Newspace parameters
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.42608738798\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 2x^{14} + 10x^{12} - 42x^{10} + 82x^{8} - 378x^{6} + 810x^{4} - 1458x^{2} + 6561 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 2x^{14} + 10x^{12} - 42x^{10} + 82x^{8} - 378x^{6} + 810x^{4} - 1458x^{2} + 6561 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 23 \nu^{14} + 325 \nu^{12} - 2003 \nu^{10} - 375 \nu^{8} - 23567 \nu^{6} + 61461 \nu^{4} + 452061 \nu^{2} + 449793 ) / 571536 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 23 \nu^{14} - 325 \nu^{12} + 2003 \nu^{10} + 375 \nu^{8} + 23567 \nu^{6} - 61461 \nu^{4} + 119475 \nu^{2} - 449793 ) / 571536 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{14} - 52\nu^{12} + 179\nu^{10} - 660\nu^{8} + 2267\nu^{6} - 1620\nu^{4} + 10935\nu^{2} - 23328 ) / 20412 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 23 \nu^{15} - 325 \nu^{13} + 2003 \nu^{11} + 375 \nu^{9} + 23567 \nu^{7} - 61461 \nu^{5} + 119475 \nu^{3} - 449793 \nu ) / 571536 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 11\nu^{15} - 265\nu^{13} + 569\nu^{11} - 1623\nu^{9} + 4763\nu^{7} - 2781\nu^{5} + 68661\nu^{3} - 84807\nu ) / 142884 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -40\nu^{14} + 431\nu^{12} - 454\nu^{10} + 249\nu^{8} + 1580\nu^{6} - 2997\nu^{4} + 13446\nu^{2} - 51759 ) / 142884 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 49 \nu^{15} + 361 \nu^{13} - 347 \nu^{11} + 4557 \nu^{9} - 12263 \nu^{7} + 26649 \nu^{5} - 46251 \nu^{3} + 79461 \nu ) / 244944 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 31\nu^{14} - 197\nu^{12} - 149\nu^{10} - 2409\nu^{8} + 5863\nu^{6} - 11205\nu^{4} + 46251\nu^{2} - 46737 ) / 63504 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 35\nu^{15} - 169\nu^{13} - 181\nu^{11} - 273\nu^{9} + 467\nu^{7} - 7497\nu^{5} + 12555\nu^{3} + 40095\nu ) / 122472 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 617 \nu^{15} + 1027 \nu^{13} - 3245 \nu^{11} + 7887 \nu^{9} - 53969 \nu^{7} + 21123 \nu^{5} + 53379 \nu^{3} - 175689 \nu ) / 1714608 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 107 \nu^{15} - 199 \nu^{13} + 1499 \nu^{11} - 2103 \nu^{9} - 3061 \nu^{7} - 20343 \nu^{5} - 87669 \nu^{3} - 10935 \nu ) / 285768 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 617 \nu^{14} - 1027 \nu^{12} + 3245 \nu^{10} - 7887 \nu^{8} + 53969 \nu^{6} - 21123 \nu^{4} - 53379 \nu^{2} - 395847 ) / 571536 \)
|
\(\beta_{14}\) | \(=\) |
\( ( \nu^{15} - 2\nu^{13} + 10\nu^{11} - 42\nu^{9} + 82\nu^{7} - 378\nu^{5} + 810\nu^{3} - 1458\nu ) / 2187 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 761 \nu^{14} + 1243 \nu^{12} - 5837 \nu^{10} + 33303 \nu^{8} - 40721 \nu^{6} + 234891 \nu^{4} - 515565 \nu^{2} + 693279 ) / 571536 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{14} - \beta_{12} + \beta_{11} + \beta_{8} + \beta_{6} + \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} + 2\beta_{13} - \beta_{9} + 2\beta_{4} - 4\beta_{3} + 2\beta_{2} - 3 \)
|
\(\nu^{5}\) | \(=\) |
\( -2\beta_{14} - \beta_{12} - 5\beta_{11} - 3\beta_{10} + \beta_{8} + 4\beta_{6} - 4\beta_{5} - 2\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 4\beta_{15} + 5\beta_{13} + 3\beta_{9} + 6\beta_{7} + 2\beta_{4} + 5\beta_{3} - \beta_{2} + 10 \)
|
\(\nu^{7}\) | \(=\) |
