Properties

Label 930.2.i.a.811.1
Level $930$
Weight $2$
Character 930.811
Analytic conductor $7.426$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(211,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.211");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 811.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 930.811
Dual form 930.2.i.a.211.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(0.500000 + 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(0.500000 + 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(1.50000 + 2.59808i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(-1.00000 - 1.73205i) q^{13} +(-0.500000 + 0.866025i) q^{14} -1.00000 q^{15} +1.00000 q^{16} +(-3.00000 + 5.19615i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-1.00000 + 1.73205i) q^{19} +(0.500000 + 0.866025i) q^{20} +(0.500000 + 0.866025i) q^{21} +(-1.50000 - 2.59808i) q^{22} +6.00000 q^{23} +(0.500000 - 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(1.00000 + 1.73205i) q^{26} +1.00000 q^{27} +(0.500000 - 0.866025i) q^{28} +9.00000 q^{29} +1.00000 q^{30} +(-3.50000 - 4.33013i) q^{31} -1.00000 q^{32} -3.00000 q^{33} +(3.00000 - 5.19615i) q^{34} +1.00000 q^{35} +(-0.500000 - 0.866025i) q^{36} +(-4.00000 + 6.92820i) q^{37} +(1.00000 - 1.73205i) q^{38} +2.00000 q^{39} +(-0.500000 - 0.866025i) q^{40} +(-0.500000 - 0.866025i) q^{42} +(-4.00000 + 6.92820i) q^{43} +(1.50000 + 2.59808i) q^{44} +(0.500000 - 0.866025i) q^{45} -6.00000 q^{46} -6.00000 q^{47} +(-0.500000 + 0.866025i) q^{48} +(3.00000 + 5.19615i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-3.00000 - 5.19615i) q^{51} +(-1.00000 - 1.73205i) q^{52} +(-1.50000 - 2.59808i) q^{53} -1.00000 q^{54} +(-1.50000 + 2.59808i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(-1.00000 - 1.73205i) q^{57} -9.00000 q^{58} +(-7.50000 + 12.9904i) q^{59} -1.00000 q^{60} +14.0000 q^{61} +(3.50000 + 4.33013i) q^{62} -1.00000 q^{63} +1.00000 q^{64} +(1.00000 - 1.73205i) q^{65} +3.00000 q^{66} +(-4.00000 - 6.92820i) q^{67} +(-3.00000 + 5.19615i) q^{68} +(-3.00000 + 5.19615i) q^{69} -1.00000 q^{70} +(6.00000 + 10.3923i) q^{71} +(0.500000 + 0.866025i) q^{72} +(-7.00000 - 12.1244i) q^{73} +(4.00000 - 6.92820i) q^{74} +(-0.500000 - 0.866025i) q^{75} +(-1.00000 + 1.73205i) q^{76} +3.00000 q^{77} -2.00000 q^{78} +(-4.00000 + 6.92820i) q^{79} +(0.500000 + 0.866025i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.50000 + 7.79423i) q^{83} +(0.500000 + 0.866025i) q^{84} -6.00000 q^{85} +(4.00000 - 6.92820i) q^{86} +(-4.50000 + 7.79423i) q^{87} +(-1.50000 - 2.59808i) q^{88} +(-0.500000 + 0.866025i) q^{90} -2.00000 q^{91} +6.00000 q^{92} +(5.50000 - 0.866025i) q^{93} +6.00000 q^{94} -2.00000 q^{95} +(0.500000 - 0.866025i) q^{96} -19.0000 q^{97} +(-3.00000 - 5.19615i) q^{98} +(1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + q^{6} + q^{7} - 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + q^{6} + q^{7} - 2 q^{8} - q^{9} - q^{10} + 3 q^{11} - q^{12} - 2 q^{13} - q^{14} - 2 q^{15} + 2 q^{16} - 6 q^{17} + q^{18} - 2 q^{19} + q^{20} + q^{21} - 3 q^{22} + 12 q^{23} + q^{24} - q^{25} + 2 q^{26} + 2 q^{27} + q^{28} + 18 q^{29} + 2 q^{30} - 7 q^{31} - 2 q^{32} - 6 q^{33} + 6 q^{34} + 2 q^{35} - q^{36} - 8 q^{37} + 2 q^{38} + 4 q^{39} - q^{40} - q^{42} - 8 q^{43} + 3 q^{44} + q^{45} - 12 q^{46} - 12 q^{47} - q^{48} + 6 q^{49} + q^{50} - 6 q^{51} - 2 q^{52} - 3 q^{53} - 2 q^{54} - 3 q^{55} - q^{56} - 2 q^{57} - 18 q^{58} - 15 q^{59} - 2 q^{60} + 28 q^{61} + 7 q^{62} - 2 q^{63} + 2 q^{64} + 2 q^{65} + 6 q^{66} - 8 q^{67} - 6 q^{68} - 6 q^{69} - 2 q^{70} + 12 q^{71} + q^{72} - 14 q^{73} + 8 q^{74} - q^{75} - 2 q^{76} + 6 q^{77} - 4 q^{78} - 8 q^{79} + q^{80} - q^{81} + 9 q^{83} + q^{84} - 12 q^{85} + 8 q^{86} - 9 q^{87} - 3 q^{88} - q^{90} - 4 q^{91} + 12 q^{92} + 11 q^{93} + 12 q^{94} - 4 q^{95} + q^{96} - 38 q^{97} - 6 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −1.00000 + 1.73205i −0.229416 + 0.397360i −0.957635 0.287984i \(-0.907015\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0.500000 + 0.866025i 0.109109 + 0.188982i
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 1.00000 + 1.73205i 0.196116 + 0.339683i
\(27\) 1.00000 0.192450
\(28\) 0.500000 0.866025i 0.0944911 0.163663i
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 1.00000 0.182574
\(31\) −3.50000 4.33013i −0.628619 0.777714i
\(32\) −1.00000 −0.176777
\(33\) −3.00000 −0.522233
\(34\) 3.00000 5.19615i 0.514496 0.891133i
\(35\) 1.00000 0.169031
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) 1.00000 1.73205i 0.162221 0.280976i
\(39\) 2.00000 0.320256
