Properties

Label 930.2.d.i.559.4
Level $930$
Weight $2$
Character 930.559
Analytic conductor $7.426$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(559,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.11669056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 7x^{4} + 8x^{3} - x^{2} + 54x + 58 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.4
Root \(-1.23545 + 0.0526623i\) of defining polynomial
Character \(\chi\) \(=\) 930.559
Dual form 930.2.d.i.559.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-2.23545 + 0.0526623i) q^{5} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-2.23545 + 0.0526623i) q^{5} +1.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +(-0.0526623 - 2.23545i) q^{10} -0.470896 q^{11} +1.00000i q^{12} -6.47090i q^{13} -2.00000 q^{14} +(0.0526623 + 2.23545i) q^{15} +1.00000 q^{16} +7.04712i q^{17} -1.00000i q^{18} +7.04712 q^{19} +(2.23545 - 0.0526623i) q^{20} +2.00000 q^{21} -0.470896i q^{22} -6.94179i q^{23} -1.00000 q^{24} +(4.99445 - 0.235448i) q^{25} +6.47090 q^{26} +1.00000i q^{27} -2.00000i q^{28} +6.94179 q^{29} +(-2.23545 + 0.0526623i) q^{30} -1.00000 q^{31} +1.00000i q^{32} +0.470896i q^{33} -7.04712 q^{34} +(-0.105325 - 4.47090i) q^{35} +1.00000 q^{36} -1.78935i q^{37} +7.04712i q^{38} -6.47090 q^{39} +(0.0526623 + 2.23545i) q^{40} +2.00000 q^{41} +2.00000i q^{42} +0.210649i q^{43} +0.470896 q^{44} +(2.23545 - 0.0526623i) q^{45} +6.94179 q^{46} -7.04712i q^{47} -1.00000i q^{48} +3.00000 q^{49} +(0.235448 + 4.99445i) q^{50} +7.04712 q^{51} +6.47090i q^{52} +3.15244i q^{53} -1.00000 q^{54} +(1.05266 - 0.0247985i) q^{55} +2.00000 q^{56} -7.04712i q^{57} +6.94179i q^{58} +7.15244 q^{59} +(-0.0526623 - 2.23545i) q^{60} +11.2578 q^{61} -1.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +(0.340772 + 14.4653i) q^{65} -0.470896 q^{66} -8.26025i q^{67} -7.04712i q^{68} -6.94179 q^{69} +(4.47090 - 0.105325i) q^{70} +0.260246 q^{71} +1.00000i q^{72} -11.8836i q^{73} +1.78935 q^{74} +(-0.235448 - 4.99445i) q^{75} -7.04712 q^{76} -0.941791i q^{77} -6.47090i q^{78} +1.89468 q^{79} +(-2.23545 + 0.0526623i) q^{80} +1.00000 q^{81} +2.00000i q^{82} +11.7783i q^{83} -2.00000 q^{84} +(-0.371118 - 15.7535i) q^{85} -0.210649 q^{86} -6.94179i q^{87} +0.470896i q^{88} -12.0942 q^{89} +(0.0526623 + 2.23545i) q^{90} +12.9418 q^{91} +6.94179i q^{92} +1.00000i q^{93} +7.04712 q^{94} +(-15.7535 + 0.371118i) q^{95} +1.00000 q^{96} -3.52910i q^{97} +3.00000i q^{98} +0.470896 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9} + 16 q^{11} - 12 q^{14} + 6 q^{16} + 4 q^{19} + 4 q^{20} + 12 q^{21} - 6 q^{24} - 8 q^{25} + 20 q^{26} + 4 q^{29} - 4 q^{30} - 6 q^{31} - 4 q^{34} + 6 q^{36} - 20 q^{39} + 12 q^{41} - 16 q^{44} + 4 q^{45} + 4 q^{46} + 18 q^{49} - 8 q^{50} + 4 q^{51} - 6 q^{54} + 6 q^{55} + 12 q^{56} + 4 q^{59} + 28 q^{61} - 6 q^{64} - 8 q^{65} + 16 q^{66} - 4 q^{69} + 8 q^{70} - 16 q^{71} + 12 q^{74} + 8 q^{75} - 4 q^{76} + 12 q^{79} - 4 q^{80} + 6 q^{81} - 12 q^{84} - 22 q^{85} + 4 q^{89} + 40 q^{91} + 4 q^{94} - 28 q^{95} + 6 q^{96} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) −2.23545 + 0.0526623i −0.999723 + 0.0235513i
\(6\) 1.00000 0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) −0.0526623 2.23545i −0.0166533 0.706911i
\(11\) −0.470896 −0.141980 −0.0709902 0.997477i \(-0.522616\pi\)
−0.0709902 + 0.997477i \(0.522616\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 6.47090i 1.79470i −0.441316 0.897352i \(-0.645488\pi\)
0.441316 0.897352i \(-0.354512\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0.0526623 + 2.23545i 0.0135974 + 0.577190i
\(16\) 1.00000 0.250000
\(17\) 7.04712i 1.70918i 0.519306 + 0.854588i \(0.326190\pi\)
−0.519306 + 0.854588i \(0.673810\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 7.04712 1.61672 0.808360 0.588689i \(-0.200356\pi\)
0.808360 + 0.588689i \(0.200356\pi\)
\(20\) 2.23545 0.0526623i 0.499861 0.0117757i
\(21\) 2.00000 0.436436
\(22\) 0.470896i 0.100395i
\(23\) 6.94179i 1.44746i −0.690081 0.723732i \(-0.742425\pi\)
0.690081 0.723732i \(-0.257575\pi\)
\(24\) −1.00000 −0.204124
\(25\) 4.99445 0.235448i 0.998891 0.0470896i
\(26\) 6.47090 1.26905
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) 6.94179 1.28906 0.644529 0.764580i \(-0.277053\pi\)
0.644529 + 0.764580i \(0.277053\pi\)
\(30\) −2.23545 + 0.0526623i −0.408135 + 0.00961478i
\(31\) −1.00000 −0.179605
\(32\) 1.00000i 0.176777i
\(33\) 0.470896i 0.0819724i
\(34\) −7.04712 −1.20857
\(35\) −0.105325 4.47090i −0.0178031 0.755719i
\(36\) 1.00000 0.166667
\(37\) 1.78935i 0.294167i −0.989124 0.147084i \(-0.953011\pi\)
0.989124 0.147084i \(-0.0469887\pi\)
