410i −0.129914 + 0.225018i
$$238$$ 6.00000 10.3923i 0.388922 0.673633i
$$239$$ 12.0000 20.7846i 0.776215 1.34444i −0.157893 0.987456i $$-0.550470\pi$$
0.934109 0.356988i $$-0.116196\pi$$
$$240$$ 1.00000 0.0645497
$$241$$ −7.50000 12.9904i −0.483117 0.836784i 0.516695 0.856170i $$-0.327162\pi$$
−0.999812 + 0.0193858i $$0.993829\pi$$
$$242$$ −1.00000 1.73205i −0.0642824 0.111340i
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ −2.00000 −0.128037
$$245$$ 1.00000 + 1.73205i 0.0638877 + 0.110657i
$$246$$ −2.00000 −0.127515
$$247$$ 0 0
$$248$$ 3.50000 4.33013i 0.222250 0.274963i
$$249$$ −9.00000 −0.570352
$$250$$ 1.00000 0.0632456
$$251$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$252$$ −3.00000 −0.188982
$$253$$ 3.00000 5.19615i 0.188608 0.326679i
$$254$$ −6.50000 11.2583i −0.407846 0.706410i
$$255$$ 2.00000 + 3.46410i 0.125245 + 0.216930i
$$256$$ 1.00000 0.0625000
$$257$$ −5.00000 + 8.66025i −0.311891 + 0.540212i −0.978772 0.204953i $$-0.934296\pi$$
0.666880 + 0.745165i $$0.267629\pi$$
$$258$$ −2.00000 + 3.46410i −0.124515 + 0.215666i
$$259$$ −9.00000 + 15.5885i −0.559233 + 0.968620i
$$260$$ 2.00000 + 3.46410i 0.124035 + 0.214834i
$$261$$ −0.500000 + 0.866025i −0.0309492 + 0.0536056i
$$262$$ 6.00000 + 10.3923i 0.370681 + 0.642039i
$$263$$ −6.00000 −0.369976 −0.184988 0.982741i $$-0.559225\pi$$
−0.184988 + 0.982741i $$0.559225\pi$$
$$264$$ −3.00000 −0.184637
$$265$$ −1.50000 2.59808i −0.0921443 0.159599i
$$266$$ 0 0
$$267$$ 5.00000 + 8.66025i 0.305995 + 0.529999i
$$268$$ −1.00000 + 1.73205i −0.0610847 + 0.105802i
$$269$$ −7.00000 + 12.1244i −0.426798 + 0.739235i −0.996586 0.0825561i $$-0.973692\pi$$
0.569789 + 0.821791i $$0.307025\pi$$
$$270$$ 0.500000 0.866025i 0.0304290 0.0527046i
$$271$$ 1.00000 0.0607457 0.0303728 0.999539i $$-0.490331\pi$$
0.0303728 + 0.999539i $$0.490331\pi$$
$$272$$ 2.00000 + 3.46410i 0.121268 + 0.210042i
$$273$$ −6.00000 10.3923i −0.363137 0.628971i
$$274$$ −8.00000 + 13.8564i −0.483298 + 0.837096i
$$275$$ −3.00000 −0.180907
$$276$$ 1.00000 + 1.73205i 0.0601929 + 0.104257i
$$277$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$278$$ −4.00000 −0.239904
$$279$$ −2.00000 5.19615i −0.119737 0.311086i
$$280$$ −3.00000 −0.179284
$$281$$ −26.0000 −1.55103 −0.775515 0.631329i $$-0.782510\pi$$
−0.775515 + 0.631329i $$0.782510\pi$$
$$282$$ −2.00000 3.46410i −0.119098 0.206284i
$$283$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$284$$ −2.00000 + 3.46410i −0.118678 + 0.205557i
$$285$$ 0 0
$$286$$ −6.00000 10.3923i −0.354787 0.614510i
$$287$$ 6.00000 0.354169
$$288$$ 0.500000 0.866025i 0.0294628 0.0510310i
$$289$$ 0.500000 0.866025i 0.0294118 0.0509427i
$$290$$ −0.500000 + 0.866025i −0.0293610 + 0.0508548i
$$291$$ 5.50000 + 9.52628i 0.322416 + 0.558440i
$$292$$ −1.00000 + 1.73205i −0.0585206 + 0.101361i
$$293$$ −10.5000 18.1865i −0.613417 1.06247i −0.990660 0.136355i $$-0.956461\pi$$
0.377244 0.926114i $$-0.376872\pi$$
$$294$$ 2.00000 0.116642
$$295$$ 9.00000 0.524000
$$296$$ −3.00000 5.19615i −0.174371 0.302020i
$$297$$ −1.50000 + 2.59808i −0.0870388 + 0.150756i
$$298$$ 9.50000 + 16.4545i 0.550320 + 0.953183i
$$299$$ −4.00000 + 6.92820i −0.231326 + 0.400668i
$$300$$ 0.500000 0.866025i 0.0288675 0.0500000i
$$301$$ 6.00000 10.3923i 0.345834 0.599002i
$$302$$ −9.00000 −0.517892
$$303$$ −9.50000 16.4545i −0.545761 0.945285i
$$304$$ 0 0
$$305$$ −1.00000 + 1.73205i −0.0572598 + 0.0991769i
$$306$$ 4.00000 0.228665