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) −0.500000 0.866025i −0.0771517 0.133631i
\(43\) −4.00000 + 6.92820i −0.609994 + 1.05654i 0.381246 + 0.924473i \(0.375495\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) −6.00000 −0.884652
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.50000 + 2.59808i −0.202260 + 0.350325i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) −1.00000 1.73205i −0.132453 0.229416i
\(58\) −9.00000 −1.18176
\(59\) −7.50000 + 12.9904i −0.976417 + 1.69120i −0.301239 + 0.953549i \(0.597400\pi\)
−0.675178 + 0.737655i \(0.735933\pi\)
\(60\) −1.00000 −0.129099
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 3.50000 + 4.33013i 0.444500 + 0.549927i
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 3.00000 0.369274
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) −3.00000 + 5.19615i −0.361158 + 0.625543i
\(70\) −1.00000 −0.119523
\(71\) 6.00000 + 10.3923i 0.712069 + 1.23334i 0.964079 + 0.265615i \(0.0855750\pi\)
−0.252010 + 0.967725i \(0.581092\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) −7.00000 12.1244i −0.819288 1.41905i −0.906208 0.422833i \(-0.861036\pi\)
0.0869195 0.996215i \(-0.472298\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) 3.00000 0.341882
\(78\) −2.00000 −0.226455
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0.500000 + 0.866025i 0.0559017 + 0.0968246i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0.500000 + 0.866025i 0.0545545 + 0.0944911i
\(85\) −6.00000 −0.650791
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) −4.50000 + 7.79423i −0.482451 + 0.835629i
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −0.500000 + 0.866025i −0.0527046 + 0.0912871i
\(91\) −2.00000 −0.209657
\(92\) 6.00000 0.625543
\(93\) 5.50000 0.866025i 0.570323 0.0898027i
\(94\) 6.00000 0.618853
\(95\) −2.00000 −0.205196
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −19.0000 −1.92916 −0.964579 0.263795i \(-0.915026\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) −3.00000 5.19615i −0.303046 0.524891i
\(99\) 1.50000 2.59808i 0.150756 0.261116i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 3.00000 + 5.19615i 0.297044 + 0.514496i
\(103\) 6.50000 + 11.2583i 0.640464 + 1.10932i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 1.00000 + 1.73205i 0.0980581 + 0.169842i
\(105\) −0.500000 + 0.866025i −0.0487950 + 0.0845154i
\(106\) 1.50000 + 2.59808i 0.145693 + 0.252347i
\(107\) −7.50000 + 12.9904i −0.725052 + 1.25583i 0.233900 + 0.972261i \(0.424851\pi\)
−0.958952 + 0.283567i \(0.908482\pi\)
\(108\) 1.00000 0.0962250
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 1.50000 2.59808i 0.143019 0.247717i
\(111\) −4.00000 6.92820i −0.379663 0.657596i
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) 9.00000 + 15.5885i 0.846649 + 1.46644i 0.884182 + 0.467143i \(0.154717\pi\)
−0.0375328 + 0.999295i \(0.511950\pi\)
\(114\) 1.00000 + 1.73205i 0.0936586 + 0.162221i
\(115\) 3.00000 + 5.19615i 0.279751 + 0.484544i
\(116\) 9.00000 0.835629
\(117\) −1.00000 + 1.73205i −0.0924500 + 0.160128i
\(118\) 7.50000 12.9904i 0.690431 1.19586i
\(119\) 3.00000 + 5.19615i 0.275010 + 0.476331i
\(120\) 1.00000 0.0912871
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) −3.50000 4.33013i −0.314309 0.388857i
\(125\) −1.00000 −0.0894427
\(126\) 1.00000 0.0890871
\(127\) 3.50000 6.06218i 0.310575 0.537931i −0.667912 0.744240i \(-0.732812\pi\)
0.978487 + 0.206309i \(0.0661452\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.00000 6.92820i −0.352180 0.609994i
\(130\) −1.00000 + 1.73205i −0.0877058 + 0.151911i
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) −3.00000 −0.261116
\(133\) 1.00000 + 1.73205i 0.0867110 + 0.150188i
\(134\) 4.00000 + 6.92820i 0.345547 + 0.598506i
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 3.00000 5.19615i 0.257248 0.445566i
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 3.00000 5.19615i 0.255377 0.442326i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 1.00000 0.0845154
\(141\) 3.00000 5.19615i 0.252646 0.437595i
\(142\) −6.00000 10.3923i −0.503509 0.872103i
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 4.50000 + 7.79423i 0.373705 + 0.647275i
\(146\) 7.00000 + 12.1244i 0.579324 + 1.00342i
\(147\) −6.00000 −0.494872
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0.500000 + 0.866025i 0.0408248 + 0.0707107i
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 1.00000 1.73205i 0.0811107 0.140488i
\(153\) 6.00000 0.485071
\(154\) −3.00000 −0.241747
\(155\) 2.00000 5.19615i 0.160644 0.417365i
\(156\) 2.00000 0.160128
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 4.00000 6.92820i 0.318223 0.551178i