\(38\) 7.04712i 1.14319i
\(39\) −6.47090 −1.03617
\(40\) 0.0526623 + 2.23545i 0.00832664 + 0.353455i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 0.210649i 0.0321237i 0.999871 + 0.0160619i \(0.00511287\pi\)
−0.999871 + 0.0160619i \(0.994887\pi\)
\(44\) 0.470896 0.0709902
\(45\) 2.23545 0.0526623i 0.333241 0.00785044i
\(46\) 6.94179 1.02351
\(47\) 7.04712i 1.02793i −0.857812 0.513964i \(-0.828177\pi\)
0.857812 0.513964i \(-0.171823\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0.235448 + 4.99445i 0.0332973 + 0.706322i
\(51\) 7.04712 0.986794
\(52\) 6.47090i 0.897352i
\(53\) 3.15244i 0.433021i 0.976280 + 0.216510i \(0.0694676\pi\)
−0.976280 + 0.216510i \(0.930532\pi\)
\(54\) −1.00000 −0.136083
\(55\) 1.05266 0.0247985i 0.141941 0.00334382i
\(56\) 2.00000 0.267261
\(57\) 7.04712i 0.933413i
\(58\) 6.94179i 0.911502i
\(59\) 7.15244 0.931168 0.465584 0.885004i \(-0.345844\pi\)
0.465584 + 0.885004i \(0.345844\pi\)
\(60\) −0.0526623 2.23545i −0.00679868 0.288595i
\(61\) 11.2578 1.44141 0.720705 0.693242i \(-0.243818\pi\)
0.720705 + 0.693242i \(0.243818\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 2.00000i 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0.340772 + 14.4653i 0.0422676 + 1.79421i
\(66\) −0.470896 −0.0579632
\(67\) 8.26025i 1.00915i −0.863368 0.504575i \(-0.831649\pi\)
0.863368 0.504575i \(-0.168351\pi\)
\(68\) 7.04712i 0.854588i
\(69\) −6.94179 −0.835693
\(70\) 4.47090 0.105325i 0.534374 0.0125887i
\(71\) 0.260246 0.0308855 0.0154428 0.999881i \(-0.495084\pi\)
0.0154428 + 0.999881i \(0.495084\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 11.8836i 1.39087i −0.718590 0.695434i \(-0.755212\pi\)
0.718590 0.695434i \(-0.244788\pi\)
\(74\) 1.78935 0.208008
\(75\) −0.235448 4.99445i −0.0271872 0.576710i
\(76\) −7.04712 −0.808360
\(77\) 0.941791i 0.107327i
\(78\) 6.47090i 0.732685i
\(79\) 1.89468 0.213168 0.106584 0.994304i \(-0.466009\pi\)
0.106584 + 0.994304i \(0.466009\pi\)
\(80\) −2.23545 + 0.0526623i −0.249931 + 0.00588783i
\(81\) 1.00000 0.111111
\(82\) 2.00000i 0.220863i
\(83\) 11.7783i 1.29283i 0.762985 + 0.646416i \(0.223733\pi\)
−0.762985 + 0.646416i \(0.776267\pi\)
\(84\) −2.00000 −0.218218
\(85\) −0.371118 15.7535i −0.0402533 1.70870i
\(86\) −0.210649 −0.0227149
\(87\) 6.94179i 0.744238i
\(88\) 0.470896i 0.0501976i
\(89\) −12.0942 −1.28199 −0.640993 0.767547i \(-0.721477\pi\)
−0.640993 + 0.767547i \(0.721477\pi\)
\(90\) 0.0526623 + 2.23545i 0.00555110 + 0.235637i
\(91\) 12.9418 1.35667
\(92\) 6.94179i 0.723732i
\(93\) 1.00000i 0.103695i
\(94\) 7.04712 0.726854
\(95\) −15.7535 + 0.371118i −1.61627 + 0.0380759i
\(96\) 1.00000 0.102062
\(97\) 3.52910i 0.358326i −0.983819 0.179163i \(-0.942661\pi\)
0.983819 0.179163i \(-0.0573390\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0.470896 0.0473268
\(100\) −4.99445 + 0.235448i −0.499445 + 0.0235448i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 7.04712i 0.697768i
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) −6.47090 −0.634524
\(105\) −4.47090 + 0.105325i −0.436315 + 0.0102786i
\(106\) −3.15244 −0.306192
\(107\) 16.7311i 1.61746i 0.588180 + 0.808730i \(0.299845\pi\)
−0.588180 + 0.808730i \(0.700155\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 11.1524 1.06821 0.534105 0.845418i \(-0.320649\pi\)
0.534105 + 0.845418i \(0.320649\pi\)
\(110\) 0.0247985 + 1.05266i 0.00236444 + 0.100367i
\(111\) −1.78935 −0.169838
\(112\) 2.00000i 0.188982i
\(113\) 16.3049i 1.53383i −0.641746 0.766917i \(-0.721790\pi\)
0.641746 0.766917i \(-0.278210\pi\)
\(114\) 7.04712 0.660023
\(115\) 0.365571 + 15.5180i 0.0340897 + 1.44706i
\(116\) −6.94179 −0.644529
\(117\) 6.47090i 0.598235i
\(118\) 7.15244i 0.658436i
\(119\) −14.0942 −1.29202
\(120\) 2.23545 0.0526623i 0.204068 0.00480739i
\(121\) −10.7783 −0.979842
\(122\) 11.2578i 1.01923i
\(123\) 2.00000i 0.180334i
\(124\) 1.00000 0.0898027
\(125\) −11.1524 + 0.789351i −0.997505 + 0.0706017i
\(126\) 2.00000 0.178174
\(127\) 0.941791i 0.0835704i 0.999127 + 0.0417852i \(0.0133045\pi\)
−0.999127 + 0.0417852i \(0.986695\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0.210649 0.0185466
\(130\) −14.4653 + 0.340772i −1.26870 + 0.0298877i
\(131\) −3.15244 −0.275430 −0.137715 0.990472i \(-0.543976\pi\)
−0.137715 + 0.990472i \(0.543976\pi\)
\(132\) 0.470896i 0.0409862i
\(133\) 14.0942i 1.22212i
\(134\) 8.26025 0.713577
\(135\) −0.0526623 2.23545i −0.00453245 0.192397i
\(136\) 7.04712 0.604285
\(137\) 9.67293i 0.826414i 0.910637 + 0.413207i \(0.135591\pi\)
−0.910637 + 0.413207i \(0.864409\pi\)
\(138\) 6.94179i 0.590924i
\(139\) −5.05821 −0.429032 −0.214516 0.976721i \(-0.568817\pi\)
−0.214516 + 0.976721i \(0.568817\pi\)
