Properties

Label 930.2.d.i.559.3
Level $930$
Weight $2$
Character 930.559
Analytic conductor $7.426$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(559,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.11669056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 7x^{4} + 8x^{3} - x^{2} + 54x + 58 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.3
Root \(1.60509 - 2.15264i\) of defining polynomial
Character \(\chi\) \(=\) 930.559
Dual form 930.2.d.i.559.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +(0.605092 - 2.15264i) q^{5} +1.00000 q^{6} -2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} +(0.605092 - 2.15264i) q^{5} +1.00000 q^{6} -2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +(-2.15264 - 0.605092i) q^{10} +5.21018 q^{11} -1.00000i q^{12} +0.789816i q^{13} -2.00000 q^{14} +(2.15264 + 0.605092i) q^{15} +1.00000 q^{16} +0.115086i q^{17} +1.00000i q^{18} -0.115086 q^{19} +(-0.605092 + 2.15264i) q^{20} +2.00000 q^{21} -5.21018i q^{22} -4.42037i q^{23} -1.00000 q^{24} +(-4.26773 - 2.60509i) q^{25} +0.789816 q^{26} -1.00000i q^{27} +2.00000i q^{28} -4.42037 q^{29} +(0.605092 - 2.15264i) q^{30} -1.00000 q^{31} -1.00000i q^{32} +5.21018i q^{33} +0.115086 q^{34} +(-4.30528 - 1.21018i) q^{35} +1.00000 q^{36} -6.61056i q^{37} +0.115086i q^{38} -0.789816 q^{39} +(2.15264 + 0.605092i) q^{40} +2.00000 q^{41} -2.00000i q^{42} -8.61056i q^{43} -5.21018 q^{44} +(-0.605092 + 2.15264i) q^{45} -4.42037 q^{46} -0.115086i q^{47} +1.00000i q^{48} +3.00000 q^{49} +(-2.60509 + 4.26773i) q^{50} -0.115086 q^{51} -0.789816i q^{52} -0.190196i q^{53} -1.00000 q^{54} +(3.15264 - 11.2157i) q^{55} +2.00000 q^{56} -0.115086i q^{57} +4.42037i q^{58} +4.19020 q^{59} +(-2.15264 - 0.605092i) q^{60} +12.4955 q^{61} +1.00000i q^{62} +2.00000i q^{63} -1.00000 q^{64} +(1.70019 + 0.477911i) q^{65} +5.21018 q^{66} -5.82075i q^{67} -0.115086i q^{68} +4.42037 q^{69} +(-1.21018 + 4.30528i) q^{70} -13.8207 q^{71} -1.00000i q^{72} -10.8407i q^{73} -6.61056 q^{74} +(2.60509 - 4.26773i) q^{75} +0.115086 q^{76} -10.4204i q^{77} +0.789816i q^{78} -2.30528 q^{79} +(0.605092 - 2.15264i) q^{80} +1.00000 q^{81} -2.00000i q^{82} +15.1460i q^{83} -2.00000 q^{84} +(0.247739 + 0.0696377i) q^{85} -8.61056 q^{86} -4.42037i q^{87} +5.21018i q^{88} +2.23017 q^{89} +(2.15264 + 0.605092i) q^{90} +1.57963 q^{91} +4.42037i q^{92} -1.00000i q^{93} -0.115086 q^{94} +(-0.0696377 + 0.247739i) q^{95} +1.00000 q^{96} +9.21018i q^{97} -3.00000i q^{98} -5.21018 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 4 q^{5} + 6 q^{6} - 6 q^{9} + 16 q^{11} - 12 q^{14} + 6 q^{16} + 4 q^{19} + 4 q^{20} + 12 q^{21} - 6 q^{24} - 8 q^{25} + 20 q^{26} + 4 q^{29} - 4 q^{30} - 6 q^{31} - 4 q^{34} + 6 q^{36} - 20 q^{39} + 12 q^{41} - 16 q^{44} + 4 q^{45} + 4 q^{46} + 18 q^{49} - 8 q^{50} + 4 q^{51} - 6 q^{54} + 6 q^{55} + 12 q^{56} + 4 q^{59} + 28 q^{61} - 6 q^{64} - 8 q^{65} + 16 q^{66} - 4 q^{69} + 8 q^{70} - 16 q^{71} + 12 q^{74} + 8 q^{75} - 4 q^{76} + 12 q^{79} - 4 q^{80} + 6 q^{81} - 12 q^{84} - 22 q^{85} + 4 q^{89} + 40 q^{91} + 4 q^{94} - 28 q^{95} + 6 q^{96} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0.605092 2.15264i 0.270605 0.962690i
\(6\) 1.00000 0.408248
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) −2.15264 0.605092i −0.680725 0.191347i
\(11\) 5.21018 1.57093 0.785465 0.618906i \(-0.212424\pi\)
0.785465 + 0.618906i \(0.212424\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 0.789816i 0.219056i 0.993984 + 0.109528i \(0.0349339\pi\)
−0.993984 + 0.109528i \(0.965066\pi\)
\(14\) −2.00000 −0.534522
\(15\) 2.15264 + 0.605092i 0.555810 + 0.156234i
\(16\) 1.00000 0.250000
\(17\) 0.115086i 0.0279125i 0.999903 + 0.0139562i \(0.00444255\pi\)
−0.999903 + 0.0139562i \(0.995557\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.115086 −0.0264026 −0.0132013 0.999913i \(-0.504202\pi\)
