Properties

Label 930.2.d.i.559.5
Level $930$
Weight $2$
Character 930.559
Analytic conductor $7.426$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(559,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.11669056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 7x^{4} + 8x^{3} - x^{2} + 54x + 58 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.5
Root \(0.630356 - 2.20530i\) of defining polynomial
Character \(\chi\) \(=\) 930.559
Dual form 930.2.d.i.559.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-0.369644 - 2.20530i) q^{5} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-0.369644 - 2.20530i) q^{5} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +(2.20530 - 0.369644i) q^{10} +3.26071 q^{11} +1.00000i q^{12} -2.73929i q^{13} -2.00000 q^{14} +(-2.20530 + 0.369644i) q^{15} +1.00000 q^{16} -4.93203i q^{17} -1.00000i q^{18} -4.93203 q^{19} +(0.369644 + 2.20530i) q^{20} +2.00000 q^{21} +3.26071i q^{22} +0.521423i q^{23} -1.00000 q^{24} +(-4.72673 + 1.63036i) q^{25} +2.73929 q^{26} +1.00000i q^{27} -2.00000i q^{28} -0.521423 q^{29} +(-0.369644 - 2.20530i) q^{30} -1.00000 q^{31} +1.00000i q^{32} -3.26071i q^{33} +4.93203 q^{34} +(4.41061 - 0.739289i) q^{35} +1.00000 q^{36} -10.8212i q^{37} -4.93203i q^{38} -2.73929 q^{39} +(-2.20530 + 0.369644i) q^{40} +2.00000 q^{41} +2.00000i q^{42} -8.82121i q^{43} -3.26071 q^{44} +(0.369644 + 2.20530i) q^{45} -0.521423 q^{46} +4.93203i q^{47} -1.00000i q^{48} +3.00000 q^{49} +(-1.63036 - 4.72673i) q^{50} -4.93203 q^{51} +2.73929i q^{52} -13.3426i q^{53} -1.00000 q^{54} +(-1.20530 - 7.19086i) q^{55} +2.00000 q^{56} +4.93203i q^{57} -0.521423i q^{58} -9.34264 q^{59} +(2.20530 - 0.369644i) q^{60} -9.75324 q^{61} -1.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +(-6.04096 + 1.01256i) q^{65} +3.26071 q^{66} -13.5605i q^{67} +4.93203i q^{68} +0.521423 q^{69} +(0.739289 + 4.41061i) q^{70} +5.56050 q^{71} +1.00000i q^{72} +3.04285i q^{73} +10.8212 q^{74} +(1.63036 + 4.72673i) q^{75} +4.93203 q^{76} +6.52142i q^{77} -2.73929i q^{78} +6.41061 q^{79} +(-0.369644 - 2.20530i) q^{80} +1.00000 q^{81} +2.00000i q^{82} +1.36776i q^{83} -2.00000 q^{84} +(-10.8766 + 1.82310i) q^{85} +8.82121 q^{86} +0.521423i q^{87} -3.26071i q^{88} +11.8641 q^{89} +(-2.20530 + 0.369644i) q^{90} +5.47858 q^{91} -0.521423i q^{92} +1.00000i q^{93} -4.93203 q^{94} +(1.82310 + 10.8766i) q^{95} +1.00000 q^{96} -7.26071i q^{97} +3.00000i q^{98} -3.26071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9} + 16 q^{11} - 12 q^{14} + 6 q^{16} + 4 q^{19} + 4 q^{20} + 12 q^{21} - 6 q^{24} - 8 q^{25} + 20 q^{26} + 4 q^{29} - 4 q^{30} - 6 q^{31} - 4 q^{34} + 6 q^{36} - 20 q^{39} + 12 q^{41} - 16 q^{44} + 4 q^{45} + 4 q^{46} + 18 q^{49} - 8 q^{50} + 4 q^{51} - 6 q^{54} + 6 q^{55} + 12 q^{56} + 4 q^{59} + 28 q^{61} - 6 q^{64} - 8 q^{65} + 16 q^{66} - 4 q^{69} + 8 q^{70} - 16 q^{71} + 12 q^{74} + 8 q^{75} - 4 q^{76} + 12 q^{79} - 4 q^{80} + 6 q^{81} - 12 q^{84} - 22 q^{85} + 4 q^{89} + 40 q^{91} + 4 q^{94} - 28 q^{95} + 6 q^{96} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) −0.369644 2.20530i −0.165310 0.986242i
\(6\) 1.00000 0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 2.20530 0.369644i 0.697378 0.116892i
\(11\) 3.26071 0.983141 0.491571 0.870838i \(-0.336423\pi\)
0.491571 + 0.870838i \(0.336423\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 2.73929i 0.759742i −0.925039 0.379871i \(-0.875968\pi\)
0.925039 0.379871i \(-0.124032\pi\)
\(14\) −2.00000 −0.534522
\(15\) −2.20530 + 0.369644i −0.569407 + 0.0954417i
\(16\) 1.00000 0.250000
\(17\) 4.93203i 1.19619i −0.801424 0.598096i \(-0.795924\pi\)
0.801424 0.598096i \(-0.204076\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −4.93203 −1.13149 −0.565743 0.824582i \(-0.691410\pi\)
−0.565743 + 0.824582i \(0.691410\pi\)
\(20\) 0.369644 + 2.20530i 0.0826550 + 0.493121i
\(21\) 2.00000 0.436436
\(22\) 3.26071i 0.695186i
\(23\) 0.521423i 0.108724i 0.998521 + 0.0543621i \(0.0173125\pi\)
−0.998521 + 0.0543621i \(0.982687\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.72673 + 1.63036i −0.945345 + 0.326071i
\(26\) 2.73929 0.537219
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) −0.521423 −0.0968258 −0.0484129 0.998827i \(-0.515416\pi\)
−0.0484129 + 0.998827i \(0.515416\pi\)
\(30\) −0.369644 2.20530i −0.0674875 0.402631i
\(31\) −1.00000 −0.179605
\(32\) 1.00000i 0.176777i
\(33\) 3.26071i 0.567617i
\(34\) 4.93203 0.845836
\(35\) 4.41061 0.739289i 0.745529 0.124963i
\(36\) 1.00000 0.166667
\(37\) 10.8212i 1.77900i −0.456939 0.889498i \(-0.651054\pi\)
0.456939 0.889498i \(-0.348946\pi\)