\(140\) 0.105325 + 4.47090i 0.00890156 + 0.377860i
\(141\) −7.04712 −0.593474
\(142\) 0.260246i 0.0218394i
\(143\) 3.04712i 0.254813i
\(144\) −1.00000 −0.0833333
\(145\) −15.5180 + 0.365571i −1.28870 + 0.0303590i
\(146\) 11.8836 0.983492
\(147\) 3.00000i 0.247436i
\(148\) 1.78935i 0.147084i
\(149\) −13.4127 −1.09881 −0.549405 0.835556i \(-0.685146\pi\)
−0.549405 + 0.835556i \(0.685146\pi\)
\(150\) 4.99445 0.235448i 0.407795 0.0192242i
\(151\) 19.5676 1.59239 0.796195 0.605041i \(-0.206843\pi\)
0.796195 + 0.605041i \(0.206843\pi\)
\(152\) 7.04712i 0.571597i
\(153\) 7.04712i 0.569726i
\(154\) 0.941791 0.0758917
\(155\) 2.23545 0.0526623i 0.179555 0.00422994i
\(156\) 6.47090 0.518086
\(157\) 21.2467i 1.69567i −0.530261 0.847835i \(-0.677906\pi\)
0.530261 0.847835i \(-0.322094\pi\)
\(158\) 1.89468i 0.150732i
\(159\) 3.15244 0.250005
\(160\) −0.0526623 2.23545i −0.00416332 0.176728i
\(161\) 13.8836 1.09418
\(162\) 1.00000i 0.0785674i
\(163\) 4.26025i 0.333688i 0.985983 + 0.166844i \(0.0533577\pi\)
−0.985983 + 0.166844i \(0.946642\pi\)
\(164\) −2.00000 −0.156174
\(165\) −0.0247985 1.05266i −0.00193056 0.0819497i
\(166\) −11.7783 −0.914170
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 2.00000i 0.154303i
\(169\) −28.8725 −2.22096
\(170\) 15.7535 0.371118i 1.20824 0.0284634i
\(171\) −7.04712 −0.538906
\(172\) 0.210649i 0.0160619i
\(173\) 17.9889i 1.36767i −0.729636 0.683836i \(-0.760311\pi\)
0.729636 0.683836i \(-0.239689\pi\)
\(174\) 6.94179 0.526256
\(175\) 0.470896 + 9.98891i 0.0355964 + 0.755090i
\(176\) −0.470896 −0.0354951
\(177\) 7.15244i 0.537610i
\(178\) 12.0942i 0.906501i
\(179\) 12.0496 0.900629 0.450315 0.892870i \(-0.351312\pi\)
0.450315 + 0.892870i \(0.351312\pi\)
\(180\) −2.23545 + 0.0526623i −0.166620 + 0.00392522i
\(181\) −13.6729 −1.01630 −0.508151 0.861268i \(-0.669671\pi\)
−0.508151 + 0.861268i \(0.669671\pi\)
\(182\) 12.9418i 0.959309i
\(183\) 11.2578i 0.832198i
\(184\) −6.94179 −0.511756
\(185\) 0.0942314 + 4.00000i 0.00692803 + 0.294086i
\(186\) −1.00000 −0.0733236
\(187\) 3.31846i 0.242669i
\(188\) 7.04712i 0.513964i
\(189\) −2.00000 −0.145479
\(190\) −0.371118 15.7535i −0.0269237 1.14288i
\(191\) −14.8254 −1.07273 −0.536363 0.843987i \(-0.680202\pi\)
−0.536363 + 0.843987i \(0.680202\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 8.04960i 0.579423i 0.957114 + 0.289711i \(0.0935593\pi\)
−0.957114 + 0.289711i \(0.906441\pi\)
\(194\) 3.52910 0.253375
\(195\) 14.4653 0.340772i 1.03589 0.0244032i
\(196\) −3.00000 −0.214286
\(197\) 16.3049i 1.16167i 0.814020 + 0.580837i \(0.197275\pi\)
−0.814020 + 0.580837i \(0.802725\pi\)
\(198\) 0.470896i 0.0334651i
\(199\) 3.98891 0.282766 0.141383 0.989955i \(-0.454845\pi\)
0.141383 + 0.989955i \(0.454845\pi\)
\(200\) −0.235448 4.99445i −0.0166487 0.353161i
\(201\) −8.26025 −0.582633
\(202\) 0 0
\(203\) 13.8836i 0.974436i
\(204\) −7.04712 −0.493397
\(205\) −4.47090 + 0.105325i −0.312261 + 0.00735619i
\(206\) −6.00000 −0.418040
\(207\) 6.94179i 0.482488i
\(208\) 6.47090i 0.448676i
\(209\) −3.31846 −0.229542
\(210\) −0.105325 4.47090i −0.00726809 0.308521i
\(211\) 2.11642 0.145700 0.0728501 0.997343i \(-0.476791\pi\)
0.0728501 + 0.997343i \(0.476791\pi\)
\(212\) 3.15244i 0.216510i
\(213\) 0.260246i 0.0178318i
\(214\) −16.7311 −1.14372
\(215\) −0.0110933 0.470896i −0.000756556 0.0321148i
\(216\) 1.00000 0.0680414
\(217\) 2.00000i 0.135769i
\(218\) 11.1524i 0.755339i
\(219\) −11.8836 −0.803018
\(220\) −1.05266 + 0.0247985i −0.0709705 + 0.00167191i
\(221\) 45.6011 3.06747
\(222\) 1.78935i 0.120093i
\(223\) 2.58731i 0.173259i 0.996241 + 0.0866297i \(0.0276097\pi\)
−0.996241 + 0.0866297i \(0.972390\pi\)
\(224\) −2.00000 −0.133631
\(225\) −4.99445 + 0.235448i −0.332964 + 0.0156965i
\(226\) 16.3049 1.08458
\(227\) 4.94179i 0.327998i 0.986460 + 0.163999i \(0.0524394\pi\)
−0.986460 + 0.163999i \(0.947561\pi\)
\(228\) 7.04712i 0.466707i
\(229\) 11.6791 0.771774 0.385887 0.922546i \(-0.373895\pi\)
0.385887 + 0.922546i \(0.373895\pi\)
\(230\) −15.5180 + 0.365571i −1.02323 + 0.0241050i
\(231\) −0.941791 −0.0619653
\(232\) 6.94179i 0.455751i
\(233\) 13.7894i 0.903370i −0.892177 0.451685i \(-0.850823\pi\)
0.892177 0.451685i \(-0.149177\pi\)
\(234\) −6.47090 −0.423016
\(235\) 0.371118 + 15.7535i 0.0242090 + 1.02764i
\(236\) −7.15244 −0.465584
\(237\) 1.89468i 0.123072i
\(238\) 14.0942i 0.913593i
\(239\) 12.7311 0.823509 0.411755 0.911295i \(-0.364916\pi\)
0.411755 + 0.911295i \(0.364916\pi\)
\(240\) 0.0526623 + 2.23545i 0.00339934 + 0.144298i
\(241\) −3.15244 −0.203067 −0.101533 0.994832i \(-0.532375\pi\)
−0.101533 + 0.994832i \(0.532375\pi\)
\(242\) 10.7783i 0.692853i