$$307$$ 4.00000 + 6.92820i 0.228292 + 0.395413i 0.957302 0.289090i $$-0.0933526\pi$$
−0.729010 + 0.684503i $$0.760019\pi$$
$$308$$ 9.00000 0.512823
$$309$$ −13.0000 −0.739544
$$310$$ −2.00000 5.19615i −0.113592 0.295122i
$$311$$ 24.0000 1.36092 0.680458 0.732787i $$-0.261781\pi$$
0.680458 + 0.732787i $$0.261781\pi$$
$$312$$ 4.00000 0.226455
$$313$$ −10.5000 18.1865i −0.593495 1.02796i −0.993757 0.111563i $$-0.964414\pi$$
0.400262 0.916401i $$-0.368919\pi$$
$$314$$ −22.0000 −1.24153
$$315$$ −1.50000 + 2.59808i −0.0845154 + 0.146385i
$$316$$ 2.00000 + 3.46410i 0.112509 + 0.194871i
$$317$$ −6.50000 11.2583i −0.365076 0.632331i 0.623712 0.781654i $$-0.285624\pi$$
−0.988788 + 0.149323i $$0.952290\pi$$
$$318$$ −3.00000 −0.168232
$$319$$ 1.50000 2.59808i 0.0839839 0.145464i
$$320$$ 0.500000 0.866025i 0.0279508 0.0484123i
$$321$$ −1.50000 + 2.59808i −0.0837218 + 0.145010i
$$322$$ −3.00000 5.19615i −0.167183 0.289570i
$$323$$ 0 0
$$324$$ −0.500000 0.866025i −0.0277778 0.0481125i
$$325$$ 4.00000 0.221880
$$326$$ 10.0000 0.553849
$$327$$ −2.00000 3.46410i −0.110600 0.191565i
$$328$$ −1.00000 + 1.73205i −0.0552158 + 0.0956365i
$$329$$ 6.00000 + 10.3923i 0.330791 + 0.572946i
$$330$$ −1.50000 + 2.59808i −0.0825723 + 0.143019i
$$331$$ 15.0000 25.9808i 0.824475 1.42803i −0.0778456 0.996965i $$-0.524804\pi$$
0.902320 0.431066i $$-0.141863\pi$$
$$332$$ −4.50000 + 7.79423i −0.246970 + 0.427764i
$$333$$ −6.00000 −0.328798
$$334$$ 1.00000 + 1.73205i 0.0547176 + 0.0947736i
$$335$$ 1.00000 + 1.73205i 0.0546358 + 0.0946320i
$$336$$ −1.50000 + 2.59808i −0.0818317 + 0.141737i
$$337$$ 25.0000 1.36184 0.680918 0.732359i $$-0.261581\pi$$
0.680918 + 0.732359i $$0.261581\pi$$
$$338$$ 1.50000 + 2.59808i 0.0815892 + 0.141317i
$$339$$ 12.0000 0.651751
$$340$$ 4.00000 0.216930
$$341$$ 6.00000 + 15.5885i 0.324918 + 0.844162i
$$342$$ 0 0
$$343$$ 15.0000 0.809924
$$344$$ 2.00000 + 3.46410i 0.107833 + 0.186772i
$$345$$ 2.00000 0.107676
$$346$$ −0.500000 + 0.866025i −0.0268802 + 0.0465578i
$$347$$ −9.50000 16.4545i −0.509987 0.883323i −0.999933 0.0115703i $$-0.996317\pi$$
0.489946 0.871753i $$-0.337016\pi$$
$$348$$ 0.500000 + 0.866025i 0.0268028 + 0.0464238i
$$349$$ 12.0000 0.642345 0.321173 0.947021i $$-0.395923\pi$$
0.321173 + 0.947021i $$0.395923\pi$$
$$350$$ −1.50000 + 2.59808i −0.0801784 + 0.138873i
$$351$$ 2.00000 3.46410i 0.106752 0.184900i
$$352$$ −1.50000 + 2.59808i −0.0799503 + 0.138478i
$$353$$ −3.00000 5.19615i −0.159674 0.276563i 0.775077 0.631867i $$-0.217711\pi$$
−0.934751 + 0.355303i $$0.884378\pi$$
$$354$$ 4.50000 7.79423i 0.239172 0.414259i
$$355$$ 2.00000 + 3.46410i 0.106149 + 0.183855i
$$356$$ 10.0000 0.529999
$$357$$ −12.0000 −0.635107
$$358$$ 9.50000 + 16.4545i 0.502091 + 0.869646i
$$359$$ −15.0000 + 25.9808i −0.791670 + 1.37121i 0.133263 + 0.991081i $$0.457455\pi$$
−0.924932 + 0.380131i $$0.875879\pi$$
$$360$$ −0.500000 0.866025i −0.0263523 0.0456435i
$$361$$ 9.50000 16.4545i 0.500000 0.866025i
$$362$$ 1.00000 1.73205i 0.0525588 0.0910346i
$$363$$ −1.00000 + 1.73205i −0.0524864 + 0.0909091i
$$364$$ −12.0000 −0.628971
$$365$$ 1.00000 + 1.73205i 0.0523424 + 0.0906597i
$$366$$ 1.00000 + 1.73205i 0.0522708 + 0.0905357i
$$367$$ −16.0000 + 27.7128i −0.835193 + 1.44660i 0.0586798 + 0.998277i $$0.481311\pi$$
−0.893873 + 0.448320i $$0.852022\pi$$
$$368$$ 2.00000 0.104257
$$369$$ 1.00000 + 1.73205i 0.0520579 + 0.0901670i
$$370$$ −6.00000 −0.311925
$$371$$ 9.00000 0.467257