\(38\) 4.93203i 0.800081i
\(39\) −2.73929 −0.438637
\(40\) −2.20530 + 0.369644i −0.348689 + 0.0584459i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 8.82121i 1.34522i −0.739996 0.672611i \(-0.765173\pi\)
0.739996 0.672611i \(-0.234827\pi\)
\(44\) −3.26071 −0.491571
\(45\) 0.369644 + 2.20530i 0.0551033 + 0.328747i
\(46\) −0.521423 −0.0768796
\(47\) 4.93203i 0.719410i 0.933066 + 0.359705i \(0.117123\pi\)
−0.933066 + 0.359705i \(0.882877\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) −1.63036 4.72673i −0.230567 0.668460i
\(51\) −4.93203 −0.690622
\(52\) 2.73929i 0.379871i
\(53\) 13.3426i 1.83275i −0.400319 0.916376i \(-0.631101\pi\)
0.400319 0.916376i \(-0.368899\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.20530 7.19086i −0.162523 0.969615i
\(56\) 2.00000 0.267261
\(57\) 4.93203i 0.653263i
\(58\) 0.521423i 0.0684662i
\(59\) −9.34264 −1.21631 −0.608154 0.793819i \(-0.708090\pi\)
−0.608154 + 0.793819i \(0.708090\pi\)
\(60\) 2.20530 0.369644i 0.284703 0.0477209i
\(61\) −9.75324 −1.24877 −0.624387 0.781115i \(-0.714651\pi\)
−0.624387 + 0.781115i \(0.714651\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 2.00000i 0.251976i
\(64\) −1.00000 −0.125000
\(65\) −6.04096 + 1.01256i −0.749289 + 0.125593i
\(66\) 3.26071 0.401366
\(67\) 13.5605i 1.65668i −0.560226 0.828340i \(-0.689286\pi\)
0.560226 0.828340i \(-0.310714\pi\)
\(68\) 4.93203i 0.598096i
\(69\) 0.521423 0.0627719
\(70\) 0.739289 + 4.41061i 0.0883619 + 0.527168i
\(71\) 5.56050 0.659910 0.329955 0.943997i \(-0.392966\pi\)
0.329955 + 0.943997i \(0.392966\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 3.04285i 0.356138i 0.984018 + 0.178069i \(0.0569850\pi\)
−0.984018 + 0.178069i \(0.943015\pi\)
\(74\) 10.8212 1.25794
\(75\) 1.63036 + 4.72673i 0.188257 + 0.545795i
\(76\) 4.93203 0.565743
\(77\) 6.52142i 0.743185i
\(78\) 2.73929i 0.310163i
\(79\) 6.41061 0.721250 0.360625 0.932711i \(-0.382563\pi\)
0.360625 + 0.932711i \(0.382563\pi\)
\(80\) −0.369644 2.20530i −0.0413275 0.246560i
\(81\) 1.00000 0.111111
\(82\) 2.00000i 0.220863i
\(83\) 1.36776i 0.150131i 0.997179 + 0.0750657i \(0.0239166\pi\)
−0.997179 + 0.0750657i \(0.976083\pi\)
\(84\) −2.00000 −0.218218
\(85\) −10.8766 + 1.82310i −1.17974 + 0.197743i
\(86\) 8.82121 0.951216
\(87\) 0.521423i 0.0559024i
\(88\) 3.26071i 0.347593i
\(89\) 11.8641 1.25759 0.628794 0.777572i \(-0.283549\pi\)
0.628794 + 0.777572i \(0.283549\pi\)
\(90\) −2.20530 + 0.369644i −0.232459 + 0.0389639i
\(91\) 5.47858 0.574311
\(92\) 0.521423i 0.0543621i
\(93\) 1.00000i 0.103695i
\(94\) −4.93203 −0.508700
\(95\) 1.82310 + 10.8766i 0.187046 + 1.11592i
\(96\) 1.00000 0.102062
\(97\) 7.26071i 0.737214i −0.929585 0.368607i \(-0.879835\pi\)
0.929585 0.368607i \(-0.120165\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −3.26071 −0.327714
\(100\) 4.72673 1.63036i 0.472673 0.163036i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 4.93203i 0.488344i
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) −2.73929 −0.268609
\(105\) −0.739289 4.41061i −0.0721472 0.430431i
\(106\) 13.3426 1.29595
\(107\) 18.2998i 1.76911i 0.466438 + 0.884554i \(0.345537\pi\)
−0.466438 + 0.884554i \(0.654463\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −5.34264 −0.511732 −0.255866 0.966712i \(-0.582361\pi\)
−0.255866 + 0.966712i \(0.582361\pi\)
\(110\) 7.19086 1.20530i 0.685621 0.114921i
\(111\) −10.8212 −1.02710
\(112\) 2.00000i 0.188982i
\(113\) 16.6853i 1.56962i 0.619737 + 0.784809i \(0.287239\pi\)
−0.619737 + 0.784809i \(0.712761\pi\)
\(114\) −4.93203 −0.461927
\(115\) 1.14990 0.192741i 0.107228 0.0179732i
\(116\) 0.521423 0.0484129
\(117\) 2.73929i 0.253247i
\(118\) 9.34264i 0.860059i
\(119\) 9.86406 0.904237
\(120\) 0.369644 + 2.20530i 0.0337438 + 0.201316i
\(121\) −0.367761 −0.0334328
\(122\) 9.75324i 0.883017i
\(123\) 2.00000i 0.180334i
\(124\) 1.00000 0.0898027
\(125\) 5.34264 + 9.82121i 0.477860 + 0.878436i
\(126\) 2.00000 0.178174
\(127\) 6.52142i 0.578683i −0.957226 0.289341i \(-0.906564\pi\)
0.957226 0.289341i \(-0.0934363\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −8.82121 −0.776665
\(130\) −1.01256 6.04096i −0.0888076 0.529827i
\(131\) 13.3426 1.16575 0.582876 0.812561i \(-0.301927\pi\)
0.582876 + 0.812561i \(0.301927\pi\)
\(132\) 3.26071i 0.283808i
\(133\) 9.86406i 0.855322i
\(134\) 13.5605 1.17145
\(135\) 2.20530 0.369644i 0.189802 0.0318139i
\(136\) −4.93203 −0.422918
\(137\) 3.77837i 0.322808i 0.986888 + 0.161404i \(0.0516022\pi\)
−0.986888 + 0.161404i \(0.948398\pi\)
\(138\) 0.521423i 0.0443865i
\(139\) −12.5214 −1.06205 −0.531027 0.847355i \(-0.678194\pi\)