−0.0132013 + 0.999913i \(0.504202\pi\)
\(20\) −0.605092 + 2.15264i −0.135303 + 0.481345i
\(21\) 2.00000 0.436436
\(22\) 5.21018i 1.11081i
\(23\) 4.42037i 0.921710i −0.887475 0.460855i \(-0.847543\pi\)
0.887475 0.460855i \(-0.152457\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.26773 2.60509i −0.853545 0.521018i
\(26\) 0.789816 0.154896
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) −4.42037 −0.820842 −0.410421 0.911896i \(-0.634618\pi\)
−0.410421 + 0.911896i \(0.634618\pi\)
\(30\) 0.605092 2.15264i 0.110474 0.393017i
\(31\) −1.00000 −0.179605
\(32\) 1.00000i 0.176777i
\(33\) 5.21018i 0.906977i
\(34\) 0.115086 0.0197371
\(35\) −4.30528 1.21018i −0.727726 0.204558i
\(36\) 1.00000 0.166667
\(37\) 6.61056i 1.08677i −0.839484 0.543385i \(-0.817142\pi\)
0.839484 0.543385i \(-0.182858\pi\)
\(38\) 0.115086i 0.0186694i
\(39\) −0.789816 −0.126472
\(40\) 2.15264 + 0.605092i 0.340362 + 0.0956735i
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 2.00000i 0.308607i
\(43\) 8.61056i 1.31310i −0.754283 0.656549i \(-0.772015\pi\)
0.754283 0.656549i \(-0.227985\pi\)
\(44\) −5.21018 −0.785465
\(45\) −0.605092 + 2.15264i −0.0902018 + 0.320897i
\(46\) −4.42037 −0.651748
\(47\) 0.115086i 0.0167870i −0.999965 0.00839352i \(-0.997328\pi\)
0.999965 0.00839352i \(-0.00267177\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) −2.60509 + 4.26773i −0.368416 + 0.603548i
\(51\) −0.115086 −0.0161153
\(52\) 0.789816i 0.109528i
\(53\) 0.190196i 0.0261254i −0.999915 0.0130627i \(-0.995842\pi\)
0.999915 0.0130627i \(-0.00415811\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.15264 11.2157i 0.425102 1.51232i
\(56\) 2.00000 0.267261
\(57\) 0.115086i 0.0152435i
\(58\) 4.42037i 0.580423i
\(59\) 4.19020 0.545517 0.272759 0.962083i \(-0.412064\pi\)
0.272759 + 0.962083i \(0.412064\pi\)
\(60\) −2.15264 0.605092i −0.277905 0.0781170i
\(61\) 12.4955 1.59988 0.799941 0.600079i \(-0.204864\pi\)
0.799941 + 0.600079i \(0.204864\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 2.00000i 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 1.70019 + 0.477911i 0.210883 + 0.0592776i
\(66\) 5.21018 0.641329
\(67\) 5.82075i 0.711118i −0.934654 0.355559i \(-0.884291\pi\)
0.934654 0.355559i \(-0.115709\pi\)
\(68\) 0.115086i 0.0139562i
\(69\) 4.42037 0.532150
\(70\) −1.21018 + 4.30528i −0.144645 + 0.514580i
\(71\) −13.8207 −1.64022 −0.820111 0.572205i \(-0.806088\pi\)
−0.820111 + 0.572205i \(0.806088\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 10.8407i 1.26881i −0.773000 0.634406i \(-0.781245\pi\)
0.773000 0.634406i \(-0.218755\pi\)
\(74\) −6.61056 −0.768462
\(75\) 2.60509 4.26773i 0.300810 0.492795i
\(76\) 0.115086 0.0132013
\(77\) 10.4204i 1.18751i
\(78\) 0.789816i 0.0894290i
\(79\) −2.30528 −0.259365 −0.129682 0.991556i \(-0.541396\pi\)
−0.129682 + 0.991556i \(0.541396\pi\)
\(80\) 0.605092 2.15264i 0.0676513 0.240673i
\(81\) 1.00000 0.111111
\(82\) 2.00000i 0.220863i
\(83\) 15.1460i 1.66249i 0.555905 + 0.831246i \(0.312372\pi\)
−0.555905 + 0.831246i \(0.687628\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0.247739 + 0.0696377i 0.0268711 + 0.00755327i
\(86\) −8.61056 −0.928501
\(87\) 4.42037i 0.473913i
\(88\) 5.21018i 0.555407i
\(89\) 2.23017 0.236398 0.118199 0.992990i \(-0.462288\pi\)
0.118199 + 0.992990i \(0.462288\pi\)
\(90\) 2.15264 + 0.605092i 0.226908 + 0.0637823i
\(91\) 1.57963 0.165590
\(92\) 4.42037i 0.460855i
\(93\) 1.00000i 0.103695i
\(94\) −0.115086 −0.0118702
\(95\) −0.0696377 + 0.247739i −0.00714468 + 0.0254175i
\(96\) 1.00000 0.102062
\(97\) 9.21018i 0.935153i 0.883953 + 0.467576i \(0.154873\pi\)
−0.883953 + 0.467576i \(0.845127\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −5.21018 −0.523643
\(100\) 4.26773 + 2.60509i 0.426773 + 0.260509i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0.115086i 0.0113952i