$$372$$ −5.50000 0.866025i −0.285162 0.0449013i
$$373$$ 24.0000 1.24267 0.621336 0.783544i $$-0.286590\pi$$
0.621336 + 0.783544i $$0.286590\pi$$
$$374$$ −12.0000 −0.620505
$$375$$ −0.500000 0.866025i −0.0258199 0.0447214i
$$376$$ −4.00000 −0.206284
$$377$$ −2.00000 + 3.46410i −0.103005 + 0.178410i
$$378$$ 1.50000 + 2.59808i 0.0771517 + 0.133631i
$$379$$ 9.00000 + 15.5885i 0.462299 + 0.800725i 0.999075 0.0429994i $$-0.0136914\pi$$
−0.536776 + 0.843725i $$0.680358\pi$$
$$380$$ 0 0
$$381$$ −6.50000 + 11.2583i −0.333005 + 0.576782i
$$382$$ −7.00000 + 12.1244i −0.358151 + 0.620336i
$$383$$ −3.00000 + 5.19615i −0.153293 + 0.265511i −0.932436 0.361335i $$-0.882321\pi$$
0.779143 + 0.626846i $$0.215654\pi$$
$$384$$ −0.500000 0.866025i −0.0255155 0.0441942i
$$385$$ 4.50000 7.79423i 0.229341 0.397231i
$$386$$ 10.5000 + 18.1865i 0.534436 + 0.925670i
$$387$$ 4.00000 0.203331
$$388$$ 11.0000 0.558440
$$389$$ 13.0000 + 22.5167i 0.659126 + 1.14164i 0.980842 + 0.194804i $$0.0624070\pi$$
−0.321716 + 0.946836i $$0.604260\pi$$
$$390$$ 2.00000 3.46410i 0.101274 0.175412i
$$391$$ 4.00000 + 6.92820i 0.202289 + 0.350374i
$$392$$ 1.00000 1.73205i 0.0505076 0.0874818i
$$393$$ 6.00000 10.3923i 0.302660 0.524222i
$$394$$ −9.00000 + 15.5885i −0.453413 + 0.785335i
$$395$$ 4.00000 0.201262
$$396$$ 1.50000 + 2.59808i 0.0753778 + 0.130558i
$$397$$ 5.00000 + 8.66025i 0.250943 + 0.434646i 0.963786 0.266678i $$-0.0859261\pi$$
−0.712843 + 0.701324i $$0.752593\pi$$
$$398$$ −5.50000 + 9.52628i −0.275690 + 0.477509i
$$399$$ 0 0
$$400$$ −0.500000 0.866025i −0.0250000 0.0433013i
$$401$$ −8.00000 −0.399501 −0.199750 0.979847i $$-0.564013\pi$$
−0.199750 + 0.979847i $$0.564013\pi$$
$$402$$ 2.00000 0.0997509
$$403$$ −8.00000 20.7846i −0.398508 1.03536i
$$404$$ −19.0000 −0.945285
$$405$$ −1.00000 −0.0496904
$$406$$ −1.50000 2.59808i −0.0744438 0.128940i
$$407$$ 18.0000 0.892227
$$408$$ 2.00000 3.46410i 0.0990148 0.171499i
$$409$$ 6.50000 + 11.2583i 0.321404 + 0.556689i 0.980778 0.195127i $$-0.0625118\pi$$
−0.659374 + 0.751815i $$0.729178\pi$$
$$410$$ 1.00000 + 1.73205i 0.0493865 + 0.0855399i
$$411$$ 16.0000 0.789222
$$412$$ −6.50000 + 11.2583i −0.320232 + 0.554658i
$$413$$ −13.5000 + 23.3827i −0.664292 + 1.15059i
$$414$$ 1.00000 1.73205i 0.0491473 0.0851257i
$$415$$ 4.50000 + 7.79423i 0.220896 + 0.382604i
$$416$$ 2.00000 3.46410i 0.0980581 0.169842i
$$417$$ 2.00000 + 3.46410i 0.0979404 + 0.169638i
$$418$$ 0 0
$$419$$ 9.00000 0.439679 0.219839 0.975536i $$-0.429447\pi$$
0.219839 + 0.975536i $$0.429447\pi$$
$$420$$ 1.50000 + 2.59808i 0.0731925 + 0.126773i
$$421$$ 17.0000 29.4449i 0.828529 1.43505i −0.0706626 0.997500i $$-0.522511\pi$$
0.899192 0.437555i $$-0.144155\pi$$
$$422$$ 4.00000 + 6.92820i 0.194717 + 0.337260i
$$423$$ −2.00000 + 3.46410i −0.0972433 + 0.168430i
$$424$$ −1.50000 + 2.59808i −0.0728464 + 0.126174i
$$425$$ 2.00000 3.46410i 0.0970143 0.168034i
$$426$$ 4.00000 0.193801
$$427$$ −3.00000 5.19615i −0.145180 0.251459i
$$428$$ 1.50000 + 2.59808i 0.0725052 + 0.125583i
$$429$$ −6.00000 + 10.3923i −0.289683 + 0.501745i
$$430$$ 4.00000 0.192897
$$431$$ 16.0000 + 27.7128i 0.770693 + 1.33488i 0.937184 + 0.348836i $$0.113423\pi$$
−0.166491 + 0.986043i $$0.553244\pi$$
$$432$$ −1.00000 −0.0481125
$$433$$ 26.0000 1.24948 0.624740 0.780833i $$-0.285205\pi$$
0.624740 + 0.780833i $$0.285205\pi$$
$$434$$ 16.5000 + 2.59808i 0.792025 + 0.124712i
$$435$$ 1.00000 0.0479463
$$436$$ −4.00000 −0.191565
$$437$$ 0 0
$$438$$ 2.00000 0.0955637