−0.531027 + 0.847355i \(0.678194\pi\)
\(140\) −4.41061 + 0.739289i −0.372764 + 0.0624813i
\(141\) 4.93203 0.415352
\(142\) 5.56050i 0.466627i
\(143\) 8.93203i 0.746934i
\(144\) −1.00000 −0.0833333
\(145\) 0.192741 + 1.14990i 0.0160063 + 0.0954936i
\(146\) −3.04285 −0.251828
\(147\) 3.00000i 0.247436i
\(148\) 10.8212i 0.889498i
\(149\) −2.21787 −0.181695 −0.0908473 0.995865i \(-0.528958\pi\)
−0.0908473 + 0.995865i \(0.528958\pi\)
\(150\) −4.72673 + 1.63036i −0.385936 + 0.133118i
\(151\) 18.1890 1.48020 0.740099 0.672498i \(-0.234779\pi\)
0.740099 + 0.672498i \(0.234779\pi\)
\(152\) 4.93203i 0.400040i
\(153\) 4.93203i 0.398731i
\(154\) −6.52142 −0.525511
\(155\) 0.369644 + 2.20530i 0.0296905 + 0.177134i
\(156\) 2.73929 0.219319
\(157\) 19.2067i 1.53286i 0.642327 + 0.766431i \(0.277969\pi\)
−0.642327 + 0.766431i \(0.722031\pi\)
\(158\) 6.41061i 0.510000i
\(159\) −13.3426 −1.05814
\(160\) 2.20530 0.369644i 0.174345 0.0292229i
\(161\) −1.04285 −0.0821877
\(162\) 1.00000i 0.0785674i
\(163\) 9.56050i 0.748836i 0.927260 + 0.374418i \(0.122158\pi\)
−0.927260 + 0.374418i \(0.877842\pi\)
\(164\) −2.00000 −0.156174
\(165\) −7.19086 + 1.20530i −0.559808 + 0.0938327i
\(166\) −1.36776 −0.106159
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 5.49630 0.422792
\(170\) −1.82310 10.8766i −0.139825 0.834199i
\(171\) 4.93203 0.377162
\(172\) 8.82121i 0.672611i
\(173\) 1.45345i 0.110504i 0.998472 + 0.0552520i \(0.0175962\pi\)
−0.998472 + 0.0552520i \(0.982404\pi\)
\(174\) −0.521423 −0.0395290
\(175\) −3.26071 9.45345i −0.246487 0.714614i
\(176\) 3.26071 0.245785
\(177\) 9.34264i 0.702236i
\(178\) 11.8641i 0.889249i
\(179\) 26.3817 1.97186 0.985931 0.167153i \(-0.0534573\pi\)
0.985931 + 0.167153i \(0.0534573\pi\)
\(180\) −0.369644 2.20530i −0.0275517 0.164374i
\(181\) −7.77837 −0.578162 −0.289081 0.957305i \(-0.593350\pi\)
−0.289081 + 0.957305i \(0.593350\pi\)
\(182\) 5.47858i 0.406099i
\(183\) 9.75324i 0.720980i
\(184\) 0.521423 0.0384398
\(185\) −23.8641 + 4.00000i −1.75452 + 0.294086i
\(186\) −1.00000 −0.0733236
\(187\) 16.0819i 1.17603i
\(188\) 4.93203i 0.359705i
\(189\) −2.00000 −0.145479
\(190\) −10.8766 + 1.82310i −0.789073 + 0.132261i
\(191\) 7.56427 0.547331 0.273666 0.961825i \(-0.411764\pi\)
0.273666 + 0.961825i \(0.411764\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 22.3817i 1.61107i 0.592547 + 0.805536i \(0.298122\pi\)
−0.592547 + 0.805536i \(0.701878\pi\)
\(194\) 7.26071 0.521289
\(195\) 1.01256 + 6.04096i 0.0725111 + 0.432602i
\(196\) −3.00000 −0.214286
\(197\) 16.6853i 1.18878i −0.804178 0.594388i \(-0.797394\pi\)
0.804178 0.594388i \(-0.202606\pi\)
\(198\) 3.26071i 0.231729i
\(199\) −15.4535 −1.09547 −0.547733 0.836653i \(-0.684509\pi\)
−0.547733 + 0.836653i \(0.684509\pi\)
\(200\) 1.63036 + 4.72673i 0.115284 + 0.334230i
\(201\) −13.5605 −0.956484
\(202\) 0 0
\(203\) 1.04285i 0.0731934i
\(204\) 4.93203 0.345311
\(205\) −0.739289 4.41061i −0.0516342 0.308050i
\(206\) −6.00000 −0.418040
\(207\) 0.521423i 0.0362414i
\(208\) 2.73929i 0.189935i
\(209\) −16.0819 −1.11241
\(210\) 4.41061 0.739289i 0.304361 0.0510158i
\(211\) 17.0428 1.17328 0.586639 0.809849i \(-0.300451\pi\)
0.586639 + 0.809849i \(0.300451\pi\)
\(212\) 13.3426i 0.916376i
\(213\) 5.56050i 0.380999i
\(214\) −18.2998 −1.25095
\(215\) −19.4535 + 3.26071i −1.32671 + 0.222379i
\(216\) 1.00000 0.0680414
\(217\) 2.00000i 0.135769i
\(218\) 5.34264i 0.361849i
\(219\) 3.04285 0.205616
\(220\) 1.20530 + 7.19086i 0.0812615 + 0.484808i
\(221\) −13.5103 −0.908798
\(222\) 10.8212i 0.726272i
\(223\) 13.7821i 0.922920i 0.887161 + 0.461460i \(0.152674\pi\)
−0.887161 + 0.461460i \(0.847326\pi\)
\(224\) −2.00000 −0.133631
\(225\) 4.72673 1.63036i 0.315115 0.108690i
\(226\) −16.6853 −1.10989
\(227\) 2.52142i 0.167353i −0.996493 0.0836764i \(-0.973334\pi\)
0.996493 0.0836764i \(-0.0266662\pi\)
\(228\) 4.93203i 0.326632i
\(229\) −27.3957 −1.81036 −0.905178 0.425032i \(-0.860263\pi\)
−0.905178 + 0.425032i \(0.860263\pi\)
\(230\) 0.192741 + 1.14990i 0.0127090 + 0.0758219i
\(231\) 6.52142 0.429078
\(232\) 0.521423i 0.0342331i
\(233\) 22.8212i 1.49507i −0.664224 0.747534i \(-0.731238\pi\)
0.664224 0.747534i \(-0.268762\pi\)
\(234\) −2.73929 −0.179073
\(235\) 10.8766 1.82310i 0.709513 0.118926i
\(236\) 9.34264 0.608154
\(237\) 6.41061i 0.416414i
\(238\) 9.86406i 0.639392i
\(239\) 14.2998 0.924977 0.462488 0.886625i \(-0.346957\pi\)
0.462488 + 0.886625i \(0.346957\pi\)
\(240\) −2.20530 + 0.369644i −0.142352 + 0.0238604i
\(241\) 13.3426 0.859475 0.429737 0.902954i \(-0.358606\pi\)
0.429737 + 0.902954i \(0.358606\pi\)
\(242\) 0.367761i 0.0236406i