\(243\) 1.00000i 0.0641500i
\(244\) −11.2578 −0.720705
\(245\) −6.70634 + 0.157987i −0.428453 + 0.0100934i
\(246\) 2.00000 0.127515
\(247\) 45.6011i 2.90153i
\(248\) 1.00000i 0.0635001i
\(249\) 11.7783 0.746417
\(250\) −0.789351 11.1524i −0.0499229 0.705342i
\(251\) 3.05821 0.193032 0.0965162 0.995331i \(-0.469230\pi\)
0.0965162 + 0.995331i \(0.469230\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 3.26886i 0.205511i
\(254\) −0.941791 −0.0590932
\(255\) −15.7535 + 0.371118i −0.986520 + 0.0232403i
\(256\) 1.00000 0.0625000
\(257\) 16.0942i 1.00393i −0.864888 0.501965i \(-0.832611\pi\)
0.864888 0.501965i \(-0.167389\pi\)
\(258\) 0.210649i 0.0131145i
\(259\) 3.57870 0.222370
\(260\) −0.340772 14.4653i −0.0211338 0.897103i
\(261\) −6.94179 −0.429686
\(262\) 3.15244i 0.194758i
\(263\) 0.0942314i 0.00581056i 0.999996 + 0.00290528i \(0.000924780\pi\)
−0.999996 + 0.00290528i \(0.999075\pi\)
\(264\) 0.470896 0.0289816
\(265\) −0.166015 7.04712i −0.0101982 0.432901i
\(266\) −14.0942 −0.864173
\(267\) 12.0942i 0.740155i
\(268\) 8.26025i 0.504575i
\(269\) 23.8836 1.45621 0.728104 0.685467i \(-0.240402\pi\)
0.728104 + 0.685467i \(0.240402\pi\)
\(270\) 2.23545 0.0526623i 0.136045 0.00320493i
\(271\) 24.4102 1.48281 0.741407 0.671055i \(-0.234159\pi\)
0.741407 + 0.671055i \(0.234159\pi\)
\(272\) 7.04712i 0.427294i
\(273\) 12.9418i 0.783273i
\(274\) −9.67293 −0.584363
\(275\) −2.35187 + 0.110871i −0.141823 + 0.00668579i
\(276\) 6.94179 0.417847
\(277\) 7.41269i 0.445385i 0.974889 + 0.222693i \(0.0714846\pi\)
−0.974889 + 0.222693i \(0.928515\pi\)
\(278\) 5.05821i 0.303371i
\(279\) 1.00000 0.0598684
\(280\) −4.47090 + 0.105325i −0.267187 + 0.00629435i
\(281\) −11.8836 −0.708915 −0.354458 0.935072i \(-0.615334\pi\)
−0.354458 + 0.935072i \(0.615334\pi\)
\(282\) 7.04712i 0.419650i
\(283\) 22.9864i 1.36640i 0.730231 + 0.683201i \(0.239413\pi\)
−0.730231 + 0.683201i \(0.760587\pi\)
\(284\) −0.260246 −0.0154428
\(285\) 0.371118 + 15.7535i 0.0219831 + 0.933154i
\(286\) −3.04712 −0.180180
\(287\) 4.00000i 0.236113i
\(288\) 1.00000i 0.0589256i
\(289\) −32.6618 −1.92128
\(290\) −0.365571 15.5180i −0.0214671 0.911249i
\(291\) −3.52910 −0.206880
\(292\) 11.8836i 0.695434i
\(293\) 14.4213i 0.842501i −0.906944 0.421251i \(-0.861591\pi\)
0.906944 0.421251i \(-0.138409\pi\)
\(294\) 3.00000 0.174964
\(295\) −15.9889 + 0.376664i −0.930910 + 0.0219302i
\(296\) −1.78935 −0.104004
\(297\) 0.470896i 0.0273241i
\(298\) 13.4127i 0.776976i
\(299\) −44.9196 −2.59777
\(300\) 0.235448 + 4.99445i 0.0135936 + 0.288355i
\(301\) −0.421299 −0.0242832
\(302\) 19.5676i 1.12599i
\(303\) 0 0
\(304\) 7.04712 0.404180
\(305\) −25.1661 + 0.592860i −1.44101 + 0.0339471i
\(306\) 7.04712 0.402857
\(307\) 24.9418i 1.42350i −0.702431 0.711752i \(-0.747902\pi\)
0.702431 0.711752i \(-0.252098\pi\)
\(308\) 0.941791i 0.0536635i
\(309\) 6.00000 0.341328
\(310\) 0.0526623 + 2.23545i 0.00299102 + 0.126965i
\(311\) −24.4487 −1.38636 −0.693180 0.720765i \(-0.743791\pi\)
−0.693180 + 0.720765i \(0.743791\pi\)
\(312\) 6.47090i 0.366342i
\(313\) 14.1885i 0.801979i −0.916083 0.400990i \(-0.868666\pi\)
0.916083 0.400990i \(-0.131334\pi\)
\(314\) 21.2467 1.19902
\(315\) 0.105325 + 4.47090i 0.00593437 + 0.251906i
\(316\) −1.89468 −0.106584
\(317\) 21.9889i 1.23502i −0.786563 0.617510i \(-0.788141\pi\)
0.786563 0.617510i \(-0.211859\pi\)
\(318\) 3.15244i 0.176780i
\(319\) −3.26886 −0.183021
\(320\) 2.23545 0.0526623i 0.124965 0.00294391i
\(321\) 16.7311 0.933841
\(322\) 13.8836i 0.773702i
\(323\) 49.6618i 2.76326i
\(324\) −1.00000 −0.0555556
\(325\) −1.52356 32.3186i −0.0845118 1.79271i
\(326\) −4.26025 −0.235953
\(327\) 11.1524i 0.616731i
\(328\) 2.00000i 0.110432i
\(329\) 14.0942 0.777040
\(330\) 1.05266 0.0247985i 0.0579472 0.00136511i
\(331\) −15.3631 −0.844432 −0.422216 0.906495i \(-0.638748\pi\)
−0.422216 + 0.906495i \(0.638748\pi\)
\(332\) 11.7783i 0.646416i
\(333\) 1.78935i 0.0980558i
\(334\) −2.00000 −0.109435
\(335\) 0.435004 + 18.4653i 0.0237668 + 1.00887i
\(336\) 2.00000 0.109109
\(337\) 13.9778i 0.761420i 0.924694 + 0.380710i \(0.124320\pi\)
−0.924694 + 0.380710i \(0.875680\pi\)
\(338\) 28.8725i 1.57046i
\(339\) −16.3049 −0.885560
\(340\) 0.371118 + 15.7535i 0.0201267 + 0.854351i
\(341\) 0.470896 0.0255004
\(342\) 7.04712i 0.381064i
\(343\) 20.0000i 1.07990i
\(344\) 0.210649 0.0113574
\(345\) 15.5180 0.365571i 0.835462 0.0196817i
\(346\) 17.9889 0.967090
\(347\) 17.6618i 0.948137i 0.880488 + 0.474069i \(0.157215\pi\)
−0.880488 + 0.474069i \(0.842785\pi\)
\(348\) 6.94179i 0.372119i
\(349\) 7.67293 0.410723 0.205361 0.978686i \(-0.434163\pi\)
0.205361 + 0.978686i \(0.434163\pi\)