$$439$$ 1.50000 2.59808i 0.0715911 0.123999i −0.828008 0.560717i $$-0.810526\pi$$
0.899599 + 0.436717i $$0.143859\pi$$
$$440$$ 1.50000 + 2.59808i 0.0715097 + 0.123858i
$$441$$ −1.00000 1.73205i −0.0476190 0.0824786i
$$442$$ 16.0000 0.761042
$$443$$ −18.0000 + 31.1769i −0.855206 + 1.48126i 0.0212481 + 0.999774i $$0.493236\pi$$
−0.876454 + 0.481486i $$0.840097\pi$$
$$444$$ −3.00000 + 5.19615i −0.142374 + 0.246598i
$$445$$ 5.00000 8.66025i 0.237023 0.410535i
$$446$$ 4.50000 + 7.79423i 0.213081 + 0.369067i
$$447$$ 9.50000 16.4545i 0.449335 0.778270i
$$448$$ 1.50000 + 2.59808i 0.0708683 + 0.122748i
$$449$$ 26.0000 1.22702 0.613508 0.789689i $$-0.289758\pi$$
0.613508 + 0.789689i $$0.289758\pi$$
$$450$$ −1.00000 −0.0471405
$$451$$ −3.00000 5.19615i −0.141264 0.244677i
$$452$$ 6.00000 10.3923i 0.282216 0.488813i
$$453$$ 4.50000 + 7.79423i 0.211428 + 0.366205i
$$454$$ −1.50000 + 2.59808i −0.0703985 + 0.121934i
$$455$$ −6.00000 + 10.3923i −0.281284 + 0.487199i
$$456$$ 0 0
$$457$$ −26.0000 −1.21623 −0.608114 0.793849i $$-0.708074\pi$$
−0.608114 + 0.793849i $$0.708074\pi$$
$$458$$ 11.0000 + 19.0526i 0.513996 + 0.890268i
$$459$$ −2.00000 3.46410i −0.0933520 0.161690i
$$460$$ 1.00000 1.73205i 0.0466252 0.0807573i
$$461$$ −9.00000 −0.419172 −0.209586 0.977790i $$-0.567212\pi$$
−0.209586 + 0.977790i $$0.567212\pi$$
$$462$$ −4.50000 7.79423i −0.209359 0.362620i
$$463$$ −5.00000 −0.232370 −0.116185 0.993228i $$-0.537067\pi$$
−0.116185 + 0.993228i $$0.537067\pi$$
$$464$$ 1.00000 0.0464238
$$465$$ −3.50000 + 4.33013i −0.162309 + 0.200805i
$$466$$ 6.00000 0.277945
$$467$$ −27.0000 −1.24941 −0.624705 0.780860i $$-0.714781\pi$$
−0.624705 + 0.780860i $$0.714781\pi$$
$$468$$ −2.00000 3.46410i −0.0924500 0.160128i
$$469$$ −6.00000 −0.277054
$$470$$ −2.00000 + 3.46410i −0.0922531 + 0.159787i
$$471$$ 11.0000 + 19.0526i 0.506853 + 0.877896i
$$472$$ −4.50000 7.79423i −0.207129 0.358758i
$$473$$ −12.0000 −0.551761
$$474$$ 2.00000 3.46410i 0.0918630 0.159111i
$$475$$ 0 0
$$476$$ −6.00000 + 10.3923i −0.275010 + 0.476331i
$$477$$ 1.50000 + 2.59808i 0.0686803 + 0.118958i
$$478$$ −12.0000 + 20.7846i −0.548867 + 0.950666i
$$479$$ −6.00000 10.3923i −0.274147 0.474837i 0.695773 0.718262i $$-0.255062\pi$$
−0.969920 + 0.243426i $$0.921729\pi$$
$$480$$ −1.00000 −0.0456435
$$481$$ −24.0000 −1.09431
$$482$$ 7.50000 + 12.9904i 0.341616 + 0.591696i
$$483$$ −3.00000 + 5.19615i −0.136505 + 0.236433i
$$484$$ 1.00000 + 1.73205i 0.0454545 + 0.0787296i
$$485$$ 5.50000 9.52628i 0.249742 0.432566i
$$486$$ −0.500000 + 0.866025i −0.0226805 + 0.0392837i
$$487$$ −14.5000 + 25.1147i −0.657058 + 1.13806i 0.324316 + 0.945949i $$0.394866\pi$$
−0.981374 + 0.192109i $$0.938467\pi$$
$$488$$ 2.00000 0.0905357
$$489$$ −5.00000 8.66025i −0.226108 0.391630i
$$490$$ −1.00000 1.73205i −0.0451754 0.0782461i
$$491$$ 9.50000 16.4545i 0.428729 0.742580i −0.568032 0.823007i $$-0.692295\pi$$
0.996761 + 0.0804264i $$0.0256282\pi$$
$$492$$ 2.00000 0.0901670
$$493$$ 2.00000 + 3.46410i 0.0900755 + 0.156015i
$$494$$ 0 0
$$495$$ 3.00000 0.134840
$$496$$ −3.50000 + 4.33013i −0.157155 + 0.194428i
$$497$$ −12.0000 −0.538274
$$498$$ 9.00000 0.403300
$$499$$ −11.0000 19.0526i −0.492428 0.852910i 0.507534 0.861632i $$-0.330557\pi$$
−0.999962 + 0.00872186i $$0.997224\pi$$
$$500$$ −1.00000 −0.0447214
$$501$$ 1.00000 1.73205i 0.0446767 0.0773823i
$$502$$ 0 0
$$503$$ −7.00000 12.1244i −0.312115 0.540598i 0.666705 0.745321i $$-0.267704\pi$$