\(159\) 3.00000 0.237915
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 3.00000 5.19615i 0.236433 0.409514i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) 0 0
\(165\) −1.50000 2.59808i −0.116775 0.202260i
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) −0.500000 0.866025i −0.0385758 0.0668153i
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 6.00000 0.460179
\(171\) 2.00000 0.152944
\(172\) −4.00000 + 6.92820i −0.304997 + 0.528271i
\(173\) −10.5000 18.1865i −0.798300 1.38270i −0.920722 0.390218i \(-0.872399\pi\)
0.122422 0.992478i \(-0.460934\pi\)
\(174\) 4.50000 7.79423i 0.341144 0.590879i
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) −7.50000 12.9904i −0.563735 0.976417i
\(178\) 0 0
\(179\) 10.5000 18.1865i 0.784807 1.35933i −0.144308 0.989533i \(-0.546095\pi\)
0.929114 0.369792i \(-0.120571\pi\)
\(180\) 0.500000 0.866025i 0.0372678 0.0645497i
\(181\) 2.00000 + 3.46410i 0.148659 + 0.257485i 0.930732 0.365702i \(-0.119171\pi\)
−0.782073 + 0.623187i \(0.785838\pi\)
\(182\) 2.00000 0.148250
\(183\) −7.00000 + 12.1244i −0.517455 + 0.896258i
\(184\) −6.00000 −0.442326
\(185\) −8.00000 −0.588172
\(186\) −5.50000 + 0.866025i −0.403280 + 0.0635001i
\(187\) −18.0000 −1.31629
\(188\) −6.00000 −0.437595
\(189\) 0.500000 0.866025i 0.0363696 0.0629941i
\(190\) 2.00000 0.145095
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 12.5000 21.6506i 0.899770 1.55845i 0.0719816 0.997406i \(-0.477068\pi\)
0.827788 0.561041i \(-0.189599\pi\)
\(194\) 19.0000 1.36412
\(195\) 1.00000 + 1.73205i 0.0716115 + 0.124035i
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) −1.50000 + 2.59808i −0.106600 + 0.184637i
\(199\) −8.50000 14.7224i −0.602549 1.04365i −0.992434 0.122782i \(-0.960818\pi\)
0.389885 0.920864i \(-0.372515\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 8.00000 0.564276
\(202\) 3.00000 0.211079
\(203\) 4.50000 7.79423i 0.315838 0.547048i
\(204\) −3.00000 5.19615i −0.210042 0.363803i
\(205\) 0 0
\(206\) −6.50000 11.2583i −0.452876 0.784405i
\(207\) −3.00000 5.19615i −0.208514 0.361158i
\(208\) −1.00000 1.73205i −0.0693375 0.120096i
\(209\) −6.00000 −0.415029
\(210\) 0.500000 0.866025i 0.0345033 0.0597614i
\(211\) −7.00000 + 12.1244i −0.481900 + 0.834675i −0.999784 0.0207756i \(-0.993386\pi\)
0.517884 + 0.855451i \(0.326720\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) −12.0000 −0.822226
\(214\) 7.50000 12.9904i 0.512689 0.888004i
\(215\) −8.00000 −0.545595
\(216\) −1.00000 −0.0680414
\(217\) −5.50000 + 0.866025i −0.373364 + 0.0587896i
\(218\) −2.00000 −0.135457
\(219\) 14.0000 0.946032
\(220\) −1.50000 + 2.59808i −0.101130 + 0.175162i
\(221\) 12.0000 0.807207
\(222\) 4.00000 + 6.92820i 0.268462 + 0.464991i
\(223\) 0.500000 0.866025i 0.0334825 0.0579934i −0.848799 0.528716i \(-0.822674\pi\)
0.882281 + 0.470723i \(0.156007\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) 1.00000 0.0666667
\(226\) −9.00000 15.5885i −0.598671 1.03693i
\(227\) 4.50000 + 7.79423i 0.298675 + 0.517321i 0.975833 0.218517i \(-0.0701218\pi\)
−0.677158 + 0.735838i \(0.736789\pi\)
\(228\) −1.00000 1.73205i −0.0662266 0.114708i
\(229\) 8.00000 13.8564i 0.528655 0.915657i −0.470787 0.882247i \(-0.656030\pi\)
0.999442 0.0334101i \(-0.0106368\pi\)
\(230\) −3.00000 5.19615i −0.197814 0.342624i
\(231\) −1.50000 + 2.59808i −0.0986928 + 0.170941i
\(232\) −9.00000 −0.590879
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 1.00000 1.73205i 0.0653720 0.113228i
\(235\) −3.00000 5.19615i −0.195698 0.338960i
\(236\) −7.50000 + 12.9904i −0.488208 + 0.845602i
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) −3.00000 5.19615i −0.194461 0.336817i
\(239\) 3.00000 + 5.19615i 0.194054 + 0.336111i 0.946590 0.322440i \(-0.104503\pi\)
−0.752536 + 0.658551i \(0.771170\pi\)
\(240\) −1.00000 −0.0645497
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) −1.00000 + 1.73205i −0.0642824 + 0.111340i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 14.0000 0.896258
\(245\) −3.00000 + 5.19615i −0.191663 + 0.331970i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 3.50000 + 4.33013i 0.222250 + 0.274963i
\(249\) −9.00000 −0.570352
\(250\) 1.00000 0.0632456
\(251\) 12.0000 20.7846i 0.757433 1.31191i −0.186722 0.982413i \(-0.559786\pi\)
0.944156 0.329500i \(-0.106880\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 9.00000 + 15.5885i 0.565825 + 0.980038i
\(254\) −3.50000 + 6.06218i −0.219610 + 0.380375i
\(255\) 3.00000 5.19615i 0.187867 0.325396i
\(256\) 1.00000 0.0625000
\(257\) 9.00000 + 15.5885i 0.561405 + 0.972381i 0.997374 + 0.0724199i \(0.0230722\pi\)
−0.435970 + 0.899961i \(0.643595\pi\)
\(258\) 4.00000 + 6.92820i 0.249029 + 0.431331i