\(350\) −9.98891 + 0.470896i −0.533930 + 0.0251704i
\(351\) 6.47090 0.345391
\(352\) 0.470896i 0.0250988i
\(353\) 11.0471i 0.587979i −0.955809 0.293989i \(-0.905017\pi\)
0.955809 0.293989i \(-0.0949830\pi\)
\(354\) 7.15244 0.380148
\(355\) −0.581767 + 0.0137052i −0.0308770 + 0.000727395i
\(356\) 12.0942 0.640993
\(357\) 14.0942i 0.745946i
\(358\) 12.0496i 0.636841i
\(359\) 35.9282 1.89622 0.948109 0.317944i \(-0.102993\pi\)
0.948109 + 0.317944i \(0.102993\pi\)
\(360\) −0.0526623 2.23545i −0.00277555 0.117818i
\(361\) 30.6618 1.61378
\(362\) 13.6729i 0.718633i
\(363\) 10.7783i 0.565712i
\(364\) −12.9418 −0.678334
\(365\) 0.625817 + 26.5651i 0.0327568 + 1.39048i
\(366\) 11.2578 0.588453
\(367\) 19.2963i 1.00726i 0.863920 + 0.503629i \(0.168002\pi\)
−0.863920 + 0.503629i \(0.831998\pi\)
\(368\) 6.94179i 0.361866i
\(369\) −2.00000 −0.104116
\(370\) −4.00000 + 0.0942314i −0.207950 + 0.00489886i
\(371\) −6.30488 −0.327333
\(372\) 1.00000i 0.0518476i
\(373\) 24.0942i 1.24755i 0.781603 + 0.623776i \(0.214402\pi\)
−0.781603 + 0.623776i \(0.785598\pi\)
\(374\) 3.31846 0.171593
\(375\) 0.789351 + 11.1524i 0.0407619 + 0.575910i
\(376\) −7.04712 −0.363427
\(377\) 44.9196i 2.31348i
\(378\) 2.00000i 0.102869i
\(379\) −25.1413 −1.29142 −0.645712 0.763581i \(-0.723439\pi\)
−0.645712 + 0.763581i \(0.723439\pi\)
\(380\) 15.7535 0.371118i 0.808135 0.0190379i
\(381\) 0.941791 0.0482494
\(382\) 14.8254i 0.758532i
\(383\) 22.9196i 1.17114i −0.810623 0.585569i \(-0.800871\pi\)
0.810623 0.585569i \(-0.199129\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0.0495969 + 2.10532i 0.00252769 + 0.107297i
\(386\) −8.04960 −0.409714
\(387\) 0.210649i 0.0107079i
\(388\) 3.52910i 0.179163i
\(389\) 21.0360 1.06657 0.533284 0.845936i \(-0.320958\pi\)
0.533284 + 0.845936i \(0.320958\pi\)
\(390\) 0.340772 + 14.4653i 0.0172557 + 0.732481i
\(391\) 48.9196 2.47397
\(392\) 3.00000i 0.151523i
\(393\) 3.15244i 0.159020i
\(394\) −16.3049 −0.821428
\(395\) −4.23545 + 0.0997780i −0.213109 + 0.00502038i
\(396\) −0.470896 −0.0236634
\(397\) 38.4983i 1.93217i −0.258216 0.966087i \(-0.583135\pi\)
0.258216 0.966087i \(-0.416865\pi\)
\(398\) 3.98891i 0.199946i
\(399\) 14.0942 0.705594
\(400\) 4.99445 0.235448i 0.249723 0.0117724i
\(401\) −12.3545 −0.616953 −0.308477 0.951232i \(-0.599819\pi\)
−0.308477 + 0.951232i \(0.599819\pi\)
\(402\) 8.26025i 0.411984i
\(403\) 6.47090i 0.322338i
\(404\) 0 0
\(405\) −2.23545 + 0.0526623i −0.111080 + 0.00261681i
\(406\) −13.8836 −0.689031
\(407\) 0.842597i 0.0417660i
\(408\) 7.04712i 0.348884i
\(409\) 32.6147 1.61269 0.806347 0.591443i \(-0.201441\pi\)
0.806347 + 0.591443i \(0.201441\pi\)
\(410\) −0.105325 4.47090i −0.00520161 0.220802i
\(411\) 9.67293 0.477131
\(412\) 6.00000i 0.295599i
\(413\) 14.3049i 0.703897i
\(414\) −6.94179 −0.341170
\(415\) −0.620270 26.3297i −0.0304479 1.29247i
\(416\) 6.47090 0.317262
\(417\) 5.05821i 0.247702i
\(418\) 3.31846i 0.162311i
\(419\) −10.9418 −0.534541 −0.267271 0.963621i \(-0.586122\pi\)
−0.267271 + 0.963621i \(0.586122\pi\)
\(420\) 4.47090 0.105325i 0.218157 0.00513932i
\(421\) −22.4213 −1.09275 −0.546374 0.837542i \(-0.683992\pi\)
−0.546374 + 0.837542i \(0.683992\pi\)
\(422\) 2.11642i 0.103026i
\(423\) 7.04712i 0.342642i
\(424\) 3.15244 0.153096
\(425\) 1.65923 + 35.1965i 0.0804844 + 1.70728i
\(426\) 0.260246 0.0126090
\(427\) 22.5155i 1.08960i
\(428\) 16.7311i 0.808730i
\(429\) 3.04712 0.147116
\(430\) 0.470896 0.0110933i 0.0227086 0.000534966i
\(431\) 33.1303 1.59583 0.797914 0.602771i \(-0.205937\pi\)
0.797914 + 0.602771i \(0.205937\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 9.78935i 0.470446i 0.971941 + 0.235223i \(0.0755821\pi\)
−0.971941 + 0.235223i \(0.924418\pi\)
\(434\) 2.00000 0.0960031
\(435\) 0.365571 + 15.5180i 0.0175278 + 0.744032i
\(436\) −11.1524 −0.534105
\(437\) 48.9196i 2.34014i
\(438\) 11.8836i 0.567820i
\(439\) 22.6147 1.07934 0.539671 0.841876i \(-0.318549\pi\)
0.539671 + 0.841876i \(0.318549\pi\)
\(440\) −0.0247985 1.05266i −0.00118222 0.0501837i
\(441\) −3.00000 −0.142857
\(442\) 45.6011i 2.16903i
\(443\) 0.210649i 0.0100083i −0.999987 0.00500413i \(-0.998407\pi\)
0.999987 0.00500413i \(-0.00159287\pi\)
\(444\) 1.78935 0.0849188
\(445\) 27.0360 0.636910i 1.28163 0.0301924i
\(446\) −2.58731 −0.122513
\(447\) 13.4127i 0.634398i
\(448\) 2.00000i 0.0944911i
\(449\) 27.4127 1.29368 0.646842 0.762624i \(-0.276089\pi\)
0.646842 + 0.762624i \(0.276089\pi\)
\(450\) −0.235448 4.99445i −0.0110991 0.235441i
\(451\) −0.941791 −0.0443472
\(452\) 16.3049i 0.766917i
\(453\) 19.5676i 0.919366i
\(454\) −4.94179 −0.231930
\(455\) −28.9307 + 0.681545i −1.35629 + 0.0319513i
\(456\) −7.04712 −0.330011
