Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [930,2,Mod(929,930)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(930, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("930.929");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.42608738798\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
929.1 | 1.00000 | −1.70787 | − | 0.288390i | 1.00000 | −2.10277 | − | 0.760496i | −1.70787 | − | 0.288390i | − | 4.63015i | 1.00000 | 2.83366 | + | 0.985067i | −2.10277 | − | 0.760496i | |||||||
929.2 | 1.00000 | −1.70787 | + | 0.288390i | 1.00000 | −2.10277 | + | 0.760496i | −1.70787 | + | 0.288390i | 4.63015i | 1.00000 | 2.83366 | − | 0.985067i | −2.10277 | + | 0.760496i | ||||||||
929.3 | 1.00000 | −1.69795 | − | 0.341995i | 1.00000 | 1.23971 | − | 1.86095i | −1.69795 | − | 0.341995i | − | 0.843688i | 1.00000 | 2.76608 | + | 1.16138i | 1.23971 | − | 1.86095i | |||||||
929.4 | 1.00000 | −1.69795 | + | 0.341995i | 1.00000 | 1.23971 | + | 1.86095i | −1.69795 | + | 0.341995i | 0.843688i | 1.00000 | 2.76608 | − | 1.16138i | 1.23971 | + | 1.86095i | ||||||||
929.5 | 1.00000 | −1.63502 | − | 0.571593i | 1.00000 | −1.46321 | − | 1.69086i | −1.63502 | − | 0.571593i | 2.83992i | 1.00000 | 2.34656 | + | 1.86913i | −1.46321 | − | 1.69086i | ||||||||
929.6 | 1.00000 | −1.63502 | + | 0.571593i | 1.00000 | −1.46321 | + | 1.69086i | −1.63502 | + | 0.571593i | − | 2.83992i | 1.00000 | 2.34656 | − | 1.86913i | −1.46321 | + | 1.69086i | |||||||
929.7 | 1.00000 | −1.36636 | − | 1.06445i | 1.00000 | 2.16820 | + | 0.546716i | −1.36636 | − | 1.06445i | 1.97405i | 1.00000 | 0.733873 | + | 2.90885i | 2.16820 | + | 0.546716i | ||||||||
929.8 | 1.00000 | −1.36636 | + | 1.06445i | 1.00000 | 2.16820 | − | 0.546716i | −1.36636 | + | 1.06445i | − | 1.97405i | 1.00000 | 0.733873 | − | 2.90885i | 2.16820 | − | 0.546716i | |||||||
929.9 | 1.00000 | −1.02858 | − | 1.39357i | 1.00000 | −0.467590 | + | 2.18663i | −1.02858 | − | 1.39357i | − | 1.43029i | 1.00000 | −0.884063 | + | 2.86678i | −0.467590 | + | 2.18663i | |||||||
929.10 | 1.00000 | −1.02858 | + | 1.39357i | 1.00000 | −0.467590 | − | 2.18663i | −1.02858 | + | 1.39357i | 1.43029i | 1.00000 | −0.884063 | − | 2.86678i | −0.467590 | − | 2.18663i | ||||||||
929.11 | 1.00000 | −0.880669 | − | 1.49145i | 1.00000 | −2.09732 | + | 0.775395i | −0.880669 | − | 1.49145i | 0.657746i | 1.00000 | −1.44884 | + | 2.62695i | −2.09732 | + | 0.775395i | ||||||||
929.12 | 1.00000 | −0.880669 | + | 1.49145i | 1.00000 | −2.09732 | − | 0.775395i | −0.880669 | + | 1.49145i | − | 0.657746i | 1.00000 | −1.44884 | − | 2.62695i | −2.09732 | − | 0.775395i | |||||||
929.13 | 1.00000 | −0.522710 | − | 1.65129i | 1.00000 | 1.93647 | + | 1.11808i | −0.522710 | − | 1.65129i | − | 3.41776i | 1.00000 | −2.45355 | + | 1.72630i | 1.93647 | + | 1.11808i | |||||||
929.14 | 1.00000 | −0.522710 | + | 1.65129i | 1.00000 | 1.93647 | − | 1.11808i | −0.522710 | + | 1.65129i | 3.41776i | 1.00000 | −2.45355 | − | 1.72630i | 1.93647 | − | 1.11808i | ||||||||
929.15 | 1.00000 | −0.230519 | − | 1.71664i | 1.00000 | 0.286520 | − | 2.21764i | −0.230519 | − | 1.71664i | − | 4.09004i | 1.00000 | −2.89372 | + | 0.791438i | 0.286520 | − | 2.21764i | |||||||
929.16 | 1.00000 | −0.230519 | + | 1.71664i | 1.00000 | 0.286520 | + | 2.21764i | −0.230519 | + | 1.71664i | 4.09004i | 1.00000 | −2.89372 | − | 0.791438i | 0.286520 | + | 2.21764i | ||||||||
929.17 | 1.00000 | 0.230519 | − | 1.71664i | 1.00000 | 0.286520 | + | 2.21764i | 0.230519 | − | 1.71664i | 4.09004i | 1.00000 | −2.89372 | − | 0.791438i | 0.286520 | + | 2.21764i | ||||||||
929.18 | 1.00000 | 0.230519 | + | 1.71664i | 1.00000 | 0.286520 | − | 2.21764i | 0.230519 | + | 1.71664i | − | 4.09004i | 1.00000 | −2.89372 | + | 0.791438i | 0.286520 | − | 2.21764i | |||||||
929.19 | 1.00000 | 0.522710 | − | 1.65129i | 1.00000 | 1.93647 | − | 1.11808i | 0.522710 | − | 1.65129i | 3.41776i | 1.00000 | −2.45355 | − | 1.72630i | 1.93647 | − | 1.11808i | ||||||||
929.20 | 1.00000 | 0.522710 | + | 1.65129i | 1.00000 | 1.93647 | + | 1.11808i | 0.522710 | + | 1.65129i | − | 3.41776i | 1.00000 | −2.45355 | + | 1.72630i | 1.93647 | + | 1.11808i | |||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | inner |
31.b | odd | 2 | 1 | inner |
465.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 930.2.e.b | yes | 32 |
3.b | odd | 2 | 1 | 930.2.e.a | ✓ | 32 | |
5.b | even | 2 | 1 | 930.2.e.a | ✓ | 32 | |
15.d | odd | 2 | 1 | inner | 930.2.e.b | yes | 32 |
31.b | odd | 2 | 1 | inner | 930.2.e.b | yes | 32 |
93.c | even | 2 | 1 | 930.2.e.a | ✓ | 32 | |
155.c | odd | 2 | 1 | 930.2.e.a | ✓ | 32 | |
465.g | even | 2 | 1 | inner | 930.2.e.b | yes | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
930.2.e.a | ✓ | 32 | 3.b | odd | 2 | 1 | |
930.2.e.a | ✓ | 32 | 5.b | even | 2 | 1 | |
930.2.e.a | ✓ | 32 | 93.c | even | 2 | 1 | |
930.2.e.a | ✓ | 32 | 155.c | odd | 2 | 1 | |
930.2.e.b | yes | 32 | 1.a | even | 1 | 1 | trivial |
930.2.e.b | yes | 32 | 15.d | odd | 2 | 1 | inner |
930.2.e.b | yes | 32 | 31.b | odd | 2 | 1 | inner |
930.2.e.b | yes | 32 | 465.g | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{47}^{8} - T_{47}^{7} - 234T_{47}^{6} + 252T_{47}^{5} + 15056T_{47}^{4} - 12776T_{47}^{3} - 268088T_{47}^{2} + 10752T_{47} + 55296 \)
acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\).