\(259\) 4.00000 + 6.92820i 0.248548 + 0.430498i
\(260\) 1.00000 1.73205i 0.0620174 0.107417i
\(261\) −4.50000 7.79423i −0.278543 0.482451i
\(262\) 0 0
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) 3.00000 0.184637
\(265\) 1.50000 2.59808i 0.0921443 0.159599i
\(266\) −1.00000 1.73205i −0.0613139 0.106199i
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) −0.500000 0.866025i −0.0304290 0.0527046i
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) −3.00000 + 5.19615i −0.181902 + 0.315063i
\(273\) 1.00000 1.73205i 0.0605228 0.104828i
\(274\) 6.00000 + 10.3923i 0.362473 + 0.627822i
\(275\) −3.00000 −0.180907
\(276\) −3.00000 + 5.19615i −0.180579 + 0.312772i
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 4.00000 0.239904
\(279\) −2.00000 + 5.19615i −0.119737 + 0.311086i
\(280\) −1.00000 −0.0597614
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −3.00000 + 5.19615i −0.178647 + 0.309426i
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 6.00000 + 10.3923i 0.356034 + 0.616670i
\(285\) 1.00000 1.73205i 0.0592349 0.102598i
\(286\) −3.00000 + 5.19615i −0.177394 + 0.307255i
\(287\) 0 0
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) 9.50000 16.4545i 0.556900 0.964579i
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) 10.5000 18.1865i 0.613417 1.06247i −0.377244 0.926114i \(-0.623128\pi\)
0.990660 0.136355i \(-0.0435386\pi\)
\(294\) 6.00000 0.349927
\(295\) −15.0000 −0.873334
\(296\) 4.00000 6.92820i 0.232495 0.402694i
\(297\) 1.50000 + 2.59808i 0.0870388 + 0.150756i
\(298\) −4.50000 + 7.79423i −0.260678 + 0.451508i
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) −0.500000 0.866025i −0.0288675 0.0500000i
\(301\) 4.00000 + 6.92820i 0.230556 + 0.399335i
\(302\) −5.00000 −0.287718
\(303\) 1.50000 2.59808i 0.0861727 0.149256i
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) 7.00000 + 12.1244i 0.400819 + 0.694239i
\(306\) −6.00000 −0.342997
\(307\) 8.00000 13.8564i 0.456584 0.790827i −0.542194 0.840254i \(-0.682406\pi\)
0.998778 + 0.0494267i \(0.0157394\pi\)
\(308\) 3.00000 0.170941
\(309\) −13.0000 −0.739544
\(310\) −2.00000 + 5.19615i −0.113592 + 0.295122i
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) −2.00000 −0.113228
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) −14.0000 −0.790066
\(315\) −0.500000 0.866025i −0.0281718 0.0487950i
\(316\) −4.00000 + 6.92820i −0.225018 + 0.389742i
\(317\) −13.5000 + 23.3827i −0.758236 + 1.31330i 0.185514 + 0.982642i \(0.440605\pi\)
−0.943750 + 0.330661i \(0.892728\pi\)
\(318\) −3.00000 −0.168232
\(319\) 13.5000 + 23.3827i 0.755855 + 1.30918i
\(320\) 0.500000 + 0.866025i 0.0279508 + 0.0484123i
\(321\) −7.50000 12.9904i −0.418609 0.725052i
\(322\) −3.00000 + 5.19615i −0.167183 + 0.289570i
\(323\) −6.00000 10.3923i −0.333849 0.578243i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 2.00000 0.110940
\(326\) −14.0000 −0.775388
\(327\) −1.00000 + 1.73205i −0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) −3.00000 + 5.19615i −0.165395 + 0.286473i
\(330\) 1.50000 + 2.59808i 0.0825723 + 0.143019i
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) 4.50000 + 7.79423i 0.246970 + 0.427764i
\(333\) 8.00000 0.438397
\(334\) 6.00000 10.3923i 0.328305 0.568642i
\(335\) 4.00000 6.92820i 0.218543 0.378528i
\(336\) 0.500000 + 0.866025i 0.0272772 + 0.0472456i
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) −18.0000 −0.977626
\(340\) −6.00000 −0.325396
\(341\) 6.00000 15.5885i 0.324918 0.844162i
\(342\) −2.00000 −0.108148
\(343\) 13.0000 0.701934
\(344\) 4.00000 6.92820i 0.215666 0.373544i
\(345\) −6.00000 −0.323029
\(346\) 10.5000 + 18.1865i 0.564483 + 0.977714i
\(347\) −10.5000 + 18.1865i −0.563670 + 0.976304i 0.433503 + 0.901152i \(0.357278\pi\)
−0.997172 + 0.0751519i \(0.976056\pi\)
\(348\) −4.50000 + 7.79423i −0.241225 + 0.417815i
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) −0.500000 0.866025i −0.0267261 0.0462910i
\(351\) −1.00000 1.73205i −0.0533761 0.0924500i
\(352\) −1.50000 2.59808i −0.0799503 0.138478i
\(353\) 15.0000 25.9808i 0.798369 1.38282i −0.122308 0.992492i \(-0.539030\pi\)
0.920677 0.390324i \(-0.127637\pi\)
\(354\) 7.50000 + 12.9904i 0.398621 + 0.690431i
\(355\) −6.00000 + 10.3923i −0.318447 + 0.551566i
\(356\) 0 0
\(357\) −6.00000 −0.317554
\(358\) −10.5000 + 18.1865i −0.554942 + 0.961188i
\(359\) 3.00000 + 5.19615i 0.158334 + 0.274242i 0.934268 0.356572i \(-0.116054\pi\)
−0.775934 + 0.630814i \(0.782721\pi\)
\(360\) −0.500000 + 0.866025i −0.0263523 + 0.0456435i
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) −2.00000 3.46410i −0.105118 0.182069i
\(363\) 1.00000 + 1.73205i 0.0524864 + 0.0909091i