\(243\) 1.00000i 0.0641500i
\(244\) 9.75324 0.624387
\(245\) −1.10893 6.61591i −0.0708471 0.422675i
\(246\) 2.00000 0.127515
\(247\) 13.5103i 0.859637i
\(248\) 1.00000i 0.0635001i
\(249\) 1.36776 0.0866783
\(250\) −9.82121 + 5.34264i −0.621148 + 0.337898i
\(251\) 10.5214 0.664106 0.332053 0.943261i \(-0.392259\pi\)
0.332053 + 0.943261i \(0.392259\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 1.70021i 0.106891i
\(254\) 6.52142 0.409190
\(255\) 1.82310 + 10.8766i 0.114167 + 0.681120i
\(256\) 1.00000 0.0625000
\(257\) 7.86406i 0.490547i 0.969454 + 0.245273i \(0.0788777\pi\)
−0.969454 + 0.245273i \(0.921122\pi\)
\(258\) 8.82121i 0.549185i
\(259\) 21.6424 1.34479
\(260\) 6.04096 1.01256i 0.374645 0.0627965i
\(261\) 0.521423 0.0322753
\(262\) 13.3426i 0.824311i
\(263\) 23.8641i 1.47152i −0.677242 0.735760i \(-0.736825\pi\)
0.677242 0.735760i \(-0.263175\pi\)
\(264\) −3.26071 −0.200683
\(265\) −29.4246 + 4.93203i −1.80754 + 0.302972i
\(266\) 9.86406 0.604804
\(267\) 11.8641i 0.726069i
\(268\) 13.5605i 0.828340i
\(269\) 8.95715 0.546127 0.273064 0.961996i \(-0.411963\pi\)
0.273064 + 0.961996i \(0.411963\pi\)
\(270\) 0.369644 + 2.20530i 0.0224958 + 0.134210i
\(271\) −13.0959 −0.795518 −0.397759 0.917490i \(-0.630212\pi\)
−0.397759 + 0.917490i \(0.630212\pi\)
\(272\) 4.93203i 0.299048i
\(273\) 5.47858i 0.331579i
\(274\) −3.77837 −0.228260
\(275\) −15.4125 + 5.31612i −0.929408 + 0.320574i
\(276\) −0.521423 −0.0313860
\(277\) 3.78213i 0.227246i −0.993524 0.113623i \(-0.963754\pi\)
0.993524 0.113623i \(-0.0362457\pi\)
\(278\) 12.5214i 0.750985i
\(279\) 1.00000 0.0598684
\(280\) −0.739289 4.41061i −0.0441809 0.263584i
\(281\) 3.04285 0.181521 0.0907605 0.995873i \(-0.471070\pi\)
0.0907605 + 0.995873i \(0.471070\pi\)
\(282\) 4.93203i 0.293698i
\(283\) 22.7672i 1.35337i −0.736273 0.676685i \(-0.763416\pi\)
0.736273 0.676685i \(-0.236584\pi\)
\(284\) −5.56050 −0.329955
\(285\) 10.8766 1.82310i 0.644275 0.107991i
\(286\) 8.93203 0.528162
\(287\) 4.00000i 0.236113i
\(288\) 1.00000i 0.0589256i
\(289\) −7.32492 −0.430877
\(290\) −1.14990 + 0.192741i −0.0675242 + 0.0113181i
\(291\) −7.26071 −0.425630
\(292\) 3.04285i 0.178069i
\(293\) 3.64243i 0.212793i 0.994324 + 0.106396i \(0.0339313\pi\)
−0.994324 + 0.106396i \(0.966069\pi\)
\(294\) 3.00000 0.174964
\(295\) 3.45345 + 20.6033i 0.201068 + 1.19957i
\(296\) −10.8212 −0.628970
\(297\) 3.26071i 0.189206i
\(298\) 2.21787i 0.128478i
\(299\) 1.42833 0.0826023
\(300\) −1.63036 4.72673i −0.0941286 0.272898i
\(301\) 17.6424 1.01689
\(302\) 18.1890i 1.04666i
\(303\) 0 0
\(304\) −4.93203 −0.282871
\(305\) 3.60523 + 21.5089i 0.206435 + 1.23159i
\(306\) −4.93203 −0.281945
\(307\) 17.4786i 0.997555i −0.866730 0.498778i \(-0.833782\pi\)
0.866730 0.498778i \(-0.166218\pi\)
\(308\) 6.52142i 0.371593i
\(309\) 6.00000 0.341328
\(310\) −2.20530 + 0.369644i −0.125253 + 0.0209944i
\(311\) 18.1676 1.03019 0.515095 0.857133i \(-0.327756\pi\)
0.515095 + 0.857133i \(0.327756\pi\)
\(312\) 2.73929i 0.155082i
\(313\) 33.7281i 1.90643i 0.302300 + 0.953213i \(0.402246\pi\)
−0.302300 + 0.953213i \(0.597754\pi\)
\(314\) −19.2067 −1.08390
\(315\) −4.41061 + 0.739289i −0.248510 + 0.0416542i
\(316\) −6.41061 −0.360625
\(317\) 2.54655i 0.143028i −0.997440 0.0715142i \(-0.977217\pi\)
0.997440 0.0715142i \(-0.0227831\pi\)
\(318\) 13.3426i 0.748218i
\(319\) −1.70021 −0.0951934
\(320\) 0.369644 + 2.20530i 0.0206637 + 0.123280i
\(321\) 18.2998 1.02139
\(322\) 1.04285i 0.0581155i
\(323\) 24.3249i 1.35347i
\(324\) −1.00000 −0.0555556
\(325\) 4.46601 + 12.9479i 0.247730 + 0.718218i
\(326\) −9.56050 −0.529507
\(327\) 5.34264i 0.295448i
\(328\) 2.00000i 0.110432i
\(329\) −9.86406 −0.543823
\(330\) −1.20530 7.19086i −0.0663498 0.395844i
\(331\) 10.1638 0.558656 0.279328 0.960196i \(-0.409888\pi\)
0.279328 + 0.960196i \(0.409888\pi\)
\(332\) 1.36776i 0.0750657i
\(333\) 10.8212i 0.592999i
\(334\) −2.00000 −0.109435
\(335\) −29.9050 + 5.01256i −1.63389 + 0.273866i
\(336\) 2.00000 0.109109
\(337\) 24.9069i 1.35677i −0.734709 0.678383i \(-0.762681\pi\)
0.734709 0.678383i \(-0.237319\pi\)
\(338\) 5.49630i 0.298959i
\(339\) 16.6853 0.906220
\(340\) 10.8766 1.82310i 0.589868 0.0988713i
\(341\) −3.26071 −0.176577
\(342\) 4.93203i 0.266694i
\(343\) 20.0000i 1.07990i
\(344\) −8.82121 −0.475608
\(345\) −0.192741 1.14990i −0.0103768 0.0619083i
\(346\) −1.45345 −0.0781381
\(347\) 7.67508i 0.412020i −0.978550 0.206010i \(-0.933952\pi\)
0.978550 0.206010i \(-0.0660480\pi\)
\(348\) 0.521423i 0.0279512i
\(349\) 1.77837 0.0951939 0.0475969 0.998867i \(-0.484844\pi\)
0.0475969 + 0.998867i \(0.484844\pi\)