\( -4\beta_{14} - 8\beta_{12} - 21\beta_{11} - 5\beta_{10} - 6\beta_{8} - 5\beta_{6} + 7\beta_{5} + \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 9\beta_{15} + 7\beta_{13} - \beta_{9} - 8\beta_{7} - 16\beta_{4} + 56\beta_{3} + 9\beta_{2} + 9 \)
|
\(\nu^{9}\) | \(=\) |
\( -27\beta_{14} + 5\beta_{11} + 23\beta_{10} + 26\beta_{8} + \beta_{6} + 57\beta_{5} + 12\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( -25\beta_{15} + 3\beta_{13} - 83\beta_{9} - 22\beta_{7} + 50\beta_{4} + 19\beta_{3} + 12\beta_{2} + 26 \)
|
\(\nu^{11}\) | \(=\) |
\( -18\beta_{14} + 93\beta_{12} + 36\beta_{11} - 111\beta_{10} + 45\beta_{8} + 84\beta_{6} + 65\beta_{5} + 118\beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( -54\beta_{15} + 63\beta_{13} - 110\beta_{9} + 288\beta_{7} + 18\beta_{4} - 92\beta_{3} + 25\beta_{2} + 61 \)
|
\(\nu^{13}\) | \(=\) |
\( 365 \beta_{14} - 203 \beta_{12} - 72 \beta_{11} - 416 \beta_{10} + 117 \beta_{8} - 245 \beta_{6} - 61 \beta_{5} + 133 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( -159\beta_{15} + 736\beta_{13} - 56\beta_{9} - 32\beta_{7} - 544\beta_{4} - 25\beta_{3} + 336\beta_{2} - 256 \)
|
\(\nu^{15}\) | \(=\) |
\( 725 \beta_{14} - 248 \beta_{12} - 1272 \beta_{11} + 520 \beta_{10} + 936 \beta_{8} - 176 \beta_{6} - 464 \beta_{5} - 600 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).
\(n\) | \(187\) | \(311\) | \(871\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
371.1 |
|
− | 1.00000i | −1.58997 | − | 0.687009i | −1.00000 | − | 1.00000i | −0.687009 | + | 1.58997i | −4.71902 | 1.00000i | 2.05604 | + | 2.18465i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.2 | − | 1.00000i | −1.36831 | − | 1.06195i | −1.00000 | − | 1.00000i | −1.06195 | + | 1.36831i | 1.28192 | 1.00000i | 0.744540 | + | 2.90614i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.3 | − | 1.00000i | −1.02439 | + | 1.39665i | −1.00000 | − | 1.00000i | 1.39665 | + | 1.02439i | 0.608912 | 1.00000i | −0.901245 | − | 2.86143i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.4 | − | 1.00000i | −0.224352 | − | 1.71746i | −1.00000 | − | 1.00000i | −1.71746 | + | 0.224352i | −2.17181 | 1.00000i | −2.89933 | + | 0.770630i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.5 | − | 1.00000i | 0.224352 | + | 1.71746i | −1.00000 | − | 1.00000i | 1.71746 | − | 0.224352i | −2.17181 | 1.00000i | −2.89933 | + | 0.770630i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.6 | − | 1.00000i | 1.02439 | − | 1.39665i | −1.00000 | − | 1.00000i | −1.39665 | − | 1.02439i | 0.608912 | 1.00000i | −0.901245 | − | 2.86143i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.7 | − | 1.00000i | 1.36831 | + | 1.06195i | −1.00000 | − | 1.00000i | 1.06195 | − | 1.36831i | 1.28192 | 1.00000i | 0.744540 | + | 2.90614i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.8 | − | 1.00000i | 1.58997 | + | 0.687009i | −1.00000 | − | 1.00000i | 0.687009 | − | 1.58997i | −4.71902 | 1.00000i | 2.05604 | + | 2.18465i | −1.00000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.9 | 1.00000i | −1.58997 | + | 0.687009i | −1.00000 | 1.00000i | −0.687009 | − | 1.58997i | −4.71902 | − | 1.00000i | 2.05604 | − | 2.18465i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.10 | 1.00000i | −1.36831 | + | 1.06195i | −1.00000 | 1.00000i | −1.06195 | − | 1.36831i | 1.28192 | − | 1.00000i | 0.744540 | − | 2.90614i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.11 | 1.00000i | −1.02439 | − | 1.39665i | −1.00000 | 1.00000i | 1.39665 | − | 1.02439i | 0.608912 | − | 1.00000i | −0.901245 | + | 2.86143i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.12 | 1.00000i | −0.224352 | + | 1.71746i | −1.00000 | 1.00000i | −1.71746 | − | 0.224352i | −2.17181 | − | 1.00000i | −2.89933 | − | 0.770630i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.13 | 1.00000i | 0.224352 | − | 1.71746i | −1.00000 | 1.00000i | 1.71746 | + | 0.224352i | −2.17181 | − | 1.00000i | −2.89933 | − | 0.770630i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.14 | 1.00000i | 1.02439 | + | 1.39665i | −1.00000 | 1.00000i | −1.39665 | + | 1.02439i | 0.608912 | − | 1.00000i | −0.901245 | + | 2.86143i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.15 | 1.00000i | 1.36831 | − | 1.06195i | −1.00000 | 1.00000i | 1.06195 | + | 1.36831i | 1.28192 | − | 1.00000i | 0.744540 | − | 2.90614i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
371.16 | 1.00000i | 1.58997 | − | 0.687009i | −1.00000 | 1.00000i | 0.687009 | + | 1.58997i | −4.71902 | − | 1.00000i | 2.05604 | − | 2.18465i | −1.00000 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
31.b | odd | 2 | 1 | inner |
93.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 930.2.h.c | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 930.2.h.c | ✓ | 16 |
31.b | odd | 2 | 1 | inner | 930.2.h.c | ✓ | 16 |
93.c | even | 2 | 1 | inner | 930.2.h.c | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
930.2.h.c | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
930.2.h.c | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
930.2.h.c | ✓ | 16 | 31.b | odd | 2 | 1 | inner |
930.2.h.c | ✓ | 16 | 93.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} + 5T_{7}^{3} - 2T_{7}^{2} - 14T_{7} + 8 \)
acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{8} \)
$3$
\( T^{16} + 2 T^{14} + 10 T^{12} + \cdots + 6561 \)
$5$
\( (T^{2} + 1)^{8} \)
$7$
\( (T^{4} + 5 T^{3} - 2 T^{2} - 14 T + 8)^{4} \)
$11$
\( (T^{8} - 31 T^{6} + 258 T^{4} - 454 T^{2} + \cdots + 64)^{2} \)
$13$
\( (T^{8} + 86 T^{6} + 2746 T^{4} + \cdots + 200704)^{2} \)
$17$
\( (T^{8} - 50 T^{6} + 328 T^{4} - 576 T^{2} + \cdots + 256)^{2} \)
$19$
\( (T^{4} + T^{3} - 30 T^{2} - 64 T - 32)^{4} \)
$23$
\( (T^{8} - 61 T^{6} + 810 T^{4} - 3584 T^{2} + \cdots + 4096)^{2} \)
$29$
\( (T^{8} - 136 T^{6} + 4730 T^{4} + \cdots + 123904)^{2} \)
$31$
\( (T^{8} + 2 T^{7} - 48 T^{6} + 34 T^{5} + \cdots + 923521)^{2} \)
$37$
\( (T^{8} + 26 T^{6} + 226 T^{4} + 756 T^{2} + \cdots + 784)^{2} \)
$41$
\( (T^{8} + 196 T^{6} + 13060 T^{4} + \cdots + 3444736)^{2} \)
$43$
\( (T^{8} + 245 T^{6} + 14788 T^{4} + \cdots + 988036)^{2} \)
$47$
\( (T^{8} + 176 T^{6} + 7060 T^{4} + \cdots + 50176)^{2} \)
$53$
\( (T^{8} - 277 T^{6} + 23580 T^{4} + \cdots + 9604)^{2} \)
$59$
\( (T^{8} + 324 T^{6} + 33344 T^{4} + \cdots + 14258176)^{2} \)
$61$
\( (T^{8} + 224 T^{6} + 17098 T^{4} + \cdots + 4528384)^{2} \)
$67$
\( (T^{4} - 28 T^{3} + 184 T^{2} + 288 T - 2816)^{4} \)
$71$
\( (T^{8} + 209 T^{6} + 14856 T^{4} + \cdots + 3564544)^{2} \)
$73$
\( (T^{8} + 461 T^{6} + 70746 T^{4} + \cdots + 62980096)^{2} \)
$79$
\( (T^{8} + 223 T^{6} + 11752 T^{4} + \cdots + 1149184)^{2} \)
$83$
\( (T^{8} - 22 T^{6} + 154 T^{4} - 348 T^{2} + \cdots + 64)^{2} \)
$89$
\( (T^{8} - 335 T^{6} + 36712 T^{4} + \cdots + 19219456)^{2} \)
$97$
\( (T^{4} - 2 T^{3} - 274 T^{2} + 1388 T - 1744)^{4} \)
show more
show less