\(364\) −2.00000 −0.104828
\(365\) 7.00000 12.1244i 0.366397 0.634618i
\(366\) 7.00000 12.1244i 0.365896 0.633750i
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) −3.00000 −0.155752
\(372\) 5.50000 0.866025i 0.285162 0.0449013i
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 18.0000 0.930758
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 6.00000 0.309426
\(377\) −9.00000 15.5885i −0.463524 0.802846i
\(378\) −0.500000 + 0.866025i −0.0257172 + 0.0445435i
\(379\) 8.00000 13.8564i 0.410932 0.711756i −0.584060 0.811711i \(-0.698537\pi\)
0.994992 + 0.0999550i \(0.0318699\pi\)
\(380\) −2.00000 −0.102598
\(381\) 3.50000 + 6.06218i 0.179310 + 0.310575i
\(382\) 0 0
\(383\) 6.00000 + 10.3923i 0.306586 + 0.531022i 0.977613 0.210411i \(-0.0674801\pi\)
−0.671027 + 0.741433i \(0.734147\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 1.50000 + 2.59808i 0.0764471 + 0.132410i
\(386\) −12.5000 + 21.6506i −0.636233 + 1.10199i
\(387\) 8.00000 0.406663
\(388\) −19.0000 −0.964579
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) −1.00000 1.73205i −0.0506370 0.0877058i
\(391\) −18.0000 + 31.1769i −0.910299 + 1.57668i
\(392\) −3.00000 5.19615i −0.151523 0.262445i
\(393\) 0 0
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) −8.00000 −0.402524
\(396\) 1.50000 2.59808i 0.0753778 0.130558i
\(397\) 14.0000 24.2487i 0.702640 1.21701i −0.264897 0.964277i \(-0.585338\pi\)
0.967537 0.252731i \(-0.0813288\pi\)
\(398\) 8.50000 + 14.7224i 0.426067 + 0.737969i
\(399\) −2.00000 −0.100125
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) −8.00000 −0.399004
\(403\) −4.00000 + 10.3923i −0.199254 + 0.517678i
\(404\) −3.00000 −0.149256
\(405\) −1.00000 −0.0496904
\(406\) −4.50000 + 7.79423i −0.223331 + 0.386821i
\(407\) −24.0000 −1.18964
\(408\) 3.00000 + 5.19615i 0.148522 + 0.257248i
\(409\) −17.5000 + 30.3109i −0.865319 + 1.49878i 0.00141047 + 0.999999i \(0.499551\pi\)
−0.866730 + 0.498778i \(0.833782\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 6.50000 + 11.2583i 0.320232 + 0.554658i
\(413\) 7.50000 + 12.9904i 0.369051 + 0.639215i
\(414\) 3.00000 + 5.19615i 0.147442 + 0.255377i
\(415\) −4.50000 + 7.79423i −0.220896 + 0.382604i
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 2.00000 3.46410i 0.0979404 0.169638i
\(418\) 6.00000 0.293470
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) −0.500000 + 0.866025i −0.0243975 + 0.0422577i
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) 7.00000 12.1244i 0.340755 0.590204i
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 1.50000 + 2.59808i 0.0728464 + 0.126174i
\(425\) −3.00000 5.19615i −0.145521 0.252050i
\(426\) 12.0000 0.581402
\(427\) 7.00000 12.1244i 0.338754 0.586739i
\(428\) −7.50000 + 12.9904i −0.362526 + 0.627914i
\(429\) 3.00000 + 5.19615i 0.144841 + 0.250873i
\(430\) 8.00000 0.385794
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 5.50000 0.866025i 0.264008 0.0415705i
\(435\) −9.00000 −0.431517
\(436\) 2.00000 0.0957826
\(437\) −6.00000 + 10.3923i −0.287019 + 0.497131i
\(438\) −14.0000 −0.668946
\(439\) 3.50000 + 6.06218i 0.167046 + 0.289332i 0.937380 0.348309i \(-0.113244\pi\)
−0.770334 + 0.637641i \(0.779911\pi\)
\(440\) 1.50000 2.59808i 0.0715097 0.123858i
\(441\) 3.00000 5.19615i 0.142857 0.247436i
\(442\) −12.0000 −0.570782
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) −4.00000 6.92820i −0.189832 0.328798i
\(445\) 0 0
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 4.50000 + 7.79423i 0.212843 + 0.368654i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 0 0
\(452\) 9.00000 + 15.5885i 0.423324 + 0.733219i
\(453\) −2.50000 + 4.33013i −0.117460 + 0.203447i
\(454\) −4.50000 7.79423i −0.211195 0.365801i
\(455\) −1.00000 1.73205i −0.0468807 0.0811998i
\(456\) 1.00000 + 1.73205i 0.0468293 + 0.0811107i
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) −8.00000 + 13.8564i −0.373815 + 0.647467i
\(459\) −3.00000 + 5.19615i −0.140028 + 0.242536i
\(460\) 3.00000 + 5.19615i 0.139876 + 0.242272i
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 1.50000 2.59808i 0.0697863 0.120873i
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 9.00000 0.417815
\(465\) 3.50000 + 4.33013i 0.162309 + 0.200805i
\(466\) −24.0000 −1.11178
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) −1.00000 + 1.73205i −0.0462250 + 0.0800641i
\(469\) −8.00000 −0.369406
\(470\) 3.00000 + 5.19615i 0.138380 + 0.239681i
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 7.50000 12.9904i 0.345215 0.597931i
\(473\) −24.0000 −1.10352
\(474\) 4.00000 + 6.92820i 0.183726 + 0.318223i
\(475\) −1.00000 1.73205i −0.0458831 0.0794719i