\(457\) 26.9196i 1.25925i 0.776901 + 0.629623i \(0.216791\pi\)
−0.776901 + 0.629623i \(0.783209\pi\)
\(458\) 11.6791i 0.545727i
\(459\) −7.04712 −0.328931
\(460\) −0.365571 15.5180i −0.0170448 0.723531i
\(461\) 29.0360 1.35234 0.676171 0.736745i \(-0.263638\pi\)
0.676171 + 0.736745i \(0.263638\pi\)
\(462\) 0.941791i 0.0438161i
\(463\) 16.8922i 0.785047i 0.919742 + 0.392523i \(0.128398\pi\)
−0.919742 + 0.392523i \(0.871602\pi\)
\(464\) 6.94179 0.322265
\(465\) −0.0526623 2.23545i −0.00244216 0.103666i
\(466\) 13.7894 0.638779
\(467\) 7.76716i 0.359421i 0.983719 + 0.179711i \(0.0575162\pi\)
−0.983719 + 0.179711i \(0.942484\pi\)
\(468\) 6.47090i 0.299117i
\(469\) 16.5205 0.762845
\(470\) −15.7535 + 0.371118i −0.726653 + 0.0171184i
\(471\) −21.2467 −0.978995
\(472\) 7.15244i 0.329218i
\(473\) 0.0991938i 0.00456094i
\(474\) 1.89468 0.0870253
\(475\) 35.1965 1.65923i 1.61493 0.0761306i
\(476\) 14.0942 0.646008
\(477\) 3.15244i 0.144340i
\(478\) 12.7311i 0.582309i
\(479\) −32.4487 −1.48262 −0.741310 0.671163i \(-0.765795\pi\)
−0.741310 + 0.671163i \(0.765795\pi\)
\(480\) −2.23545 + 0.0526623i −0.102034 + 0.00240370i
\(481\) −11.5787 −0.527943
\(482\) 3.15244i 0.143590i
\(483\) 13.8836i 0.631725i
\(484\) 10.7783 0.489921
\(485\) 0.185851 + 7.88913i 0.00843905 + 0.358227i
\(486\) 1.00000 0.0453609
\(487\) 35.4847i 1.60797i 0.594652 + 0.803983i \(0.297290\pi\)
−0.594652 + 0.803983i \(0.702710\pi\)
\(488\) 11.2578i 0.509615i
\(489\) 4.26025 0.192655
\(490\) −0.157987 6.70634i −0.00713712 0.302962i
\(491\) 25.9828 1.17259 0.586293 0.810099i \(-0.300587\pi\)
0.586293 + 0.810099i \(0.300587\pi\)
\(492\) 2.00000i 0.0901670i
\(493\) 48.9196i 2.20323i
\(494\) 45.6011 2.05169
\(495\) −1.05266 + 0.0247985i −0.0473137 + 0.00111461i
\(496\) −1.00000 −0.0449013
\(497\) 0.520492i 0.0233473i
\(498\) 11.7783i 0.527796i
\(499\) −7.90577 −0.353911 −0.176955 0.984219i \(-0.556625\pi\)
−0.176955 + 0.984219i \(0.556625\pi\)
\(500\) 11.1524 0.789351i 0.498752 0.0353008i
\(501\) 2.00000 0.0893534
\(502\) 3.05821i 0.136495i
\(503\) 9.14135i 0.407593i −0.979013 0.203796i \(-0.934672\pi\)
0.979013 0.203796i \(-0.0653280\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) −3.26886 −0.145318
\(507\) 28.8725i 1.28227i
\(508\) 0.941791i 0.0417852i
\(509\) −28.5155 −1.26393 −0.631964 0.774997i \(-0.717751\pi\)
−0.631964 + 0.774997i \(0.717751\pi\)
\(510\) −0.371118 15.7535i −0.0164334 0.697575i
\(511\) 23.7672 1.05140
\(512\) 1.00000i 0.0441942i
\(513\) 7.04712i 0.311138i
\(514\) 16.0942 0.709886
\(515\) −0.315974 13.4127i −0.0139235 0.591034i
\(516\) −0.210649 −0.00927332
\(517\) 3.31846i 0.145945i
\(518\) 3.57870i 0.157239i
\(519\) −17.9889 −0.789625
\(520\) 14.4653 0.340772i 0.634348 0.0149439i
\(521\) 23.3631 1.02356 0.511778 0.859118i \(-0.328987\pi\)
0.511778 + 0.859118i \(0.328987\pi\)
\(522\) 6.94179i 0.303834i
\(523\) 42.0942i 1.84065i 0.391152 + 0.920326i \(0.372077\pi\)
−0.391152 + 0.920326i \(0.627923\pi\)
\(524\) 3.15244 0.137715
\(525\) 9.98891 0.470896i 0.435952 0.0205516i
\(526\) −0.0942314 −0.00410868
\(527\) 7.04712i 0.306977i
\(528\) 0.470896i 0.0204931i
\(529\) −25.1885 −1.09515
\(530\) 7.04712 0.166015i 0.306107 0.00721122i
\(531\) −7.15244 −0.310389
\(532\) 14.0942i 0.611062i
\(533\) 12.9418i 0.560571i
\(534\) −12.0942 −0.523369
\(535\) −0.881101 37.4016i −0.0380933 1.61701i
\(536\) −8.26025 −0.356788
\(537\) 12.0496i 0.519978i
\(538\) 23.8836i 1.02969i
\(539\) −1.41269 −0.0608487
\(540\) 0.0526623 + 2.23545i 0.00226623 + 0.0961984i
\(541\) −44.5925 −1.91718 −0.958591 0.284785i \(-0.908078\pi\)
−0.958591 + 0.284785i \(0.908078\pi\)
\(542\) 24.4102i 1.04851i
\(543\) 13.6729i 0.586762i
\(544\) −7.04712 −0.302143
\(545\) −24.9307 + 0.587313i −1.06791 + 0.0251577i
\(546\) 12.9418 0.553858
\(547\) 4.52049i 0.193282i 0.995319 + 0.0966411i \(0.0308099\pi\)
−0.995319 + 0.0966411i \(0.969190\pi\)
\(548\) 9.67293i 0.413207i
\(549\) −11.2578 −0.480470
\(550\) −0.110871 2.35187i −0.00472757 0.100284i
\(551\) 48.9196 2.08405
\(552\) 6.94179i 0.295462i
\(553\) 3.78935i 0.161140i
\(554\) −7.41269 −0.314935
\(555\) 4.00000 0.0942314i 0.169791 0.00399990i
\(556\) 5.05821 0.214516
\(557\) 20.5155i 0.869271i 0.900606 + 0.434635i \(0.143123\pi\)
−0.900606 + 0.434635i \(0.856877\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) 1.36309 0.0576525
\(560\) −0.105325 4.47090i −0.00445078 0.188930i
\(561\) −3.31846 −0.140105
\(562\) 11.8836i 0.501279i
\(563\) 34.6147i 1.45884i 0.684068 + 0.729418i \(0.260209\pi\)
−0.684068 + 0.729418i \(0.739791\pi\)
\(564\) 7.04712 0.296737
\(565\) 0.858653 + 36.4487i 0.0361238 + 1.53341i
\(566\) −22.9864 −0.966192