−0.978820 + 0.204723i $$0.934371\pi$$
$$504$$ 3.00000 0.133631
$$505$$ −9.50000 + 16.4545i −0.422744 + 0.732215i
$$506$$ −3.00000 + 5.19615i −0.133366 + 0.230997i
$$507$$ 1.50000 2.59808i 0.0666173 0.115385i
$$508$$ 6.50000 + 11.2583i 0.288391 + 0.499508i
$$509$$ 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i $$-0.725464\pi$$
0.982988 + 0.183669i $$0.0587976\pi$$
$$510$$ −2.00000 3.46410i −0.0885615 0.153393i
$$511$$ −6.00000 −0.265424
$$512$$ −1.00000 −0.0441942
$$513$$ 0 0
$$514$$ 5.00000 8.66025i 0.220541 0.381987i
$$515$$ 6.50000 + 11.2583i 0.286424 + 0.496101i
$$516$$ 2.00000 3.46410i 0.0880451 0.152499i
$$517$$ 6.00000 10.3923i 0.263880 0.457053i
$$518$$ 9.00000 15.5885i 0.395437 0.684917i
$$519$$ 1.00000 0.0438951
$$520$$ −2.00000 3.46410i −0.0877058 0.151911i
$$521$$ 12.0000 + 20.7846i 0.525730 + 0.910590i 0.999551 + 0.0299693i $$0.00954094\pi$$
−0.473821 + 0.880621i $$0.657126\pi$$
$$522$$ 0.500000 0.866025i 0.0218844 0.0379049i
$$523$$ 8.00000 0.349816 0.174908 0.984585i $$-0.444037\pi$$
0.174908 + 0.984585i $$0.444037\pi$$
$$524$$ −6.00000 10.3923i −0.262111 0.453990i
$$525$$ 3.00000 0.130931
$$526$$ 6.00000 0.261612
$$527$$ −22.0000 3.46410i −0.958335 0.150899i
$$528$$ 3.00000 0.130558
$$529$$ −19.0000 −0.826087
$$530$$ 1.50000 + 2.59808i 0.0651558 + 0.112853i
$$531$$ −9.00000 −0.390567
$$532$$ 0 0
$$533$$ 4.00000 + 6.92820i 0.173259 + 0.300094i
$$534$$ −5.00000 8.66025i −0.216371 0.374766i
$$535$$ 3.00000 0.129701
$$536$$ 1.00000 1.73205i 0.0431934 0.0748132i
$$537$$ 9.50000 16.4545i 0.409955 0.710063i
$$538$$ 7.00000 12.1244i 0.301791 0.522718i
$$539$$ 3.00000 + 5.19615i 0.129219 + 0.223814i
$$540$$ −0.500000 + 0.866025i −0.0215166 + 0.0372678i
$$541$$ −5.00000 8.66025i −0.214967 0.372333i 0.738296 0.674477i $$-0.235631\pi$$
−0.953262 + 0.302144i $$0.902298\pi$$
$$542$$ −1.00000 −0.0429537
$$543$$ −2.00000 −0.0858282
$$544$$ −2.00000 3.46410i −0.0857493 0.148522i
$$545$$ −2.00000 + 3.46410i −0.0856706 + 0.148386i
$$546$$ 6.00000 + 10.3923i 0.256776 + 0.444750i
$$547$$ −5.00000 + 8.66025i −0.213785 + 0.370286i −0.952896 0.303298i $$-0.901912\pi$$
0.739111 + 0.673583i $$0.235246\pi$$
$$548$$ 8.00000 13.8564i 0.341743 0.591916i
$$549$$ 1.00000 1.73205i 0.0426790 0.0739221i
$$550$$ 3.00000 0.127920
$$551$$ 0 0
$$552$$ −1.00000 1.73205i −0.0425628 0.0737210i
$$553$$ −6.00000 + 10.3923i −0.255146 + 0.441926i
$$554$$ 0 0
$$555$$ 3.00000 + 5.19615i 0.127343 + 0.220564i
$$556$$ 4.00000 0.169638
$$557$$ 11.0000 0.466085 0.233042 0.972467i $$-0.425132\pi$$
0.233042 + 0.972467i $$0.425132\pi$$
$$558$$ 2.00000 + 5.19615i 0.0846668 + 0.219971i
$$559$$ 16.0000 0.676728
$$560$$ 3.00000 0.126773
$$561$$ 6.00000 + 10.3923i 0.253320 + 0.438763i
$$562$$ 26.0000 1.09674
$$563$$ −11.5000 + 19.9186i −0.484667 + 0.839468i −0.999845 0.0176152i $$-0.994393\pi$$
0.515178 + 0.857083i $$0.327726\pi$$
$$564$$ 2.00000 + 3.46410i 0.0842152 + 0.145865i
$$565$$ −6.00000 10.3923i −0.252422 0.437208i
$$566$$ 0 0
$$567$$ 1.50000 2.59808i 0.0629941 0.109109i
$$568$$ 2.00000 3.46410i 0.0839181 0.145350i
$$569$$ −2.00000 + 3.46410i −0.0838444 + 0.145223i −0.904898 0.425628i $$-0.860053\pi$$
0.821054 + 0.570851i $$0.193387\pi$$
$$570$$ 0 0
$$571$$ −11.0000 + 19.0526i −0.460336 + 0.797325i −0.998978 0.0452101i $$-0.985604\pi$$
0.538642 + 0.842535i $$0.318938\pi$$
$$572$$ 6.00000 + 10.3923i 0.250873 + 0.434524i
$$573$$ 14.0000 0.584858
$$574$$ −6.00000 −0.250435