\(350\) 9.45345 3.26071i 0.505308 0.174292i
\(351\) 2.73929 0.146212
\(352\) 3.26071i 0.173797i
\(353\) 0.932030i 0.0496069i 0.999692 + 0.0248035i \(0.00789600\pi\)
−0.999692 + 0.0248035i \(0.992104\pi\)
\(354\) −9.34264 −0.496556
\(355\) −2.05541 12.2626i −0.109090 0.650831i
\(356\) −11.8641 −0.628794
\(357\) 9.86406i 0.522061i
\(358\) 26.3817i 1.39432i
\(359\) −17.2886 −0.912458 −0.456229 0.889862i \(-0.650800\pi\)
−0.456229 + 0.889862i \(0.650800\pi\)
\(360\) 2.20530 0.369644i 0.116230 0.0194820i
\(361\) 5.32492 0.280259
\(362\) 7.77837i 0.408822i
\(363\) 0.367761i 0.0193025i
\(364\) −5.47858 −0.287155
\(365\) 6.71040 1.12477i 0.351238 0.0588732i
\(366\) −9.75324 −0.509810
\(367\) 6.82498i 0.356261i −0.984007 0.178131i \(-0.942995\pi\)
0.984007 0.178131i \(-0.0570049\pi\)
\(368\) 0.521423i 0.0271810i
\(369\) −2.00000 −0.104116
\(370\) −4.00000 23.8641i −0.207950 1.24063i
\(371\) 26.6853 1.38543
\(372\) 1.00000i 0.0518476i
\(373\) 0.135941i 0.00703875i 0.999994 + 0.00351938i \(0.00112025\pi\)
−0.999994 + 0.00351938i \(0.998880\pi\)
\(374\) 16.0819 0.831577
\(375\) 9.82121 5.34264i 0.507165 0.275893i
\(376\) 4.93203 0.254350
\(377\) 1.42833i 0.0735626i
\(378\) 2.00000i 0.102869i
\(379\) 10.7961 0.554558 0.277279 0.960789i \(-0.410567\pi\)
0.277279 + 0.960789i \(0.410567\pi\)
\(380\) −1.82310 10.8766i −0.0935229 0.557959i
\(381\) −6.52142 −0.334103
\(382\) 7.56427i 0.387022i
\(383\) 23.4283i 1.19713i 0.801074 + 0.598566i \(0.204262\pi\)
−0.801074 + 0.598566i \(0.795738\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 14.3817 2.41061i 0.732960 0.122856i
\(386\) −22.3817 −1.13920
\(387\) 8.82121i 0.448407i
\(388\) 7.26071i 0.368607i
\(389\) −10.3855 −0.526565 −0.263282 0.964719i \(-0.584805\pi\)
−0.263282 + 0.964719i \(0.584805\pi\)
\(390\) −6.04096 + 1.01256i −0.305896 + 0.0512731i
\(391\) 2.57167 0.130055
\(392\) 3.00000i 0.151523i
\(393\) 13.3426i 0.673047i
\(394\) 16.6853 0.840592
\(395\) −2.36964 14.1373i −0.119230 0.711326i
\(396\) 3.26071 0.163857
\(397\) 10.2141i 0.512631i −0.966593 0.256315i \(-0.917491\pi\)
0.966593 0.256315i \(-0.0825086\pi\)
\(398\) 15.4535i 0.774612i
\(399\) −9.86406 −0.493821
\(400\) −4.72673 + 1.63036i −0.236336 + 0.0815178i
\(401\) 6.30356 0.314785 0.157392 0.987536i \(-0.449691\pi\)
0.157392 + 0.987536i \(0.449691\pi\)
\(402\) 13.5605i 0.676336i
\(403\) 2.73929i 0.136454i
\(404\) 0 0
\(405\) −0.369644 2.20530i −0.0183678 0.109582i
\(406\) 1.04285 0.0517556
\(407\) 35.2849i 1.74901i
\(408\) 4.93203i 0.244172i
\(409\) 19.2569 0.952195 0.476097 0.879393i \(-0.342051\pi\)
0.476097 + 0.879393i \(0.342051\pi\)
\(410\) 4.41061 0.739289i 0.217824 0.0365109i
\(411\) 3.77837 0.186373
\(412\) 6.00000i 0.295599i
\(413\) 18.6853i 0.919442i
\(414\) 0.521423 0.0256265
\(415\) 3.01633 0.505585i 0.148066 0.0248182i
\(416\) 2.73929 0.134305
\(417\) 12.5214i 0.613177i
\(418\) 16.0819i 0.786593i
\(419\) −3.47858 −0.169940 −0.0849698 0.996384i \(-0.527079\pi\)
−0.0849698 + 0.996384i \(0.527079\pi\)
\(420\) 0.739289 + 4.41061i 0.0360736 + 0.215216i
\(421\) −4.35757 −0.212375 −0.106188 0.994346i \(-0.533864\pi\)
−0.106188 + 0.994346i \(0.533864\pi\)
\(422\) 17.0428i 0.829633i
\(423\) 4.93203i 0.239803i
\(424\) −13.3426 −0.647976
\(425\) 8.04096 + 23.3124i 0.390044 + 1.13082i
\(426\) 5.56050 0.269407
\(427\) 19.5065i 0.943985i
\(428\) 18.2998i 0.884554i
\(429\) −8.93203 −0.431242
\(430\) −3.26071 19.4535i −0.157245 0.938129i
\(431\) −22.2495 −1.07172 −0.535861 0.844306i \(-0.680013\pi\)
−0.535861 + 0.844306i \(0.680013\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 18.8212i 0.904490i 0.891894 + 0.452245i \(0.149377\pi\)
−0.891894 + 0.452245i \(0.850623\pi\)
\(434\) 2.00000 0.0960031
\(435\) 1.14990 0.192741i 0.0551333 0.00924122i
\(436\) 5.34264 0.255866
\(437\) 2.57167i 0.123020i
\(438\) 3.04285i 0.145393i
\(439\) 9.25695 0.441810 0.220905 0.975295i \(-0.429099\pi\)
0.220905 + 0.975295i \(0.429099\pi\)
\(440\) −7.19086 + 1.20530i −0.342811 + 0.0574606i
\(441\) −3.00000 −0.142857
\(442\) 13.5103i 0.642617i
\(443\) 8.82121i 0.419109i 0.977797 + 0.209554i \(0.0672013\pi\)
−0.977797 + 0.209554i \(0.932799\pi\)
\(444\) 10.8212 0.513552
\(445\) −4.38548 26.1638i −0.207892 1.24029i
\(446\) −13.7821 −0.652603
\(447\) 2.21787i 0.104901i
\(448\) 2.00000i 0.0944911i
\(449\) 16.2179 0.765368 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(450\) 1.63036 + 4.72673i 0.0768557 + 0.222820i
\(451\) 6.52142 0.307082
\(452\) 16.6853i 0.784809i
\(453\) 18.1890i 0.854593i
\(454\) 2.52142 0.118336
\(455\) −2.02512 12.0819i −0.0949393 0.566409i
\(456\) 4.93203 0.230963