\(567\) 2.00000i 0.0839921i
\(568\) 0.260246i 0.0109197i
\(569\) −7.25163 −0.304004 −0.152002 0.988380i \(-0.548572\pi\)
−0.152002 + 0.988380i \(0.548572\pi\)
\(570\) −15.7535 + 0.371118i −0.659840 + 0.0155444i
\(571\) −0.0942314 −0.00394346 −0.00197173 0.999998i \(-0.500628\pi\)
−0.00197173 + 0.999998i \(0.500628\pi\)
\(572\) 3.04712i 0.127406i
\(573\) 14.8254i 0.619339i
\(574\) −4.00000 −0.166957
\(575\) −1.63443 34.6705i −0.0681604 1.44586i
\(576\) 1.00000 0.0416667
\(577\) 9.41269i 0.391855i −0.980618 0.195928i \(-0.937228\pi\)
0.980618 0.195928i \(-0.0627718\pi\)
\(578\) 32.6618i 1.35855i
\(579\) 8.04960 0.334530
\(580\) 15.5180 0.365571i 0.644350 0.0151795i
\(581\) −23.5565 −0.977289
\(582\) 3.52910i 0.146286i
\(583\) 1.48447i 0.0614805i
\(584\) −11.8836 −0.491746
\(585\) −0.340772 14.4653i −0.0140892 0.598069i
\(586\) 14.4213 0.595738
\(587\) 42.2938i 1.74565i −0.488032 0.872826i \(-0.662285\pi\)
0.488032 0.872826i \(-0.337715\pi\)
\(588\) 3.00000i 0.123718i
\(589\) −7.04712 −0.290371
\(590\) −0.376664 15.9889i −0.0155070 0.658253i
\(591\) 16.3049 0.670693
\(592\) 1.78935i 0.0735419i
\(593\) 5.88854i 0.241814i −0.992664 0.120907i \(-0.961420\pi\)
0.992664 0.120907i \(-0.0385802\pi\)
\(594\) 0.470896 0.0193211
\(595\) 31.5069 0.742235i 1.29166 0.0304287i
\(596\) 13.4127 0.549405
\(597\) 3.98891i 0.163255i
\(598\) 44.9196i 1.83690i
\(599\) 0.780739 0.0319001 0.0159501 0.999873i \(-0.494923\pi\)
0.0159501 + 0.999873i \(0.494923\pi\)
\(600\) −4.99445 + 0.235448i −0.203898 + 0.00961211i
\(601\) −25.5787 −1.04338 −0.521688 0.853136i \(-0.674698\pi\)
−0.521688 + 0.853136i \(0.674698\pi\)
\(602\) 0.421299i 0.0171708i
\(603\) 8.26025i 0.336383i
\(604\) −19.5676 −0.796195
\(605\) 24.0942 0.567608i 0.979570 0.0230766i
\(606\) 0 0
\(607\) 7.46228i 0.302885i −0.988466 0.151442i \(-0.951608\pi\)
0.988466 0.151442i \(-0.0483918\pi\)
\(608\) 7.04712i 0.285798i
\(609\) 13.8836 0.562591
\(610\) −0.592860 25.1661i −0.0240042 1.01895i
\(611\) −45.6011 −1.84483
\(612\) 7.04712i 0.284863i
\(613\) 4.68651i 0.189286i −0.995511 0.0946431i \(-0.969829\pi\)
0.995511 0.0946431i \(-0.0301710\pi\)
\(614\) 24.9418 1.00657
\(615\) 0.105325 + 4.47090i 0.00424710 + 0.180284i
\(616\) −0.941791 −0.0379458
\(617\) 7.69512i 0.309794i −0.987931 0.154897i \(-0.950495\pi\)
0.987931 0.154897i \(-0.0495045\pi\)
\(618\) 6.00000i 0.241355i
\(619\) −33.7894 −1.35811 −0.679054 0.734088i \(-0.737610\pi\)
−0.679054 + 0.734088i \(0.737610\pi\)
\(620\) −2.23545 + 0.0526623i −0.0897777 + 0.00211497i
\(621\) 6.94179 0.278564
\(622\) 24.4487i 0.980304i
\(623\) 24.1885i 0.969090i
\(624\) −6.47090 −0.259043
\(625\) 24.8891 2.35187i 0.995565 0.0940746i
\(626\) 14.1885 0.567085
\(627\) 3.31846i 0.132526i
\(628\) 21.2467i 0.847835i
\(629\) 12.6098 0.502784
\(630\) −4.47090 + 0.105325i −0.178125 + 0.00419623i
\(631\) −34.3049 −1.36566 −0.682828 0.730579i \(-0.739250\pi\)
−0.682828 + 0.730579i \(0.739250\pi\)
\(632\) 1.89468i 0.0753661i
\(633\) 2.11642i 0.0841201i
\(634\) 21.9889 0.873291
\(635\) −0.0495969 2.10532i −0.00196819 0.0835473i
\(636\) −3.15244 −0.125002
\(637\) 19.4127i 0.769159i
\(638\) 3.26886i 0.129415i
\(639\) −0.260246 −0.0102952
\(640\) 0.0526623 + 2.23545i 0.00208166 + 0.0883638i
\(641\) 3.83399 0.151433 0.0757167 0.997129i \(-0.475876\pi\)
0.0757167 + 0.997129i \(0.475876\pi\)
\(642\) 16.7311i 0.660325i
\(643\) 12.9640i 0.511249i 0.966776 + 0.255625i \(0.0822811\pi\)
−0.966776 + 0.255625i \(0.917719\pi\)
\(644\) −13.8836 −0.547090
\(645\) −0.470896 + 0.0110933i −0.0185415 + 0.000436798i
\(646\) −49.6618 −1.95392
\(647\) 29.3459i 1.15371i −0.816848 0.576853i \(-0.804281\pi\)
0.816848 0.576853i \(-0.195719\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −3.36805 −0.132208
\(650\) 32.3186 1.52356i 1.26764 0.0597589i
\(651\) −2.00000 −0.0783862
\(652\) 4.26025i 0.166844i
\(653\) 4.52662i 0.177140i −0.996070 0.0885702i \(-0.971770\pi\)
0.996070 0.0885702i \(-0.0282298\pi\)
\(654\) 11.1524 0.436095
\(655\) 7.04712 0.166015i 0.275354 0.00648674i
\(656\) 2.00000 0.0780869
\(657\) 11.8836i 0.463623i
\(658\) 14.0942i 0.549450i
\(659\) 15.8836 0.618737 0.309368 0.950942i \(-0.399882\pi\)
0.309368 + 0.950942i \(0.399882\pi\)
\(660\) 0.0247985 + 1.05266i 0.000965278 + 0.0409748i
\(661\) 12.8254 0.498849 0.249425 0.968394i \(-0.419759\pi\)
0.249425 + 0.968394i \(0.419759\pi\)
\(662\) 15.3631i 0.597103i
\(663\) 45.6011i 1.77100i
\(664\) 11.7783 0.457085
\(665\) −0.742235 31.5069i −0.0287826 1.22179i
\(666\) −1.78935 −0.0693359
\(667\) 48.1885i 1.86586i
\(668\) 2.00000i 0.0773823i
\(669\) 2.58731 0.100031
\(670\) −18.4653 + 0.435004i −0.713379 + 0.0168057i
\(671\) −5.30123 −0.204652