\(476\) 3.00000 + 5.19615i 0.137505 + 0.238165i
\(477\) −1.50000 + 2.59808i −0.0686803 + 0.118958i
\(478\) −3.00000 5.19615i −0.137217 0.237666i
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 1.00000 0.0456435
\(481\) 16.0000 0.729537
\(482\) −0.500000 + 0.866025i −0.0227744 + 0.0394464i
\(483\) 3.00000 + 5.19615i 0.136505 + 0.236433i
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) −9.50000 16.4545i −0.431373 0.747160i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −5.50000 9.52628i −0.249229 0.431677i 0.714083 0.700061i \(-0.246844\pi\)
−0.963312 + 0.268384i \(0.913510\pi\)
\(488\) −14.0000 −0.633750
\(489\) −7.00000 + 12.1244i −0.316551 + 0.548282i
\(490\) 3.00000 5.19615i 0.135526 0.234738i
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 0 0
\(493\) −27.0000 + 46.7654i −1.21602 + 2.10621i
\(494\) −4.00000 −0.179969
\(495\) 3.00000 0.134840
\(496\) −3.50000 4.33013i −0.157155 0.194428i
\(497\) 12.0000 0.538274
\(498\) 9.00000 0.403300
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) −1.00000 −0.0447214
\(501\) −6.00000 10.3923i −0.268060 0.464294i
\(502\) −12.0000 + 20.7846i −0.535586 + 0.927663i
\(503\) 18.0000 31.1769i 0.802580 1.39011i −0.115332 0.993327i \(-0.536793\pi\)
0.917912 0.396783i \(-0.129873\pi\)
\(504\) 1.00000 0.0445435
\(505\) −1.50000 2.59808i −0.0667491 0.115613i
\(506\) −9.00000 15.5885i −0.400099 0.692991i
\(507\) 4.50000 + 7.79423i 0.199852 + 0.346154i
\(508\) 3.50000 6.06218i 0.155287 0.268966i
\(509\) −4.50000 7.79423i −0.199459 0.345473i 0.748894 0.662690i \(-0.230585\pi\)
−0.948353 + 0.317217i \(0.897252\pi\)
\(510\) −3.00000 + 5.19615i −0.132842 + 0.230089i
\(511\) −14.0000 −0.619324
\(512\) −1.00000 −0.0441942
\(513\) −1.00000 + 1.73205i −0.0441511 + 0.0764719i
\(514\) −9.00000 15.5885i −0.396973 0.687577i
\(515\) −6.50000 + 11.2583i −0.286424 + 0.496101i
\(516\) −4.00000 6.92820i −0.176090 0.304997i
\(517\) −9.00000 15.5885i −0.395820 0.685580i
\(518\) −4.00000 6.92820i −0.175750 0.304408i
\(519\) 21.0000 0.921798
\(520\) −1.00000 + 1.73205i −0.0438529 + 0.0759555i
\(521\) 15.0000 25.9808i 0.657162 1.13824i −0.324185 0.945994i \(-0.605090\pi\)
0.981347 0.192244i \(-0.0615766\pi\)
\(522\) 4.50000 + 7.79423i 0.196960 + 0.341144i
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 6.00000 0.261612
\(527\) 33.0000 5.19615i 1.43750 0.226348i
\(528\) −3.00000 −0.130558
\(529\) 13.0000 0.565217
\(530\) −1.50000 + 2.59808i −0.0651558 + 0.112853i
\(531\) 15.0000 0.650945
\(532\) 1.00000 + 1.73205i 0.0433555 + 0.0750939i
\(533\) 0 0
\(534\) 0 0
\(535\) −15.0000 −0.648507
\(536\) 4.00000 + 6.92820i 0.172774 + 0.299253i
\(537\) 10.5000 + 18.1865i 0.453108 + 0.784807i
\(538\) 9.00000 + 15.5885i 0.388018 + 0.672066i
\(539\) −9.00000 + 15.5885i −0.387657 + 0.671442i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) −7.00000 + 12.1244i −0.300954 + 0.521267i −0.976352 0.216186i \(-0.930638\pi\)
0.675399 + 0.737453i \(0.263972\pi\)
\(542\) 7.00000 0.300676
\(543\) −4.00000 −0.171656
\(544\) 3.00000 5.19615i 0.128624 0.222783i
\(545\) 1.00000 + 1.73205i 0.0428353 + 0.0741929i
\(546\) −1.00000 + 1.73205i −0.0427960 + 0.0741249i
\(547\) −4.00000 6.92820i −0.171028 0.296229i 0.767752 0.640747i \(-0.221375\pi\)
−0.938779 + 0.344519i \(0.888042\pi\)
\(548\) −6.00000 10.3923i −0.256307 0.443937i
\(549\) −7.00000 12.1244i −0.298753 0.517455i
\(550\) 3.00000 0.127920
\(551\) −9.00000 + 15.5885i −0.383413 + 0.664091i
\(552\) 3.00000 5.19615i 0.127688 0.221163i
\(553\) 4.00000 + 6.92820i 0.170097 + 0.294617i
\(554\) −26.0000 −1.10463
\(555\) 4.00000 6.92820i 0.169791 0.294086i
\(556\) −4.00000 −0.169638
\(557\) −27.0000 −1.14403 −0.572013 0.820244i \(-0.693837\pi\)
−0.572013 + 0.820244i \(0.693837\pi\)
\(558\) 2.00000 5.19615i 0.0846668 0.219971i
\(559\) 16.0000 0.676728
\(560\) 1.00000 0.0422577
\(561\) 9.00000 15.5885i 0.379980 0.658145i
\(562\) 0 0
\(563\) −4.50000 7.79423i −0.189652 0.328488i 0.755482 0.655169i \(-0.227403\pi\)
−0.945134 + 0.326682i \(0.894069\pi\)
\(564\) 3.00000 5.19615i 0.126323 0.218797i
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) −14.0000 −0.588464
\(567\) 0.500000 + 0.866025i 0.0209980 + 0.0363696i
\(568\) −6.00000 10.3923i −0.251754 0.436051i
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) −1.00000 + 1.73205i −0.0418854 + 0.0725476i
\(571\) −16.0000 27.7128i −0.669579 1.15975i −0.978022 0.208502i \(-0.933141\pi\)
0.308443 0.951243i \(-0.400192\pi\)
\(572\) 3.00000 5.19615i 0.125436 0.217262i
\(573\) 0 0
\(574\) 0 0
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −13.0000 + 22.5167i −0.541197 + 0.937381i 0.457639 + 0.889138i \(0.348695\pi\)