\(103\) 6.00000i 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) −0.789816 −0.0774478
\(105\) 1.21018 4.30528i 0.118102 0.420153i
\(106\) −0.190196 −0.0184735
\(107\) 3.03093i 0.293011i 0.989210 + 0.146506i \(0.0468027\pi\)
−0.989210 + 0.146506i \(0.953197\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 8.19020 0.784479 0.392239 0.919863i \(-0.371701\pi\)
0.392239 + 0.919863i \(0.371701\pi\)
\(110\) −11.2157 3.15264i −1.06937 0.300593i
\(111\) 6.61056 0.627447
\(112\) 2.00000i 0.188982i
\(113\) 10.3804i 0.976505i 0.872702 + 0.488253i \(0.162366\pi\)
−0.872702 + 0.488253i \(0.837634\pi\)
\(114\) −0.115086 −0.0107788
\(115\) −9.51547 2.67473i −0.887322 0.249420i
\(116\) 4.42037 0.410421
\(117\) 0.789816i 0.0730185i
\(118\) 4.19020i 0.385739i
\(119\) 0.230172 0.0210999
\(120\) −0.605092 + 2.15264i −0.0552371 + 0.196508i
\(121\) 16.1460 1.46782
\(122\) 12.4955i 1.13129i
\(123\) 2.00000i 0.180334i
\(124\) 1.00000 0.0898027
\(125\) −8.19020 + 7.61056i −0.732553 + 0.680710i
\(126\) 2.00000 0.178174
\(127\) 10.4204i 0.924658i 0.886708 + 0.462329i \(0.152986\pi\)
−0.886708 + 0.462329i \(0.847014\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.61056 0.758118
\(130\) 0.477911 1.70019i 0.0419156 0.149117i
\(131\) −0.190196 −0.0166175 −0.00830875 0.999965i \(-0.502645\pi\)
−0.00830875 + 0.999965i \(0.502645\pi\)
\(132\) 5.21018i 0.453488i
\(133\) 0.230172i 0.0199585i
\(134\) −5.82075 −0.502836
\(135\) −2.15264 0.605092i −0.185270 0.0520780i
\(136\) −0.115086 −0.00986855
\(137\) 21.4513i 1.83271i 0.400369 + 0.916354i \(0.368882\pi\)
−0.400369 + 0.916354i \(0.631118\pi\)
\(138\) 4.42037i 0.376287i
\(139\) −16.4204 −1.39276 −0.696379 0.717674i \(-0.745207\pi\)
−0.696379 + 0.717674i \(0.745207\pi\)
\(140\) 4.30528 + 1.21018i 0.363863 + 0.102279i
\(141\) 0.115086 0.00969200
\(142\) 13.8207i 1.15981i
\(143\) 4.11509i 0.344121i
\(144\) −1.00000 −0.0833333
\(145\) −2.67473 + 9.51547i −0.222124 + 0.790216i
\(146\) −10.8407 −0.897186
\(147\) 3.00000i 0.247436i
\(148\) 6.61056i 0.543385i
\(149\) 3.63055 0.297426 0.148713 0.988880i \(-0.452487\pi\)
0.148713 + 0.988880i \(0.452487\pi\)
\(150\) −4.26773 2.60509i −0.348458 0.212705i
\(151\) −15.7566 −1.28225 −0.641126 0.767435i \(-0.721533\pi\)
−0.641126 + 0.767435i \(0.721533\pi\)
\(152\) 0.115086i 0.00933472i
\(153\) 0.115086i 0.00930416i
\(154\) −10.4204 −0.839697
\(155\) −0.605092 + 2.15264i −0.0486022 + 0.172904i
\(156\) 0.789816 0.0632359
\(157\) 3.96002i 0.316044i 0.987436 + 0.158022i \(0.0505117\pi\)
−0.987436 + 0.158022i \(0.949488\pi\)
\(158\) 2.30528i 0.183398i
\(159\) 0.190196 0.0150835
\(160\) −2.15264 0.605092i −0.170181 0.0478367i
\(161\) −8.84074 −0.696748
\(162\) 1.00000i 0.0785674i
\(163\) 9.82075i 0.769220i 0.923079 + 0.384610i \(0.125664\pi\)
−0.923079 + 0.384610i \(0.874336\pi\)
\(164\) −2.00000 −0.156174
\(165\) 11.2157 + 3.15264i 0.873138 + 0.245433i
\(166\) 15.1460 1.17556
\(167\) 2.00000i 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 12.3762 0.952015
\(170\) 0.0696377 0.247739i 0.00534097 0.0190007i
\(171\) 0.115086 0.00880085
\(172\) 8.61056i 0.656549i
\(173\) 0.535454i 0.0407098i −0.999793 0.0203549i \(-0.993520\pi\)
0.999793 0.0203549i \(-0.00647962\pi\)
\(174\) −4.42037 −0.335107
\(175\) −5.21018 + 8.53545i −0.393853 + 0.645220i
\(176\) 5.21018 0.392732
\(177\) 4.19020i 0.314954i
\(178\) 2.23017i 0.167158i
\(179\) −10.4313 −0.779673 −0.389836 0.920884i \(-0.627468\pi\)
−0.389836 + 0.920884i \(0.627468\pi\)
\(180\) 0.605092 2.15264i 0.0451009 0.160448i
\(181\) 17.4513 1.29714 0.648572 0.761153i \(-0.275366\pi\)
0.648572 + 0.761153i \(0.275366\pi\)
\(182\) 1.57963i 0.117090i
\(183\) 12.4955i 0.923692i
\(184\) 4.42037 0.325874
\(185\) −14.2302 4.00000i −1.04622 0.294086i
\(186\) −1.00000 −0.0733236
\(187\) 0.599620i 0.0438485i