\(672\) 2.00000i 0.0771517i
\(673\) 27.9828i 1.07866i 0.842096 + 0.539328i \(0.181322\pi\)
−0.842096 + 0.539328i \(0.818678\pi\)
\(674\) −13.9778 −0.538405
\(675\) 0.235448 + 4.99445i 0.00906239 + 0.192237i
\(676\) 28.8725 1.11048
\(677\) 27.6729i 1.06356i 0.846883 + 0.531779i \(0.178476\pi\)
−0.846883 + 0.531779i \(0.821524\pi\)
\(678\) 16.3049i 0.626185i
\(679\) 7.05821 0.270869
\(680\) −15.7535 + 0.371118i −0.604118 + 0.0142317i
\(681\) 4.94179 0.189370
\(682\) 0.470896i 0.0180315i
\(683\) 8.18846i 0.313323i −0.987652 0.156661i \(-0.949927\pi\)
0.987652 0.156661i \(-0.0500731\pi\)
\(684\) 7.04712 0.269453
\(685\) −0.509399 21.6233i −0.0194631 0.826185i
\(686\) −20.0000 −0.763604
\(687\) 11.6791i 0.445584i
\(688\) 0.210649i 0.00803093i
\(689\) 20.3991 0.777144
\(690\) 0.365571 + 15.5180i 0.0139170 + 0.590761i
\(691\) 22.4152 0.852713 0.426357 0.904555i \(-0.359797\pi\)
0.426357 + 0.904555i \(0.359797\pi\)
\(692\) 17.9889i 0.683836i
\(693\) 0.941791i 0.0357757i
\(694\) −17.6618 −0.670434
\(695\) 11.3074 0.266377i 0.428913 0.0101043i
\(696\) −6.94179 −0.263128
\(697\) 14.0942i 0.533857i
\(698\) 7.67293i 0.290425i
\(699\) −13.7894 −0.521561
\(700\) −0.470896 9.98891i −0.0177982 0.377545i
\(701\) −20.4709 −0.773175 −0.386588 0.922253i \(-0.626346\pi\)
−0.386588 + 0.922253i \(0.626346\pi\)
\(702\) 6.47090i 0.244228i
\(703\) 12.6098i 0.475586i
\(704\) 0.470896 0.0177475
\(705\) 15.7535 0.371118i 0.593310 0.0139771i
\(706\) 11.0471 0.415764
\(707\) 0 0
\(708\) 7.15244i 0.268805i
\(709\) 48.7200 1.82972 0.914860 0.403771i \(-0.132301\pi\)
0.914860 + 0.403771i \(0.132301\pi\)
\(710\) −0.0137052 0.581767i −0.000514346 0.0218333i
\(711\) −1.89468 −0.0710559
\(712\) 12.0942i 0.453250i
\(713\) 6.94179i 0.259972i
\(714\) −14.0942 −0.527463
\(715\) −0.160468 6.81167i −0.00600117 0.254742i
\(716\) −12.0496 −0.450315
\(717\) 12.7311i 0.475453i
\(718\) 35.9282i 1.34083i
\(719\) −50.8032 −1.89464 −0.947320 0.320290i \(-0.896220\pi\)
−0.947320 + 0.320290i \(0.896220\pi\)
\(720\) 2.23545 0.0526623i 0.0833102 0.00196261i
\(721\) −12.0000 −0.446903
\(722\) 30.6618i 1.14112i
\(723\) 3.15244i 0.117241i
\(724\) 13.6729 0.508151
\(725\) 34.6705 1.63443i 1.28763 0.0607012i
\(726\) −10.7783 −0.400019
\(727\) 33.1352i 1.22892i 0.788949 + 0.614459i \(0.210625\pi\)
−0.788949 + 0.614459i \(0.789375\pi\)
\(728\) 12.9418i 0.479655i
\(729\) −1.00000 −0.0370370
\(730\) −26.5651 + 0.625817i −0.983219 + 0.0231625i
\(731\) −1.48447 −0.0549051
\(732\) 11.2578i 0.416099i
\(733\) 2.96398i 0.109477i −0.998501 0.0547385i \(-0.982567\pi\)
0.998501 0.0547385i \(-0.0174325\pi\)
\(734\) −19.2963 −0.712238
\(735\) 0.157987 + 6.70634i 0.00582744 + 0.247367i
\(736\) 6.94179 0.255878
\(737\) 3.88971i 0.143279i
\(738\) 2.00000i 0.0736210i
\(739\) 6.52049 0.239860 0.119930 0.992782i \(-0.461733\pi\)
0.119930 + 0.992782i \(0.461733\pi\)
\(740\) −0.0942314 4.00000i −0.00346401 0.147043i
\(741\) −45.6011 −1.67520
\(742\) 6.30488i 0.231459i
\(743\) 20.0942i 0.737186i 0.929591 + 0.368593i \(0.120160\pi\)
−0.929591 + 0.368593i \(0.879840\pi\)
\(744\) 1.00000 0.0366618
\(745\) 29.9834 0.706343i 1.09851 0.0258784i
\(746\) −24.0942 −0.882152
\(747\) 11.7783i 0.430944i
\(748\) 3.31846i 0.121335i
\(749\) −33.4623 −1.22269
\(750\) −11.1524 + 0.789351i −0.407230 + 0.0288230i
\(751\) −46.0942 −1.68200 −0.841001 0.541033i \(-0.818033\pi\)
−0.841001 + 0.541033i \(0.818033\pi\)
\(752\) 7.04712i 0.256982i
\(753\) 3.05821i 0.111447i
\(754\) 44.9196 1.63588
\(755\) −43.7424 + 1.03048i −1.59195 + 0.0375029i
\(756\) 2.00000 0.0727393
\(757\) 28.2827i 1.02795i −0.857805 0.513976i \(-0.828172\pi\)
0.857805 0.513976i \(-0.171828\pi\)
\(758\) 25.1413i 0.913175i
\(759\) 3.26886 0.118652
\(760\) 0.371118 + 15.7535i 0.0134618 + 0.571438i
\(761\) −41.0634 −1.48855 −0.744274 0.667874i \(-0.767204\pi\)
−0.744274 + 0.667874i \(0.767204\pi\)
\(762\) 0.941791i 0.0341175i
\(763\) 22.3049i 0.807491i
\(764\) 14.8254 0.536363
\(765\) 0.371118 + 15.7535i 0.0134178 + 0.569568i
\(766\) 22.9196 0.828119
\(767\) 46.2827i 1.67117i
\(768\) 1.00000i 0.0360844i
\(769\) 32.4933 1.17174 0.585870 0.810405i \(-0.300753\pi\)
0.585870 + 0.810405i \(0.300753\pi\)
\(770\) −2.10532 + 0.0495969i −0.0758706 + 0.00178735i
\(771\) −16.0942 −0.579620
\(772\) 8.04960i 0.289711i
\(773\) 50.3991i 1.81273i −0.422495 0.906365i \(-0.638846\pi\)
0.422495 0.906365i \(-0.361154\pi\)
\(774\) 0.210649 0.00757163
\(775\) −4.99445 + 0.235448i −0.179406 + 0.00845753i
\(776\) −3.52910 −0.126687
\(777\) 3.57870i 0.128385i
\(778\) 21.0360i 0.754178i
\(779\) 14.0942 0.504978
\(780\) −14.4653 + 0.340772i −0.517943 + 0.0122016i
\(781\) −0.122549