$$575$$ −1.00000 1.73205i −0.0417029 0.0722315i
$$576$$ −0.500000 + 0.866025i −0.0208333 + 0.0360844i
$$577$$ 13.0000 + 22.5167i 0.541197 + 0.937381i 0.998836 + 0.0482425i $$0.0153620\pi$$
−0.457639 + 0.889138i $$0.651305\pi$$
$$578$$ −0.500000 + 0.866025i −0.0207973 + 0.0360219i
$$579$$ 10.5000 18.1865i 0.436365 0.755807i
$$580$$ 0.500000 0.866025i 0.0207614 0.0359597i
$$581$$ −27.0000 −1.12015
$$582$$ −5.50000 9.52628i −0.227982 0.394877i
$$583$$ −4.50000 7.79423i −0.186371 0.322804i
$$584$$ 1.00000 1.73205i 0.0413803 0.0716728i
$$585$$ −4.00000 −0.165380
$$586$$ 10.5000 + 18.1865i 0.433751 + 0.751279i
$$587$$ 11.0000 0.454019 0.227009 0.973893i $$-0.427105\pi$$
0.227009 + 0.973893i $$0.427105\pi$$
$$588$$ −2.00000 −0.0824786
$$589$$ 0 0
$$590$$ −9.00000 −0.370524
$$591$$ 18.0000 0.740421
$$592$$ 3.00000 + 5.19615i 0.123299 + 0.213561i
$$593$$ −20.0000 −0.821302 −0.410651 0.911793i $$-0.634698\pi$$
−0.410651 + 0.911793i $$0.634698\pi$$
$$594$$ 1.50000 2.59808i 0.0615457 0.106600i
$$595$$ 6.00000 + 10.3923i 0.245976 + 0.426043i
$$596$$ −9.50000 16.4545i −0.389135 0.674002i
$$597$$ 11.0000 0.450200
$$598$$ 4.00000 6.92820i 0.163572 0.283315i
$$599$$ 12.0000 20.7846i 0.490307 0.849236i −0.509631 0.860393i $$-0.670218\pi$$
0.999938 + 0.0111569i $$0.00355143\pi$$
$$600$$ −0.500000 + 0.866025i −0.0204124 + 0.0353553i
$$601$$ −21.0000 36.3731i −0.856608 1.48369i −0.875145 0.483860i $$-0.839234\pi$$
0.0185374 0.999828i $$-0.494099\pi$$
$$602$$ −6.00000 + 10.3923i −0.244542 + 0.423559i
$$603$$ −1.00000 1.73205i −0.0407231 0.0705346i
$$604$$ 9.00000 0.366205
$$605$$ 2.00000 0.0813116
$$606$$ 9.50000 + 16.4545i 0.385911 + 0.668418i
$$607$$ −16.0000 + 27.7128i −0.649420 + 1.12483i 0.333842 + 0.942629i $$0.391655\pi$$
−0.983262 + 0.182199i $$0.941678\pi$$
$$608$$ 0 0
$$609$$ −1.50000 + 2.59808i −0.0607831 + 0.105279i
$$610$$ 1.00000 1.73205i 0.0404888 0.0701287i
$$611$$ −8.00000 + 13.8564i −0.323645 + 0.560570i
$$612$$ −4.00000 −0.161690
$$613$$ 8.00000 + 13.8564i 0.323117 + 0.559655i 0.981129 0.193352i $$-0.0619359\pi$$
−0.658012 + 0.753007i $$0.728603\pi$$
$$614$$ −4.00000 6.92820i −0.161427 0.279600i
$$615$$ 1.00000 1.73205i 0.0403239 0.0698430i
$$616$$ −9.00000 −0.362620
$$617$$ −21.0000 36.3731i −0.845428 1.46432i −0.885249 0.465118i $$-0.846012\pi$$
0.0398207 0.999207i $$-0.487321\pi$$
$$618$$ 13.0000 0.522937
$$619$$ 22.0000 0.884255 0.442127 0.896952i $$-0.354224\pi$$
0.442127 + 0.896952i $$0.354224\pi$$
$$620$$ 2.00000 + 5.19615i 0.0803219 + 0.208683i
$$621$$ −2.00000 −0.0802572
$$622$$ −24.0000 −0.962312
$$623$$ 15.0000 + 25.9808i 0.600962 + 1.04090i
$$624$$ −4.00000 −0.160128
$$625$$ −0.500000 + 0.866025i −0.0200000 + 0.0346410i
$$626$$ 10.5000 + 18.1865i 0.419664 + 0.726880i
$$627$$ 0 0
$$628$$ 22.0000 0.877896
$$629$$ −12.0000 + 20.7846i −0.478471 + 0.828737i
$$630$$ 1.50000 2.59808i 0.0597614 0.103510i
$$631$$ −20.5000 + 35.5070i −0.816092 + 1.41351i 0.0924489 + 0.995717i $$0.470531\pi$$
−0.908541 + 0.417796i $$0.862803\pi$$
$$632$$ −2.00000 3.46410i −0.0795557 0.137795i
$$633$$ 4.00000 6.92820i 0.158986 0.275371i
$$634$$ 6.50000 + 11.2583i 0.258148 + 0.447125i
$$635$$ 13.0000 0.515889
$$636$$ 3.00000 0.118958
$$637$$ −4.00000 6.92820i −0.158486 0.274505i
$$638$$ −1.50000 + 2.59808i −0.0593856 + 0.102859i
$$639$$ −2.00000 3.46410i −0.0791188 0.137038i
$$640$$ −0.500000 + 0.866025i −0.0197642 + 0.0342327i
$$641$$ 5.00000 8.66025i 0.197488 0.342059i −0.750225 0.661182i $$-0.770055\pi$$