\(188\) 0.115086i 0.00839352i
\(189\) −2.00000 −0.145479
\(190\) 0.247739 + 0.0696377i 0.0179729 + 0.00505205i
\(191\) 19.2611 1.39368 0.696842 0.717224i \(-0.254588\pi\)
0.696842 + 0.717224i \(0.254588\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 14.4313i 1.03879i 0.854535 + 0.519394i \(0.173842\pi\)
−0.854535 + 0.519394i \(0.826158\pi\)
\(194\) 9.21018 0.661253
\(195\) −0.477911 + 1.70019i −0.0342239 + 0.121753i
\(196\) −3.00000 −0.214286
\(197\) 10.3804i 0.739572i −0.929117 0.369786i \(-0.879431\pi\)
0.929117 0.369786i \(-0.120569\pi\)
\(198\) 5.21018i 0.370272i
\(199\) −14.5355 −1.03039 −0.515196 0.857073i \(-0.672281\pi\)
−0.515196 + 0.857073i \(0.672281\pi\)
\(200\) 2.60509 4.26773i 0.184208 0.301774i
\(201\) 5.82075 0.410564
\(202\) 0 0
\(203\) 8.84074i 0.620498i
\(204\) 0.115086 0.00805764
\(205\) 1.21018 4.30528i 0.0845229 0.300694i
\(206\) −6.00000 −0.418040
\(207\) 4.42037i 0.307237i
\(208\) 0.789816i 0.0547639i
\(209\) −0.599620 −0.0414766
\(210\) −4.30528 1.21018i −0.297093 0.0835106i
\(211\) 24.8407 1.71011 0.855053 0.518540i \(-0.173524\pi\)
0.855053 + 0.518540i \(0.173524\pi\)
\(212\) 0.190196i 0.0130627i
\(213\) 13.8207i 0.946982i
\(214\) 3.03093 0.207190
\(215\) −18.5355 5.21018i −1.26411 0.355332i
\(216\) 1.00000 0.0680414
\(217\) 2.00000i 0.135769i
\(218\) 8.19020i 0.554710i
\(219\) 10.8407 0.732549
\(220\) −3.15264 + 11.2157i −0.212551 + 0.756159i
\(221\) −0.0908968 −0.00611438
\(222\) 6.61056i 0.443672i
\(223\) 19.6306i 1.31456i −0.753647 0.657280i \(-0.771707\pi\)
0.753647 0.657280i \(-0.228293\pi\)
\(224\) −2.00000 −0.133631
\(225\) 4.26773 + 2.60509i 0.284515 + 0.173673i
\(226\) 10.3804 0.690493
\(227\) 6.42037i 0.426135i 0.977038 + 0.213067i \(0.0683454\pi\)
−0.977038 + 0.213067i \(0.931655\pi\)
\(228\) 0.115086i 0.00762176i
\(229\) 29.7166 1.96373 0.981864 0.189585i \(-0.0607142\pi\)
0.981864 + 0.189585i \(0.0607142\pi\)
\(230\) −2.67473 + 9.51547i −0.176366 + 0.627431i
\(231\) 10.4204 0.685610
\(232\) 4.42037i 0.290211i
\(233\) 5.38944i 0.353074i 0.984294 + 0.176537i \(0.0564895\pi\)
−0.984294 + 0.176537i \(0.943511\pi\)
\(234\) −0.789816 −0.0516319
\(235\) −0.247739 0.0696377i −0.0161607 0.00454266i
\(236\) −4.19020 −0.272759
\(237\) 2.30528i 0.149744i
\(238\) 0.230172i 0.0149198i
\(239\) −7.03093 −0.454793 −0.227397 0.973802i \(-0.573021\pi\)
−0.227397 + 0.973802i \(0.573021\pi\)
\(240\) 2.15264 + 0.605092i 0.138952 + 0.0390585i
\(241\) −0.190196 −0.0122516 −0.00612580 0.999981i \(-0.501950\pi\)
−0.00612580 + 0.999981i \(0.501950\pi\)
\(242\) 16.1460i 1.03791i
\(243\) 1.00000i 0.0641500i
\(244\) −12.4955 −0.799941
\(245\) 1.81528 6.45792i 0.115974 0.412582i
\(246\) 2.00000 0.127515
\(247\) 0.0908968i 0.00578363i
\(248\) 1.00000i 0.0635001i
\(249\) −15.1460 −0.959840
\(250\) 7.61056 + 8.19020i 0.481334 + 0.517993i
\(251\) 14.4204 0.910206 0.455103 0.890439i \(-0.349603\pi\)
0.455103 + 0.890439i \(0.349603\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 23.0309i 1.44794i
\(254\) 10.4204 0.653832
\(255\) −0.0696377 + 0.247739i −0.00436088 + 0.0155140i
\(256\) 1.00000 0.0625000
\(257\) 1.76983i 0.110399i 0.998475 + 0.0551994i \(0.0175795\pi\)
−0.998475 + 0.0551994i \(0.982421\pi\)
\(258\) 8.61056i 0.536070i
\(259\) −13.2211 −0.821521
\(260\) −1.70019 0.477911i −0.105441 0.0296388i
\(261\) 4.42037 0.273614
\(262\) 0.190196i 0.0117504i
\(263\) 14.2302i 0.877470i 0.898616 + 0.438735i \(0.144573\pi\)
−0.898616 + 0.438735i \(0.855427\pi\)
\(264\) −5.21018 −0.320665
\(265\) −0.409424 0.115086i −0.0251507 0.00706968i
\(266\) 0.230172 0.0141128
\(267\) 2.23017i 0.136484i
\(268\) 5.82075i 0.355559i
\(269\) 1.15926 0.0706815 0.0353408 0.999375i \(-0.488748\pi\)
0.0353408 + 0.999375i \(0.488748\pi\)
\(270\) −0.605092 + 2.15264i −0.0368247 + 0.131006i
\(271\) 22.6857 1.37806 0.689028 0.724734i \(-0.258038\pi\)