−0.998836 + 0.0482425i \(0.984638\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) 12.5000 + 21.6506i 0.519482 + 0.899770i
\(580\) 4.50000 + 7.79423i 0.186852 + 0.323638i
\(581\) 9.00000 0.373383
\(582\) −9.50000 + 16.4545i −0.393788 + 0.682060i
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) 7.00000 + 12.1244i 0.289662 + 0.501709i
\(585\) −2.00000 −0.0826898
\(586\) −10.5000 + 18.1865i −0.433751 + 0.751279i
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) −6.00000 −0.247436
\(589\) 11.0000 1.73205i 0.453247 0.0713679i
\(590\) 15.0000 0.617540
\(591\) 6.00000 0.246807
\(592\) −4.00000 + 6.92820i −0.164399 + 0.284747i
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) −1.50000 2.59808i −0.0615457 0.106600i
\(595\) −3.00000 + 5.19615i −0.122988 + 0.213021i
\(596\) 4.50000 7.79423i 0.184327 0.319264i
\(597\) 17.0000 0.695764
\(598\) 6.00000 + 10.3923i 0.245358 + 0.424973i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0.500000 + 0.866025i 0.0204124 + 0.0353553i
\(601\) −19.0000 + 32.9090i −0.775026 + 1.34238i 0.159754 + 0.987157i \(0.448930\pi\)
−0.934780 + 0.355228i \(0.884403\pi\)
\(602\) −4.00000 6.92820i −0.163028 0.282372i
\(603\) −4.00000 + 6.92820i −0.162893 + 0.282138i
\(604\) 5.00000 0.203447
\(605\) 2.00000 0.0813116
\(606\) −1.50000 + 2.59808i −0.0609333 + 0.105540i
\(607\) −10.0000 17.3205i −0.405887 0.703018i 0.588537 0.808470i \(-0.299704\pi\)
−0.994424 + 0.105453i \(0.966371\pi\)
\(608\) 1.00000 1.73205i 0.0405554 0.0702439i
\(609\) 4.50000 + 7.79423i 0.182349 + 0.315838i
\(610\) −7.00000 12.1244i −0.283422 0.490901i
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 6.00000 0.242536
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) −8.00000 + 13.8564i −0.322854 + 0.559199i
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) −15.0000 + 25.9808i −0.603877 + 1.04595i 0.388351 + 0.921512i \(0.373045\pi\)
−0.992228 + 0.124434i \(0.960288\pi\)
\(618\) 13.0000 0.522937
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 2.00000 5.19615i 0.0803219 0.208683i
\(621\) 6.00000 0.240772
\(622\) 30.0000 1.20289
\(623\) 0 0
\(624\) 2.00000 0.0800641
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −0.500000 + 0.866025i −0.0199840 + 0.0346133i
\(627\) 3.00000 5.19615i 0.119808 0.207514i
\(628\) 14.0000 0.558661
\(629\) −24.0000 41.5692i −0.956943 1.65747i
\(630\) 0.500000 + 0.866025i 0.0199205 + 0.0345033i
\(631\) 3.50000 + 6.06218i 0.139333 + 0.241331i 0.927244 0.374457i \(-0.122171\pi\)
−0.787911 + 0.615789i \(0.788838\pi\)
\(632\) 4.00000 6.92820i 0.159111 0.275589i
\(633\) −7.00000 12.1244i −0.278225 0.481900i
\(634\) 13.5000 23.3827i 0.536153 0.928645i
\(635\) 7.00000 0.277787
\(636\) 3.00000 0.118958
\(637\) 6.00000 10.3923i 0.237729 0.411758i
\(638\) −13.5000 23.3827i −0.534470 0.925729i
\(639\) 6.00000 10.3923i 0.237356 0.411113i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −21.0000 36.3731i −0.829450 1.43665i −0.898470 0.439034i \(-0.855321\pi\)
0.0690201 0.997615i \(-0.478013\pi\)
\(642\) 7.50000 + 12.9904i 0.296001 + 0.512689i
\(643\) 2.00000 0.0788723 0.0394362 0.999222i \(-0.487444\pi\)
0.0394362 + 0.999222i \(0.487444\pi\)
\(644\) 3.00000 5.19615i 0.118217 0.204757i
\(645\) 4.00000 6.92820i 0.157500 0.272798i
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −45.0000 −1.76640
\(650\) −2.00000 −0.0784465
\(651\) 2.00000 5.19615i 0.0783862 0.203653i
\(652\) 14.0000 0.548282
\(653\) −39.0000 −1.52619 −0.763094 0.646288i \(-0.776321\pi\)
−0.763094 + 0.646288i \(0.776321\pi\)
\(654\) 1.00000 1.73205i 0.0391031 0.0677285i
\(655\) 0 0
\(656\) 0 0
\(657\) −7.00000 + 12.1244i −0.273096 + 0.473016i
\(658\) 3.00000 5.19615i 0.116952 0.202567i
\(659\) −21.0000 −0.818044 −0.409022 0.912525i \(-0.634130\pi\)
−0.409022 + 0.912525i \(0.634130\pi\)
\(660\) −1.50000 2.59808i −0.0583874 0.101130i
\(661\) −7.00000 12.1244i −0.272268 0.471583i 0.697174 0.716902i \(-0.254441\pi\)
−0.969442 + 0.245319i \(0.921107\pi\)
\(662\) −5.00000 8.66025i −0.194331 0.336590i
\(663\) −6.00000 + 10.3923i −0.233021 + 0.403604i
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) −1.00000 + 1.73205i −0.0387783 + 0.0671660i
\(666\) −8.00000 −0.309994
\(667\) 54.0000 2.09089
\(668\) −6.00000 + 10.3923i −0.232147 + 0.402090i
\(669\) 0.500000 + 0.866025i 0.0193311 + 0.0334825i
\(670\) −4.00000 + 6.92820i −0.154533 + 0.267660i
\(671\) 21.0000 + 36.3731i 0.810696 + 1.40417i
\(672\) −0.500000 0.866025i −0.0192879 0.0334077i
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 13.0000 0.500741
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) 1.50000 + 2.59808i 0.0576497 + 0.0998522i 0.893410 0.449242i \(-0.148306\pi\)