\(457\) 19.4283i 0.908819i −0.890793 0.454409i \(-0.849850\pi\)
0.890793 0.454409i \(-0.150150\pi\)
\(458\) 27.3957i 1.28012i
\(459\) 4.93203 0.230207
\(460\) −1.14990 + 0.192741i −0.0536142 + 0.00898659i
\(461\) −2.38548 −0.111103 −0.0555515 0.998456i \(-0.517692\pi\)
−0.0555515 + 0.998456i \(0.517692\pi\)
\(462\) 6.52142i 0.303404i
\(463\) 4.90314i 0.227868i −0.993488 0.113934i \(-0.963655\pi\)
0.993488 0.113934i \(-0.0363453\pi\)
\(464\) −0.521423 −0.0242064
\(465\) 2.20530 0.369644i 0.102268 0.0171418i
\(466\) 22.8212 1.05717
\(467\) 22.0857i 1.02200i −0.859580 0.511002i \(-0.829274\pi\)
0.859580 0.511002i \(-0.170726\pi\)
\(468\) 2.73929i 0.126624i
\(469\) 27.1210 1.25233
\(470\) 1.82310 + 10.8766i 0.0840932 + 0.501701i
\(471\) 19.2067 0.884998
\(472\) 9.34264i 0.430030i
\(473\) 28.7634i 1.32254i
\(474\) 6.41061 0.294449
\(475\) 23.3124 8.04096i 1.06964 0.368945i
\(476\) −9.86406 −0.452118
\(477\) 13.3426i 0.610917i
\(478\) 14.2998i 0.654057i
\(479\) 10.1676 0.464570 0.232285 0.972648i \(-0.425380\pi\)
0.232285 + 0.972648i \(0.425380\pi\)
\(480\) −0.369644 2.20530i −0.0168719 0.100658i
\(481\) −29.6424 −1.35158
\(482\) 13.3426i 0.607740i
\(483\) 1.04285i 0.0474511i
\(484\) 0.367761 0.0167164
\(485\) −16.0121 + 2.68388i −0.727071 + 0.121869i
\(486\) 1.00000 0.0453609
\(487\) 38.5531i 1.74701i −0.486817 0.873504i \(-0.661842\pi\)
0.486817 0.873504i \(-0.338158\pi\)
\(488\) 9.75324i 0.441509i
\(489\) 9.56050 0.432341
\(490\) 6.61591 1.10893i 0.298876 0.0500965i
\(491\) 39.7206 1.79256 0.896282 0.443484i \(-0.146258\pi\)
0.896282 + 0.443484i \(0.146258\pi\)
\(492\) 2.00000i 0.0901670i
\(493\) 2.57167i 0.115822i
\(494\) −13.5103 −0.607855
\(495\) 1.20530 + 7.19086i 0.0541744 + 0.323205i
\(496\) −1.00000 −0.0449013
\(497\) 11.1210i 0.498845i
\(498\) 1.36776i 0.0612908i
\(499\) −31.8641 −1.42643 −0.713216 0.700945i \(-0.752762\pi\)
−0.713216 + 0.700945i \(0.752762\pi\)
\(500\) −5.34264 9.82121i −0.238930 0.439218i
\(501\) 2.00000 0.0893534
\(502\) 10.5214i 0.469594i
\(503\) 26.7961i 1.19478i 0.801951 + 0.597389i \(0.203795\pi\)
−0.801951 + 0.597389i \(0.796205\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) −1.70021 −0.0755835
\(507\) 5.49630i 0.244099i
\(508\) 6.52142i 0.289341i
\(509\) 13.5065 0.598664 0.299332 0.954149i \(-0.403236\pi\)
0.299332 + 0.954149i \(0.403236\pi\)
\(510\) −10.8766 + 1.82310i −0.481625 + 0.0807281i
\(511\) −6.08569 −0.269215
\(512\) 1.00000i 0.0441942i
\(513\) 4.93203i 0.217754i
\(514\) −7.86406 −0.346869
\(515\) 13.2318 2.21787i 0.583064 0.0977308i
\(516\) 8.82121 0.388332
\(517\) 16.0819i 0.707282i
\(518\) 21.6424i 0.950914i
\(519\) 1.45345 0.0637995
\(520\) 1.01256 + 6.04096i 0.0444038 + 0.264914i
\(521\) −2.16385 −0.0948000 −0.0474000 0.998876i \(-0.515094\pi\)
−0.0474000 + 0.998876i \(0.515094\pi\)
\(522\) 0.521423i 0.0228221i
\(523\) 18.1359i 0.793029i 0.918028 + 0.396515i \(0.129780\pi\)
−0.918028 + 0.396515i \(0.870220\pi\)
\(524\) −13.3426 −0.582876
\(525\) −9.45345 + 3.26071i −0.412582 + 0.142309i
\(526\) 23.8641 1.04052
\(527\) 4.93203i 0.214843i
\(528\) 3.26071i 0.141904i
\(529\) 22.7281 0.988179
\(530\) −4.93203 29.4246i −0.214234 1.27812i
\(531\) 9.34264 0.405436
\(532\) 9.86406i 0.427661i
\(533\) 5.47858i 0.237304i
\(534\) 11.8641 0.513408
\(535\) 40.3566 6.76441i 1.74477 0.292451i
\(536\) −13.5605 −0.585724
\(537\) 26.3817i 1.13846i
\(538\) 8.95715i 0.386170i
\(539\) 9.78213 0.421346
\(540\) −2.20530 + 0.369644i −0.0949011 + 0.0159070i
\(541\) 7.64996 0.328897 0.164449 0.986386i \(-0.447415\pi\)
0.164449 + 0.986386i \(0.447415\pi\)
\(542\) 13.0959i 0.562516i
\(543\) 7.77837i 0.333802i
\(544\) 4.93203 0.211459
\(545\) 1.97488 + 11.7821i 0.0845944 + 0.504691i
\(546\) 5.47858 0.234461
\(547\) 15.1210i 0.646527i 0.946309 + 0.323264i \(0.104780\pi\)
−0.946309 + 0.323264i \(0.895220\pi\)
\(548\) 3.77837i 0.161404i
\(549\) 9.75324 0.416258
\(550\) −5.31612 15.4125i −0.226680 0.657191i
\(551\) 2.57167 0.109557
\(552\) 0.521423i 0.0221932i
\(553\) 12.8212i 0.545213i
\(554\) 3.78213 0.160687
\(555\) 4.00000 + 23.8641i 0.169791 + 1.01297i
\(556\) 12.5214 0.531027
\(557\) 21.5065i 0.911259i −0.890169 0.455630i \(-0.849414\pi\)
0.890169 0.455630i \(-0.150586\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) −24.1638 −1.02202
\(560\) 4.41061 0.739289i 0.186382 0.0312406i
\(561\) −16.0819 −0.678979
\(562\) 3.04285i 0.128355i
\(563\) 21.2569i 0.895873i 0.894065 + 0.447937i \(0.147841\pi\)
−0.894065 + 0.447937i \(0.852159\pi\)
\(564\) −4.93203 −0.207676
\(565\) 36.7961 6.16762i 1.54802 0.259474i
\(566\) 22.7672 0.956977
\(567\) 2.00000i 0.0839921i