0.689028 + 0.724734i \(0.258038\pi\)
\(272\) 0.115086i 0.00697812i
\(273\) 1.57963i 0.0956037i
\(274\) 21.4513 1.29592
\(275\) −22.2356 13.5730i −1.34086 0.818483i
\(276\) −4.42037 −0.266075
\(277\) 9.63055i 0.578644i 0.957232 + 0.289322i \(0.0934298\pi\)
−0.957232 + 0.289322i \(0.906570\pi\)
\(278\) 16.4204i 0.984828i
\(279\) 1.00000 0.0598684
\(280\) 1.21018 4.30528i 0.0723223 0.257290i
\(281\) 10.8407 0.646704 0.323352 0.946279i \(-0.395190\pi\)
0.323352 + 0.946279i \(0.395190\pi\)
\(282\) 0.115086i 0.00685328i
\(283\) 19.7808i 1.17584i −0.808917 0.587922i \(-0.799946\pi\)
0.808917 0.587922i \(-0.200054\pi\)
\(284\) 13.8207 0.820111
\(285\) −0.247739 0.0696377i −0.0146748 0.00412498i
\(286\) 4.11509 0.243330
\(287\) 4.00000i 0.236113i
\(288\) 1.00000i 0.0589256i
\(289\) 16.9868 0.999221
\(290\) 9.51547 + 2.67473i 0.558767 + 0.157066i
\(291\) −9.21018 −0.539911
\(292\) 10.8407i 0.634406i
\(293\) 31.2211i 1.82396i 0.410237 + 0.911979i \(0.365446\pi\)
−0.410237 + 0.911979i \(0.634554\pi\)
\(294\) 3.00000 0.174964
\(295\) 2.53545 9.01999i 0.147620 0.525164i
\(296\) 6.61056 0.384231
\(297\) 5.21018i 0.302326i
\(298\) 3.63055i 0.210312i
\(299\) 3.49128 0.201906
\(300\) −2.60509 + 4.26773i −0.150405 + 0.246397i
\(301\) −17.2211 −0.992609
\(302\) 15.7566i 0.906689i
\(303\) 0 0
\(304\) −0.115086 −0.00660064
\(305\) 7.56091 26.8983i 0.432937 1.54019i
\(306\) −0.115086 −0.00657904
\(307\) 13.5796i 0.775031i 0.921863 + 0.387515i \(0.126667\pi\)
−0.921863 + 0.387515i \(0.873333\pi\)
\(308\) 10.4204i 0.593756i
\(309\) 6.00000 0.341328
\(310\) 2.15264 + 0.605092i 0.122262 + 0.0343669i
\(311\) 18.2811 1.03663 0.518313 0.855191i \(-0.326560\pi\)
0.518313 + 0.855191i \(0.326560\pi\)
\(312\) 0.789816i 0.0447145i
\(313\) 14.4603i 0.817347i −0.912681 0.408673i \(-0.865991\pi\)
0.912681 0.408673i \(-0.134009\pi\)
\(314\) 3.96002 0.223477
\(315\) 4.30528 + 1.21018i 0.242575 + 0.0681862i
\(316\) 2.30528 0.129682
\(317\) 3.46455i 0.194588i 0.995256 + 0.0972941i \(0.0310188\pi\)
−0.995256 + 0.0972941i \(0.968981\pi\)
\(318\) 0.190196i 0.0106657i
\(319\) −23.0309 −1.28948
\(320\) −0.605092 + 2.15264i −0.0338257 + 0.120336i
\(321\) −3.03093 −0.169170
\(322\) 8.84074i 0.492675i
\(323\) 0.0132448i 0.000736961i
\(324\) −1.00000 −0.0555556
\(325\) 2.05754 3.37072i 0.114132 0.186974i
\(326\) 9.82075 0.543921
\(327\) 8.19020i 0.452919i
\(328\) 2.00000i 0.110432i
\(329\) −0.230172 −0.0126898
\(330\) 3.15264 11.2157i 0.173547 0.617402i
\(331\) −20.8008 −1.14331 −0.571657 0.820493i \(-0.693699\pi\)
−0.571657 + 0.820493i \(0.693699\pi\)
\(332\) 15.1460i 0.831246i
\(333\) 6.61056i 0.362257i
\(334\) −2.00000 −0.109435
\(335\) −12.5300 3.52209i −0.684586 0.192432i
\(336\) 2.00000 0.109109
\(337\) 23.0709i 1.25675i 0.777910 + 0.628376i \(0.216280\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(338\) 12.3762i 0.673176i
\(339\) −10.3804 −0.563786
\(340\) −0.247739 0.0696377i −0.0134355 0.00377663i
\(341\) −5.21018 −0.282147
\(342\) 0.115086i 0.00622314i
\(343\) 20.0000i 1.07990i
\(344\) 8.61056 0.464251
\(345\) 2.67473 9.51547i 0.144003 0.512295i
\(346\) −0.535454 −0.0287862
\(347\) 31.9868i 1.71714i 0.512697 + 0.858569i \(0.328646\pi\)
−0.512697 + 0.858569i \(0.671354\pi\)
\(348\) 4.42037i 0.236957i
\(349\) −23.4513 −1.25532 −0.627660 0.778488i \(-0.715987\pi\)
−0.627660 + 0.778488i \(0.715987\pi\)
\(350\) 8.53545 + 5.21018i 0.456239 + 0.278496i
\(351\) 0.789816 0.0421573
\(352\) 5.21018i 0.277704i
\(353\) 3.88491i 0.206773i 0.994641 + 0.103387i \(0.0329679\pi\)
−0.994641 + 0.103387i \(0.967032\pi\)
\(354\) 4.19020 0.222706
\(355\) −8.36283 + 29.7511i −0.443853 + 1.57903i
\(356\) −2.23017 −0.118199
\(357\) 0.230172i 0.0121820i
\(358\) 10.4313i 0.551312i
\(359\) 21.3604 1.12736 0.563680 0.825994i \(-0.309385\pi\)
0.563680 + 0.825994i \(0.309385\pi\)