0.947713 + 0.319123i $$0.103388\pi$$
$$642$$ 1.50000 2.59808i 0.0592003 0.102538i
$$643$$ −38.0000 −1.49857 −0.749287 0.662246i $$-0.769604\pi$$
−0.749287 + 0.662246i $$0.769604\pi$$
$$644$$ 3.00000 + 5.19615i 0.118217 + 0.204757i
$$645$$ −2.00000 3.46410i −0.0787499 0.136399i
$$646$$ 0 0
$$647$$ −24.0000 −0.943537 −0.471769 0.881722i $$-0.656384\pi$$
−0.471769 + 0.881722i $$0.656384\pi$$
$$648$$ 0.500000 + 0.866025i 0.0196419 + 0.0340207i
$$649$$ 27.0000 1.05984
$$650$$ −4.00000 −0.156893
$$651$$ −6.00000 15.5885i −0.235159 0.610960i
$$652$$ −10.0000 −0.391630
$$653$$ −29.0000 −1.13486 −0.567429 0.823422i $$-0.692062\pi$$
−0.567429 + 0.823422i $$0.692062\pi$$
$$654$$ 2.00000 + 3.46410i 0.0782062 + 0.135457i
$$655$$ −12.0000 −0.468879
$$656$$ 1.00000 1.73205i 0.0390434 0.0676252i
$$657$$ −1.00000 1.73205i −0.0390137 0.0675737i
$$658$$ −6.00000 10.3923i −0.233904 0.405134i
$$659$$ −37.0000 −1.44132 −0.720658 0.693291i $$-0.756160\pi$$
−0.720658 + 0.693291i $$0.756160\pi$$
$$660$$ 1.50000 2.59808i 0.0583874 0.101130i
$$661$$ 25.0000 43.3013i 0.972387 1.68422i 0.284087 0.958799i $$-0.408310\pi$$
0.688301 0.725426i $$-0.258357\pi$$
$$662$$ −15.0000 + 25.9808i −0.582992 + 1.00977i
$$663$$ −8.00000 13.8564i −0.310694 0.538138i
$$664$$ 4.50000 7.79423i 0.174634 0.302475i
$$665$$ 0 0
$$666$$ 6.00000 0.232495
$$667$$ 2.00000 0.0774403
$$668$$ −1.00000 1.73205i −0.0386912 0.0670151i
$$669$$ 4.50000 7.79423i 0.173980 0.301342i
$$670$$ −1.00000 1.73205i −0.0386334 0.0669150i
$$671$$ −3.00000 + 5.19615i −0.115814 + 0.200595i
$$672$$ 1.50000 2.59808i 0.0578638 0.100223i
$$673$$ 9.50000 16.4545i 0.366198 0.634274i −0.622770 0.782405i $$-0.713993\pi$$
0.988968 + 0.148132i $$0.0473259\pi$$
$$674$$ −25.0000 −0.962964
$$675$$ 0.500000 + 0.866025i 0.0192450 + 0.0333333i
$$676$$ −1.50000 2.59808i −0.0576923 0.0999260i
$$677$$ 16.5000 28.5788i 0.634147 1.09837i −0.352549 0.935793i $$-0.614685\pi$$
0.986695 0.162581i $$-0.0519817\pi$$
$$678$$ −12.0000 −0.460857
$$679$$ 16.5000 + 28.5788i 0.633212 + 1.09676i
$$680$$ −4.00000 −0.153393
$$681$$ 3.00000 0.114960
$$682$$ −6.00000 15.5885i −0.229752 0.596913i
$$683$$ 23.0000 0.880071 0.440035 0.897980i $$-0.354966\pi$$
0.440035 + 0.897980i $$0.354966\pi$$
$$684$$ 0 0
$$685$$ −8.00000 13.8564i −0.305664 0.529426i
$$686$$ −15.0000 −0.572703
$$687$$ 11.0000 19.0526i 0.419676 0.726900i
$$688$$ −2.00000 3.46410i −0.0762493 0.132068i
$$689$$ 6.00000 + 10.3923i 0.228582 + 0.395915i
$$690$$ −2.00000 −0.0761387
$$691$$ −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i $$-0.881959\pi$$
0.779857 + 0.625958i $$0.215292\pi$$
$$692$$ 0.500000 0.866025i 0.0190071 0.0329213i
$$693$$ −4.50000 + 7.79423i −0.170941 + 0.296078i
$$694$$ 9.50000 + 16.4545i 0.360615 + 0.624604i
$$695$$ 2.00000 3.46410i 0.0758643 0.131401i
$$696$$ −0.500000 0.866025i −0.0189525 0.0328266i
$$697$$ 8.00000 0.303022
$$698$$ −12.0000 −0.454207
$$699$$ −3.00000 5.19615i −0.113470 0.196537i
$$700$$ 1.50000 2.59808i 0.0566947 0.0981981i
$$701$$ 7.50000 + 12.9904i 0.283271 + 0.490640i 0.972188 0.234200i $$-0.0752470\pi$$
−0.688917 + 0.724840i $$0.741914\pi$$
$$702$$ −2.00000 + 3.46410i −0.0754851 + 0.130744i
$$703$$ 0 0
$$704$$ 1.50000 2.59808i 0.0565334 0.0979187i
$$705$$ 4.00000 0.150649
$$706$$ 3.00000 + 5.19615i 0.112906 + 0.195560i
$$707$$ −28.5000 49.3634i −1.07185 1.85650i
$$708$$ −4.50000 + 7.79423i −0.169120 + 0.292925i