−0.835760 + 0.549095i \(0.814973\pi\)
\(678\) 18.0000 0.691286
\(679\) −9.50000 + 16.4545i −0.364577 + 0.631465i
\(680\) 6.00000 0.230089
\(681\) −9.00000 −0.344881
\(682\) −6.00000 + 15.5885i −0.229752 + 0.596913i
\(683\) −27.0000 −1.03313 −0.516563 0.856249i \(-0.672789\pi\)
−0.516563 + 0.856249i \(0.672789\pi\)
\(684\) 2.00000 0.0764719
\(685\) 6.00000 10.3923i 0.229248 0.397070i
\(686\) −13.0000 −0.496342
\(687\) 8.00000 + 13.8564i 0.305219 + 0.528655i
\(688\) −4.00000 + 6.92820i −0.152499 + 0.264135i
\(689\) −3.00000 + 5.19615i −0.114291 + 0.197958i
\(690\) 6.00000 0.228416
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) −10.5000 18.1865i −0.399150 0.691348i
\(693\) −1.50000 2.59808i −0.0569803 0.0986928i
\(694\) 10.5000 18.1865i 0.398575 0.690351i
\(695\) −2.00000 3.46410i −0.0758643 0.131401i
\(696\) 4.50000 7.79423i 0.170572 0.295439i
\(697\) 0 0
\(698\) −14.0000 −0.529908
\(699\) −12.0000 + 20.7846i −0.453882 + 0.786146i
\(700\) 0.500000 + 0.866025i 0.0188982 + 0.0327327i
\(701\) 19.5000 33.7750i 0.736505 1.27566i −0.217555 0.976048i \(-0.569808\pi\)
0.954060 0.299616i \(-0.0968585\pi\)
\(702\) 1.00000 + 1.73205i 0.0377426 + 0.0653720i
\(703\) −8.00000 13.8564i −0.301726 0.522604i
\(704\) 1.50000 + 2.59808i 0.0565334 + 0.0979187i
\(705\) 6.00000 0.225973
\(706\) −15.0000 + 25.9808i −0.564532 + 0.977799i
\(707\) −1.50000 + 2.59808i −0.0564133 + 0.0977107i
\(708\) −7.50000 12.9904i −0.281867 0.488208i
\(709\) 8.00000 0.300446 0.150223 0.988652i \(-0.452001\pi\)
0.150223 + 0.988652i \(0.452001\pi\)
\(710\) 6.00000 10.3923i 0.225176 0.390016i
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) −21.0000 25.9808i −0.786456 0.972987i
\(714\) 6.00000 0.224544
\(715\) 6.00000 0.224387
\(716\) 10.5000 18.1865i 0.392403 0.679663i
\(717\) −6.00000 −0.224074
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) −12.0000 + 20.7846i −0.447524 + 0.775135i −0.998224 0.0595683i \(-0.981028\pi\)
0.550700 + 0.834703i \(0.314361\pi\)
\(720\) 0.500000 0.866025i 0.0186339 0.0322749i
\(721\) 13.0000 0.484145
\(722\) −7.50000 12.9904i −0.279121 0.483452i
\(723\) 0.500000 + 0.866025i 0.0185952 + 0.0322078i
\(724\) 2.00000 + 3.46410i 0.0743294 + 0.128742i
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) −1.00000 1.73205i −0.0371135 0.0642824i
\(727\) 3.50000 6.06218i 0.129808 0.224834i −0.793794 0.608186i \(-0.791897\pi\)
0.923602 + 0.383353i \(0.125231\pi\)
\(728\) 2.00000 0.0741249
\(729\) 1.00000 0.0370370
\(730\) −7.00000 + 12.1244i −0.259082 + 0.448743i
\(731\) −24.0000 41.5692i −0.887672 1.53749i
\(732\) −7.00000 + 12.1244i −0.258727 + 0.448129i
\(733\) −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i \(-0.326090\pi\)
−0.999741 + 0.0227529i \(0.992757\pi\)
\(734\) 4.00000 + 6.92820i 0.147643 + 0.255725i
\(735\) −3.00000 5.19615i −0.110657 0.191663i
\(736\) −6.00000 −0.221163
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 0 0
\(739\) −16.0000 27.7128i −0.588570 1.01943i −0.994420 0.105493i \(-0.966358\pi\)
0.405851 0.913939i \(-0.366975\pi\)
\(740\) −8.00000 −0.294086
\(741\) −2.00000 + 3.46410i −0.0734718 + 0.127257i
\(742\) 3.00000 0.110133
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) −5.50000 + 0.866025i −0.201640 + 0.0317500i
\(745\) 9.00000 0.329734
\(746\) −14.0000 −0.512576
\(747\) 4.50000 7.79423i 0.164646 0.285176i
\(748\) −18.0000 −0.658145
\(749\) 7.50000 + 12.9904i 0.274044 + 0.474658i
\(750\) −0.500000 + 0.866025i −0.0182574 + 0.0316228i
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) −6.00000 −0.218797
\(753\) 12.0000 + 20.7846i 0.437304 + 0.757433i
\(754\) 9.00000 + 15.5885i 0.327761 + 0.567698i
\(755\) 2.50000 + 4.33013i 0.0909843 + 0.157589i
\(756\) 0.500000 0.866025i 0.0181848 0.0314970i
\(757\) −22.0000 38.1051i −0.799604 1.38495i −0.919874 0.392213i \(-0.871710\pi\)
0.120271 0.992741i \(-0.461624\pi\)
\(758\) −8.00000 + 13.8564i −0.290573 + 0.503287i
\(759\) −18.0000 −0.653359
\(760\) 2.00000 0.0725476
\(761\) 6.00000 10.3923i 0.217500 0.376721i −0.736543 0.676391i \(-0.763543\pi\)
0.954043 + 0.299670i \(0.0968765\pi\)
\(762\) −3.50000 6.06218i −0.126792 0.219610i
\(763\) 1.00000 1.73205i 0.0362024 0.0627044i
\(764\) 0 0
\(765\) 3.00000 + 5.19615i 0.108465 + 0.187867i
\(766\) −6.00000 10.3923i −0.216789 0.375489i
\(767\) 30.0000 1.08324
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −14.5000 + 25.1147i −0.522883 + 0.905661i 0.476762 + 0.879032i \(0.341810\pi\)
−0.999645 + 0.0266282i \(0.991523\pi\)
\(770\) −1.50000 2.59808i −0.0540562 0.0936282i
\(771\) −18.0000 −0.648254
\(772\) 12.5000 21.6506i 0.449885 0.779223i
\(773\) −6.00000 −0.215805 −0.107903 0.994161i