\(360\) −2.15264 0.605092i −0.113454 0.0318912i
\(361\) −18.9868 −0.999303
\(362\) 17.4513i 0.917220i
\(363\) 16.1460i 0.847446i
\(364\) −1.57963 −0.0827952
\(365\) −23.3362 6.55964i −1.22147 0.343347i
\(366\) 12.4955 0.653149
\(367\) 20.4713i 1.06859i 0.845297 + 0.534296i \(0.179423\pi\)
−0.845297 + 0.534296i \(0.820577\pi\)
\(368\) 4.42037i 0.230428i
\(369\) −2.00000 −0.104116
\(370\) −4.00000 + 14.2302i −0.207950 + 0.739791i
\(371\) −0.380392 −0.0197490
\(372\) 1.00000i 0.0518476i
\(373\) 9.76983i 0.505863i −0.967484 0.252931i \(-0.918605\pi\)
0.967484 0.252931i \(-0.0813946\pi\)
\(374\) 0.599620 0.0310056
\(375\) −7.61056 8.19020i −0.393008 0.422940i
\(376\) 0.115086 0.00593511
\(377\) 3.49128i 0.179810i
\(378\) 2.00000i 0.102869i
\(379\) −3.65474 −0.187731 −0.0938657 0.995585i \(-0.529922\pi\)
−0.0938657 + 0.995585i \(0.529922\pi\)
\(380\) 0.0696377 0.247739i 0.00357234 0.0127087i
\(381\) −10.4204 −0.533852
\(382\) 19.2611i 0.985484i
\(383\) 25.4913i 1.30254i −0.758845 0.651272i \(-0.774236\pi\)
0.758845 0.651272i \(-0.225764\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −22.4313 6.30528i −1.14321 0.321347i
\(386\) 14.4313 0.734534
\(387\) 8.61056i 0.437700i
\(388\) 9.21018i 0.467576i
\(389\) −4.65054 −0.235792 −0.117896 0.993026i \(-0.537615\pi\)
−0.117896 + 0.993026i \(0.537615\pi\)
\(390\) 1.70019 + 0.477911i 0.0860925 + 0.0242000i
\(391\) 0.508723 0.0257272
\(392\) 3.00000i 0.151523i
\(393\) 0.190196i 0.00959412i
\(394\) −10.3804 −0.522957
\(395\) −1.39491 + 4.96245i −0.0701854 + 0.249688i
\(396\) 5.21018 0.261822
\(397\) 26.7124i 1.34066i −0.742064 0.670329i \(-0.766153\pi\)
0.742064 0.670329i \(-0.233847\pi\)
\(398\) 14.5355i 0.728596i
\(399\) −0.230172 −0.0115230
\(400\) −4.26773 2.60509i −0.213386 0.130255i
\(401\) 16.0509 0.801545 0.400772 0.916178i \(-0.368742\pi\)
0.400772 + 0.916178i \(0.368742\pi\)
\(402\) 5.82075i 0.290313i
\(403\) 0.789816i 0.0393435i
\(404\) 0 0
\(405\) 0.605092 2.15264i 0.0300673 0.106966i
\(406\) 8.84074 0.438758
\(407\) 34.4423i 1.70724i
\(408\) 0.115086i 0.00569761i
\(409\) −9.87167 −0.488123 −0.244061 0.969760i \(-0.578480\pi\)
−0.244061 + 0.969760i \(0.578480\pi\)
\(410\) −4.30528 1.21018i −0.212623 0.0597667i
\(411\) −21.4513 −1.05811
\(412\) 6.00000i 0.295599i
\(413\) 8.38039i 0.412372i
\(414\) 4.42037 0.217249
\(415\) 32.6039 + 9.16474i 1.60046 + 0.449879i
\(416\) 0.789816 0.0387239
\(417\) 16.4204i 0.804109i
\(418\) 0.599620i 0.0293284i
\(419\) 0.420368 0.0205363 0.0102682 0.999947i \(-0.496731\pi\)
0.0102682 + 0.999947i \(0.496731\pi\)
\(420\) −1.21018 + 4.30528i −0.0590509 + 0.210076i
\(421\) −39.2211 −1.91152 −0.955760 0.294146i \(-0.904965\pi\)
−0.955760 + 0.294146i \(0.904965\pi\)
\(422\) 24.8407i 1.20923i
\(423\) 0.115086i 0.00559568i
\(424\) 0.190196 0.00923674
\(425\) 0.299810 0.491156i 0.0145429 0.0238246i
\(426\) −13.8207 −0.669617
\(427\) 24.9910i 1.20940i
\(428\) 3.03093i 0.146506i
\(429\) −4.11509 −0.198678
\(430\) −5.21018 + 18.5355i −0.251257 + 0.893859i
\(431\) −6.88071 −0.331432 −0.165716 0.986173i \(-0.552994\pi\)
−0.165716 + 0.986173i \(0.552994\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 1.38944i 0.0667720i −0.999443 0.0333860i \(-0.989371\pi\)
0.999443 0.0333860i \(-0.0106291\pi\)
\(434\) 2.00000 0.0960031
\(435\) −9.51547 2.67473i −0.456232 0.128243i
\(436\) −8.19020 −0.392239
\(437\) 0.508723i 0.0243355i
\(438\) 10.8407i 0.517990i
\(439\) −19.8717 −0.948423 −0.474212 0.880411i \(-0.657267\pi\)
−0.474212 + 0.880411i \(0.657267\pi\)
\(440\) 11.2157 + 3.15264i 0.534685 + 0.150296i
\(441\) −3.00000 −0.142857
\(442\) 0.0908968i 0.00432352i
\(443\) 8.61056i 0.409100i 0.978856 + 0.204550i \(0.0655731\pi\)
−0.978856 + 0.204550i \(0.934427\pi\)
\(444\) −6.61056 −0.313723
\(445\) 1.34946 4.80076i 0.0639705 0.227578i
\(446\) −19.6306 −0.929534
\(447\) 3.63055i 0.171719i