\(568\) 5.56050i 0.233313i
\(569\) −19.4208 −0.814162 −0.407081 0.913392i \(-0.633453\pi\)
−0.407081 + 0.913392i \(0.633453\pi\)
\(570\) 1.82310 + 10.8766i 0.0763611 + 0.455572i
\(571\) 23.8641 0.998680 0.499340 0.866406i \(-0.333576\pi\)
0.499340 + 0.866406i \(0.333576\pi\)
\(572\) 8.93203i 0.373467i
\(573\) 7.56427i 0.316002i
\(574\) −4.00000 −0.166957
\(575\) −0.850105 2.46462i −0.0354518 0.102782i
\(576\) 1.00000 0.0416667
\(577\) 1.78213i 0.0741912i 0.999312 + 0.0370956i \(0.0118106\pi\)
−0.999312 + 0.0370956i \(0.988189\pi\)
\(578\) 7.32492i 0.304676i
\(579\) 22.3817 0.930152
\(580\) −0.192741 1.14990i −0.00800313 0.0477468i
\(581\) −2.73552 −0.113489
\(582\) 7.26071i 0.300966i
\(583\) 43.5065i 1.80185i
\(584\) 3.04285 0.125914
\(585\) 6.04096 1.01256i 0.249763 0.0418643i
\(586\) −3.64243 −0.150467
\(587\) 10.1387i 0.418470i 0.977865 + 0.209235i \(0.0670974\pi\)
−0.977865 + 0.209235i \(0.932903\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 4.93203 0.203221
\(590\) −20.6033 + 3.45345i −0.848226 + 0.142176i
\(591\) −16.6853 −0.686340
\(592\) 10.8212i 0.444749i
\(593\) 43.5846i 1.78981i −0.446260 0.894903i \(-0.647244\pi\)
0.446260 0.894903i \(-0.352756\pi\)
\(594\) −3.26071 −0.133789
\(595\) −3.64619 21.7532i −0.149479 0.891796i
\(596\) 2.21787 0.0908473
\(597\) 15.4535i 0.632468i
\(598\) 1.42833i 0.0584087i
\(599\) 16.6815 0.681588 0.340794 0.940138i \(-0.389304\pi\)
0.340794 + 0.940138i \(0.389304\pi\)
\(600\) 4.72673 1.63036i 0.192968 0.0665590i
\(601\) −43.6424 −1.78021 −0.890106 0.455754i \(-0.849370\pi\)
−0.890106 + 0.455754i \(0.849370\pi\)
\(602\) 17.6424i 0.719052i
\(603\) 13.5605i 0.552226i
\(604\) −18.1890 −0.740099
\(605\) 0.135941 + 0.811025i 0.00552678 + 0.0329729i
\(606\) 0 0
\(607\) 10.5996i 0.430224i −0.976589 0.215112i \(-0.930988\pi\)
0.976589 0.215112i \(-0.0690116\pi\)
\(608\) 4.93203i 0.200020i
\(609\) −1.04285 −0.0422582
\(610\) −21.5089 + 3.60523i −0.870868 + 0.145972i
\(611\) 13.5103 0.546566
\(612\) 4.93203i 0.199365i
\(613\) 44.5456i 1.79918i −0.436737 0.899589i \(-0.643866\pi\)
0.436737 0.899589i \(-0.356134\pi\)
\(614\) 17.4786 0.705378
\(615\) −4.41061 + 0.739289i −0.177853 + 0.0298110i
\(616\) 6.52142 0.262756
\(617\) 40.6853i 1.63793i −0.573845 0.818964i \(-0.694549\pi\)
0.573845 0.818964i \(-0.305451\pi\)
\(618\) 6.00000i 0.241355i
\(619\) −42.8212 −1.72113 −0.860565 0.509341i \(-0.829889\pi\)
−0.860565 + 0.509341i \(0.829889\pi\)
\(620\) −0.369644 2.20530i −0.0148453 0.0885671i
\(621\) −0.521423 −0.0209240
\(622\) 18.1676i 0.728455i
\(623\) 23.7281i 0.950647i
\(624\) −2.73929 −0.109659
\(625\) 19.6839 15.4125i 0.787355 0.616500i
\(626\) −33.7281 −1.34805
\(627\) 16.0819i 0.642250i
\(628\) 19.2067i 0.766431i
\(629\) −53.3705 −2.12802
\(630\) −0.739289 4.41061i −0.0294540 0.175723i
\(631\) −1.31473 −0.0523385 −0.0261692 0.999658i \(-0.508331\pi\)
−0.0261692 + 0.999658i \(0.508331\pi\)
\(632\) 6.41061i 0.255000i
\(633\) 17.0428i 0.677392i
\(634\) 2.54655 0.101136
\(635\) −14.3817 + 2.41061i −0.570721 + 0.0956620i
\(636\) 13.3426 0.529070
\(637\) 8.21787i 0.325604i
\(638\) 1.70021i 0.0673119i
\(639\) −5.56050 −0.219970
\(640\) −2.20530 + 0.369644i −0.0871723 + 0.0146115i
\(641\) −25.4246 −1.00421 −0.502105 0.864807i \(-0.667441\pi\)
−0.502105 + 0.864807i \(0.667441\pi\)
\(642\) 18.2998i 0.722235i
\(643\) 44.3855i 1.75039i 0.483768 + 0.875196i \(0.339268\pi\)
−0.483768 + 0.875196i \(0.660732\pi\)
\(644\) 1.04285 0.0410939
\(645\) 3.26071 + 19.4535i 0.128390 + 0.765979i
\(646\) −24.3249 −0.957051
\(647\) 17.5567i 0.690227i −0.938561 0.345113i \(-0.887841\pi\)
0.938561 0.345113i \(-0.112159\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −30.4636 −1.19580
\(650\) −12.9479 + 4.46601i −0.507857 + 0.175172i
\(651\) −2.00000 −0.0783862
\(652\) 9.56050i 0.374418i
\(653\) 18.0530i 0.706470i 0.935535 + 0.353235i \(0.114918\pi\)
−0.935535 + 0.353235i \(0.885082\pi\)
\(654\) −5.34264 −0.208914
\(655\) −4.93203 29.4246i −0.192710 1.14971i
\(656\) 2.00000 0.0780869
\(657\) 3.04285i 0.118713i
\(658\) 9.86406i 0.384541i
\(659\) 0.957154 0.0372854 0.0186427 0.999826i \(-0.494065\pi\)
0.0186427 + 0.999826i \(0.494065\pi\)
\(660\) 7.19086 1.20530i 0.279904 0.0469164i
\(661\) −9.56427 −0.372007 −0.186003 0.982549i \(-0.559554\pi\)
−0.186003 + 0.982549i \(0.559554\pi\)
\(662\) 10.1638i 0.395029i
\(663\) 13.5103i 0.524695i
\(664\) 1.36776 0.0530794
\(665\) −21.7532 + 3.64619i −0.843555 + 0.141393i
\(666\) −10.8212 −0.419314
\(667\) 0.271882i 0.0105273i
\(668\) 2.00000i 0.0773823i
\(669\) 13.7821 0.532848
\(670\) −5.01256 29.9050i −0.193652 1.15533i