$$709$$ 50.0000 1.87779 0.938895 0.344204i $$-0.111851\pi$$
0.938895 + 0.344204i $$0.111851\pi$$
$$710$$ −2.00000 3.46410i −0.0750587 0.130005i
$$711$$ −4.00000 −0.150012
$$712$$ −10.0000 −0.374766
$$713$$ −7.00000 + 8.66025i −0.262152 + 0.324329i
$$714$$ 12.0000 0.449089
$$715$$ 12.0000 0.448775
$$716$$ −9.50000 16.4545i −0.355032 0.614933i
$$717$$ 24.0000 0.896296
$$718$$ 15.0000 25.9808i 0.559795 0.969593i
$$719$$ 2.00000 + 3.46410i 0.0745874 + 0.129189i 0.900907 0.434013i $$-0.142903\pi$$
−0.826319 + 0.563202i $$0.809569\pi$$
$$720$$ 0.500000 + 0.866025i 0.0186339 + 0.0322749i
$$721$$ −39.0000 −1.45244
$$722$$ −9.50000 + 16.4545i −0.353553 + 0.612372i
$$723$$ 7.50000 12.9904i 0.278928 0.483117i
$$724$$ −1.00000 + 1.73205i −0.0371647 + 0.0643712i
$$725$$ −0.500000 0.866025i −0.0185695 0.0321634i
$$726$$ 1.00000 1.73205i 0.0371135 0.0642824i
$$727$$ −1.50000 2.59808i −0.0556319 0.0963573i 0.836868 0.547404i $$-0.184384\pi$$
−0.892500 + 0.451047i $$0.851051\pi$$
$$728$$ 12.0000 0.444750
$$729$$ 1.00000 0.0370370
$$730$$ −1.00000 1.73205i −0.0370117 0.0641061i
$$731$$ 8.00000 13.8564i 0.295891 0.512498i
$$732$$ −1.00000 1.73205i −0.0369611 0.0640184i
$$733$$ −9.00000 + 15.5885i −0.332423 + 0.575773i −0.982986 0.183679i $$-0.941199\pi$$
0.650564 + 0.759452i $$0.274533\pi$$
$$734$$ 16.0000 27.7128i 0.590571 1.02290i
$$735$$ −1.00000 + 1.73205i −0.0368856 + 0.0638877i
$$736$$ −2.00000 −0.0737210
$$737$$ 3.00000 + 5.19615i 0.110506 + 0.191403i
$$738$$ −1.00000 1.73205i −0.0368105 0.0637577i
$$739$$ −8.00000 + 13.8564i −0.294285 + 0.509716i −0.974818 0.223001i $$-0.928415\pi$$
0.680534 + 0.732717i $$0.261748\pi$$
$$740$$ 6.00000 0.220564
$$741$$ 0 0
$$742$$ −9.00000 −0.330400
$$743$$ 50.0000 1.83432 0.917161 0.398517i $$-0.130475\pi$$
0.917161 + 0.398517i $$0.130475\pi$$
$$744$$ 5.50000 + 0.866025i 0.201640 + 0.0317500i
$$745$$ −19.0000 −0.696106
$$746$$ −24.0000 −0.878702
$$747$$ −4.50000 7.79423i −0.164646 0.285176i
$$748$$ 12.0000 0.438763
$$749$$ −4.50000 + 7.79423i −0.164426 + 0.284795i
$$750$$ 0.500000 + 0.866025i 0.0182574 + 0.0316228i
$$751$$ 5.50000 + 9.52628i 0.200698 + 0.347619i 0.948753 0.316017i $$-0.102346\pi$$
−0.748056 + 0.663636i $$0.769012\pi$$
$$752$$ 4.00000 0.145865
$$753$$ 0 0
$$754$$ 2.00000 3.46410i 0.0728357 0.126155i
$$755$$ 4.50000 7.79423i 0.163772 0.283661i
$$756$$ −1.50000 2.59808i −0.0545545 0.0944911i
$$757$$ 26.0000 45.0333i 0.944986 1.63676i 0.189207 0.981937i $$-0.439408\pi$$
0.755779 0.654827i $$-0.227258\pi$$
$$758$$ −9.00000 15.5885i −0.326895 0.566198i
$$759$$ 6.00000 0.217786
$$760$$ 0 0
$$761$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$762$$ 6.50000 11.2583i 0.235470 0.407846i
$$763$$ −6.00000 10.3923i −0.217215 0.376227i
$$764$$ 7.00000 12.1244i 0.253251 0.438644i
$$765$$ −2.00000 + 3.46410i −0.0723102 + 0.125245i
$$766$$ 3.00000 5.19615i 0.108394 0.187745i
$$767$$ −36.0000 −1.29988
$$768$$ 0.500000 + 0.866025i 0.0180422 + 0.0312500i
$$769$$ −22.5000 38.9711i −0.811371 1.40534i −0.911905 0.410402i $$-0.865388\pi$$
0.100534 0.994934i $$-0.467945\pi$$
$$770$$ −4.50000 + 7.79423i −0.162169 + 0.280885i
$$771$$ −10.0000 −0.360141
$$772$$ −10.5000 18.1865i −0.377903 0.654548i
$$773$$ 14.0000 0.503545 0.251773 0.967786i $$-0.418987\pi$$
0.251773 + 0.967786i $$0.418987\pi$$
$$774$$ −4.00000 −0.143777
$$775$$ 5.50000 + 0.866025i 0.197566 + 0.0311086i
$$776$$ −11.0000 −0.394877
$$777$$ −18.0000 −0.645746
$$778$$ −13.0000 22.5167i</