\(448\) 2.00000i 0.0944911i
\(449\) 10.3694 0.489364 0.244682 0.969603i \(-0.421316\pi\)
0.244682 + 0.969603i \(0.421316\pi\)
\(450\) 2.60509 4.26773i 0.122805 0.201183i
\(451\) 10.4204 0.490676
\(452\) 10.3804i 0.488253i
\(453\) 15.7566i 0.740309i
\(454\) 6.42037 0.301323
\(455\) 0.955823 3.40038i 0.0448097 0.159412i
\(456\) 0.115086 0.00538940
\(457\) 21.4913i 1.00532i 0.864484 + 0.502660i \(0.167645\pi\)
−0.864484 + 0.502660i \(0.832355\pi\)
\(458\) 29.7166i 1.38857i
\(459\) 0.115086 0.00537176
\(460\) 9.51547 + 2.67473i 0.443661 + 0.124710i
\(461\) 3.34946 0.156000 0.0779999 0.996953i \(-0.475147\pi\)
0.0779999 + 0.996953i \(0.475147\pi\)
\(462\) 10.4204i 0.484799i
\(463\) 28.0109i 1.30178i −0.759172 0.650889i \(-0.774396\pi\)
0.759172 0.650889i \(-0.225604\pi\)
\(464\) −4.42037 −0.205210
\(465\) −2.15264 0.605092i −0.0998263 0.0280605i
\(466\) 5.38944 0.249661
\(467\) 37.6815i 1.74369i 0.489781 + 0.871845i \(0.337077\pi\)
−0.489781 + 0.871845i \(0.662923\pi\)
\(468\) 0.789816i 0.0365093i
\(469\) −11.6415 −0.537554
\(470\) −0.0696377 + 0.247739i −0.00321215 + 0.0114274i
\(471\) −3.96002 −0.182468
\(472\) 4.19020i 0.192869i
\(473\) 44.8626i 2.06279i
\(474\) −2.30528 −0.105885
\(475\) 0.491156 + 0.299810i 0.0225358 + 0.0137562i
\(476\) −0.230172 −0.0105499
\(477\) 0.190196i 0.00870848i
\(478\) 7.03093i 0.321587i
\(479\) 10.2811 0.469755 0.234878 0.972025i \(-0.424531\pi\)
0.234878 + 0.972025i \(0.424531\pi\)
\(480\) 0.605092 2.15264i 0.0276185 0.0982542i
\(481\) 5.22113 0.238063
\(482\) 0.190196i 0.00866319i
\(483\) 8.84074i 0.402267i
\(484\) −16.1460 −0.733910
\(485\) 19.8262 + 5.57301i 0.900262 + 0.253057i
\(486\) 1.00000 0.0453609
\(487\) 32.9316i 1.49227i 0.665792 + 0.746137i \(0.268094\pi\)
−0.665792 + 0.746137i \(0.731906\pi\)
\(488\) 12.4955i 0.565644i
\(489\) −9.82075 −0.444110
\(490\) −6.45792 1.81528i −0.291739 0.0820058i
\(491\) −41.7034 −1.88205 −0.941023 0.338342i \(-0.890134\pi\)
−0.941023 + 0.338342i \(0.890134\pi\)
\(492\) 2.00000i 0.0901670i
\(493\) 0.508723i 0.0229117i
\(494\) −0.0908968 −0.00408964
\(495\) −3.15264 + 11.2157i −0.141701 + 0.504106i
\(496\) −1.00000 −0.0449013
\(497\) 27.6415i 1.23989i
\(498\) 15.1460i 0.678709i
\(499\) −22.2302 −0.995159 −0.497580 0.867418i \(-0.665778\pi\)
−0.497580 + 0.867418i \(0.665778\pi\)
\(500\) 8.19020 7.61056i 0.366277 0.340355i
\(501\) 2.00000 0.0893534
\(502\) 14.4204i 0.643613i
\(503\) 12.3453i 0.550448i −0.961380 0.275224i \(-0.911248\pi\)
0.961380 0.275224i \(-0.0887520\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) −23.0309 −1.02385
\(507\) 12.3762i 0.549646i
\(508\) 10.4204i 0.462329i
\(509\) −30.9910 −1.37365 −0.686825 0.726823i \(-0.740996\pi\)
−0.686825 + 0.726823i \(0.740996\pi\)
\(510\) 0.247739 + 0.0696377i 0.0109701 + 0.00308361i
\(511\) −21.6815 −0.959132
\(512\) 1.00000i 0.0441942i
\(513\) 0.115086i 0.00508118i
\(514\) 1.76983 0.0780638
\(515\) −12.9158 3.63055i −0.569140 0.159981i
\(516\) −8.61056 −0.379059
\(517\) 0.599620i 0.0263713i
\(518\) 13.2211i 0.580903i
\(519\) 0.535454 0.0235038
\(520\) −0.477911 + 1.70019i −0.0209578 + 0.0745583i
\(521\) 28.8008 1.26178 0.630892 0.775871i \(-0.282689\pi\)
0.630892 + 0.775871i \(0.282689\pi\)
\(522\) 4.42037i 0.193474i
\(523\) 27.7698i 1.21429i −0.794591 0.607145i \(-0.792315\pi\)
0.794591 0.607145i \(-0.207685\pi\)
\(524\) 0.190196 0.00830875
\(525\) −8.53545 5.21018i −0.372518 0.227391i
\(526\) 14.2302 0.620465
\(527\) 0.115086i 0.00501323i
\(528\) 5.21018i 0.226744i
\(529\) 3.46034 0.150450
\(530\) −0.115086 + 0.409424i −0.00499902 + 0.0177842i
\(531\) −4.19020 −0.181839
\(532\) 0.230172i 0.00997923i
\(533\) 1.57963i 0.0684214i
\(534\) 2.23017 0.0965090
\(535\) 6.52451 + 1.83399i 0.282079 + 0.0792904i
\(536\) 5.82075 0.251418
\(537\) 10.4313i 0.450144i
\(538\) 1.15926i 0.0499794i
\(539\) 15.6306 0.673256