\(671\) −31.8025 −1.22772
\(672\) 2.00000i 0.0771517i
\(673\) 41.7206i 1.60821i 0.594487 + 0.804105i \(0.297355\pi\)
−0.594487 + 0.804105i \(0.702645\pi\)
\(674\) 24.9069 0.959378
\(675\) −1.63036 4.72673i −0.0627524 0.181932i
\(676\) −5.49630 −0.211396
\(677\) 21.7784i 0.837011i 0.908214 + 0.418505i \(0.137446\pi\)
−0.908214 + 0.418505i \(0.862554\pi\)
\(678\) 16.6853i 0.640794i
\(679\) 14.5214 0.557281
\(680\) 1.82310 + 10.8766i 0.0699126 + 0.417099i
\(681\) −2.52142 −0.0966211
\(682\) 3.26071i 0.124859i
\(683\) 39.7281i 1.52015i 0.649833 + 0.760077i \(0.274839\pi\)
−0.649833 + 0.760077i \(0.725161\pi\)
\(684\) −4.93203 −0.188581
\(685\) 8.33245 1.39665i 0.318366 0.0533633i
\(686\) −20.0000 −0.763604
\(687\) 27.3957i 1.04521i
\(688\) 8.82121i 0.336306i
\(689\) −36.5493 −1.39242
\(690\) 1.14990 0.192741i 0.0437758 0.00733752i
\(691\) 37.5316 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(692\) 1.45345i 0.0552520i
\(693\) 6.52142i 0.247728i
\(694\) 7.67508 0.291342
\(695\) 4.62847 + 27.6135i 0.175568 + 1.04744i
\(696\) 0.521423 0.0197645
\(697\) 9.86406i 0.373628i
\(698\) 1.77837i 0.0673122i
\(699\) −22.8212 −0.863178
\(700\) 3.26071 + 9.45345i 0.123243 + 0.357307i
\(701\) −16.7393 −0.632234 −0.316117 0.948720i \(-0.602379\pi\)
−0.316117 + 0.948720i \(0.602379\pi\)
\(702\) 2.73929i 0.103388i
\(703\) 53.3705i 2.01291i
\(704\) −3.26071 −0.122893
\(705\) −1.82310 10.8766i −0.0686618 0.409637i
\(706\) −0.932030 −0.0350774
\(707\) 0 0
\(708\) 9.34264i 0.351118i
\(709\) 30.8463 1.15846 0.579229 0.815165i \(-0.303354\pi\)
0.579229 + 0.815165i \(0.303354\pi\)
\(710\) 12.2626 2.05541i 0.460207 0.0771381i
\(711\) −6.41061 −0.240417
\(712\) 11.8641i 0.444624i
\(713\) 0.521423i 0.0195274i
\(714\) 9.86406 0.369153
\(715\) −19.6978 + 3.30167i −0.736657 + 0.123476i
\(716\) −26.3817 −0.985931
\(717\) 14.2998i 0.534035i
\(718\) 17.2886i 0.645206i
\(719\) 10.4712 0.390509 0.195254 0.980753i \(-0.437447\pi\)
0.195254 + 0.980753i \(0.437447\pi\)
\(720\) 0.369644 + 2.20530i 0.0137758 + 0.0821868i
\(721\) −12.0000 −0.446903
\(722\) 5.32492i 0.198173i
\(723\) 13.3426i 0.496218i
\(724\) 7.77837 0.289081
\(725\) 2.46462 0.850105i 0.0915338 0.0315721i
\(726\) −0.367761 −0.0136489
\(727\) 30.3779i 1.12666i 0.826233 + 0.563328i \(0.190479\pi\)
−0.826233 + 0.563328i \(0.809521\pi\)
\(728\) 5.47858i 0.203050i
\(729\) −1.00000 −0.0370370
\(730\) 1.12477 + 6.71040i 0.0416296 + 0.248363i
\(731\) −43.5065 −1.60915
\(732\) 9.75324i 0.360490i
\(733\) 34.3855i 1.27006i −0.772489 0.635028i \(-0.780988\pi\)
0.772489 0.635028i \(-0.219012\pi\)
\(734\) 6.82498 0.251915
\(735\) −6.61591 + 1.10893i −0.244032 + 0.0409036i
\(736\) −0.521423 −0.0192199
\(737\) 44.2169i 1.62875i
\(738\) 2.00000i 0.0736210i
\(739\) 17.1210 0.629806 0.314903 0.949124i \(-0.398028\pi\)
0.314903 + 0.949124i \(0.398028\pi\)
\(740\) 23.8641 4.00000i 0.877260 0.147043i
\(741\) 13.5103 0.496312
\(742\) 26.6853i 0.979647i
\(743\) 3.86406i 0.141759i −0.997485 0.0708793i \(-0.977419\pi\)
0.997485 0.0708793i \(-0.0225805\pi\)
\(744\) 1.00000 0.0366618
\(745\) 0.819821 + 4.89107i 0.0300359 + 0.179195i
\(746\) −0.135941 −0.00497715
\(747\) 1.36776i 0.0500438i
\(748\) 16.0819i 0.588013i
\(749\) −36.5996 −1.33732
\(750\) 5.34264 + 9.82121i 0.195085 + 0.358620i
\(751\) −22.1359 −0.807752 −0.403876 0.914814i \(-0.632337\pi\)
−0.403876 + 0.914814i \(0.632337\pi\)
\(752\) 4.93203i 0.179853i
\(753\) 10.5214i 0.383422i
\(754\) −1.42833 −0.0520166
\(755\) −6.72345 40.1122i −0.244691 1.45983i
\(756\) 2.00000 0.0727393
\(757\) 43.5922i 1.58438i 0.610272 + 0.792192i \(0.291060\pi\)
−0.610272 + 0.792192i \(0.708940\pi\)
\(758\) 10.7961i 0.392132i
\(759\) 1.70021 0.0617137
\(760\) 10.8766 1.82310i 0.394537 0.0661307i
\(761\) 14.9107 0.540511 0.270256 0.962789i \(-0.412892\pi\)
0.270256 + 0.962789i \(0.412892\pi\)
\(762\) 6.52142i 0.236246i
\(763\) 10.6853i 0.386833i
\(764\) −7.56427 −0.273666
\(765\) 10.8766 1.82310i 0.393245 0.0659142i
\(766\) −23.4283 −0.846500
\(767\) 25.5922i 0.924080i
\(768\) 1.00000i 0.0360844i
\(769\) −48.4134 −1.74583 −0.872916 0.487871i \(-0.837774\pi\)
−0.872916 + 0.487871i \(0.837774\pi\)
\(770\) 2.41061 + 14.3817i 0.0868722 + 0.518281i
\(771\) 7.86406 0.283217
\(772\) 22.3817i 0.805536i
\(773\) 6.54933i 0.235563i 0.993040 + 0.117782i \(0.0375783\pi\)
−0.993040 + 0.117782i \(0.962422\pi\)
\(774\) −8.82121 −0.317072
\(775\) 4.72673 1.63036i 0.169789 0.0585641i
\(776\) −7.26071 −0.260644
\(777\) 21.6424i 0.776418i
\(778\) 10.3855i 0.372338i
\(779\) −9.86406 −0.353417
\(780\) −1.01256 6.04096i −0.0362556 0.216301i
\(781\) 18.1312 0.648785