\(540\) 2.15264 + 0.605092i 0.0926349 + 0.0260390i
\(541\) 34.9426 1.50230 0.751149 0.660132i \(-0.229500\pi\)
0.751149 + 0.660132i \(0.229500\pi\)
\(542\) 22.6857i 0.974433i
\(543\) 17.4513i 0.748907i
\(544\) 0.115086 0.00493428
\(545\) 4.95582 17.6306i 0.212284 0.755210i
\(546\) 1.57963 0.0676020
\(547\) 23.6415i 1.01084i 0.862874 + 0.505419i \(0.168662\pi\)
−0.862874 + 0.505419i \(0.831338\pi\)
\(548\) 21.4513i 0.916354i
\(549\) −12.4955 −0.533294
\(550\) −13.5730 + 22.2356i −0.578755 + 0.948131i
\(551\) 0.508723 0.0216723
\(552\) 4.42037i 0.188143i
\(553\) 4.61056i 0.196061i
\(554\) 9.63055 0.409163
\(555\) 4.00000 14.2302i 0.169791 0.604037i
\(556\) 16.4204 0.696379
\(557\) 22.9910i 0.974158i −0.873358 0.487079i \(-0.838062\pi\)
0.873358 0.487079i \(-0.161938\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) 6.80076 0.287642
\(560\) −4.30528 1.21018i −0.181931 0.0511396i
\(561\) −0.599620 −0.0253160
\(562\) 10.8407i 0.457289i
\(563\) 7.87167i 0.331751i 0.986147 + 0.165876i \(0.0530450\pi\)
−0.986147 + 0.165876i \(0.946955\pi\)
\(564\) −0.115086 −0.00484600
\(565\) 22.3453 + 6.28109i 0.940072 + 0.264248i
\(566\) −19.7808 −0.831448
\(567\) 2.00000i 0.0839921i
\(568\) 13.8207i 0.579906i
\(569\) 40.6724 1.70508 0.852538 0.522664i \(-0.175062\pi\)
0.852538 + 0.522664i \(0.175062\pi\)
\(570\) −0.0696377 + 0.247739i −0.00291680 + 0.0103766i
\(571\) 14.2302 0.595514 0.297757 0.954642i \(-0.403761\pi\)
0.297757 + 0.954642i \(0.403761\pi\)
\(572\) 4.11509i 0.172060i
\(573\) 19.2611i 0.804644i
\(574\) −4.00000 −0.166957
\(575\) −11.5155 + 18.8649i −0.480228 + 0.786722i
\(576\) 1.00000 0.0416667
\(577\) 7.63055i 0.317664i −0.987306 0.158832i \(-0.949227\pi\)
0.987306 0.158832i \(-0.0507728\pi\)
\(578\) 16.9868i 0.706556i
\(579\) −14.4313 −0.599745
\(580\) 2.67473 9.51547i 0.111062 0.395108i
\(581\) 30.2920 1.25673
\(582\) 9.21018i 0.381774i
\(583\) 0.990956i 0.0410412i
\(584\) 10.8407 0.448593
\(585\) −1.70019 0.477911i −0.0702942 0.0197592i
\(586\) 31.2211 1.28973
\(587\) 17.8449i 0.736539i 0.929719 + 0.368270i \(0.120050\pi\)
−0.929719 + 0.368270i \(0.879950\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 0.115086 0.00474204
\(590\) −9.01999 2.53545i −0.371347 0.104383i
\(591\) 10.3804 0.426992
\(592\) 6.61056i 0.271693i
\(593\) 47.4732i 1.94949i −0.223320 0.974745i \(-0.571690\pi\)
0.223320 0.974745i \(-0.428310\pi\)
\(594\) −5.21018 −0.213776
\(595\) 0.139275 0.495478i 0.00570973 0.0203126i
\(596\) −3.63055 −0.148713
\(597\) 14.5355i 0.594897i
\(598\) 3.49128i 0.142769i
\(599\) −41.4622 −1.69410 −0.847051 0.531512i \(-0.821624\pi\)
−0.847051 + 0.531512i \(0.821624\pi\)
\(600\) 4.26773 + 2.60509i 0.174229 + 0.106352i
\(601\) −8.77887 −0.358098 −0.179049 0.983840i \(-0.557302\pi\)
−0.179049 + 0.983840i \(0.557302\pi\)
\(602\) 17.2211i 0.701881i
\(603\) 5.82075i 0.237039i
\(604\) 15.7566 0.641126
\(605\) 9.76983 34.7566i 0.397200 1.41306i
\(606\) 0 0
\(607\) 32.0619i 1.30135i −0.759356 0.650675i \(-0.774486\pi\)
0.759356 0.650675i \(-0.225514\pi\)
\(608\) 0.115086i 0.00466736i
\(609\) −8.84074 −0.358245
\(610\) −26.8983 7.56091i −1.08908 0.306132i
\(611\) 0.0908968 0.00367729
\(612\) 0.115086i 0.00465208i
\(613\) 23.2321i 0.938335i −0.883109 0.469167i \(-0.844554\pi\)
0.883109 0.469167i \(-0.155446\pi\)
\(614\) 13.5796 0.548029
\(615\) 4.30528 + 1.21018i 0.173606 + 0.0487993i
\(616\) 10.4204 0.419849
\(617\) 13.6196i 0.548305i 0.961686 + 0.274152i \(0.0883973\pi\)
−0.961686 + 0.274152i \(0.911603\pi\)
\(618\) 6.00000i 0.241355i
\(619\) −25.3894 −1.02049 −0.510244 0.860030i \(-0.670445\pi\)
−0.510244 + 0.860030i \(0.670445\pi\)
\(620\) 0.605092 2.15264i 0.0243011 0.0864521i
\(621\) −4.42037 −0.177383
\(622\) 18.2811i 0.733005i
\(623\) 4.46034i 0.178700i
\(624\) −0.789816 −0.0316179
\(625\) 11.4270 + 22.2356i 0.457080 + 0.889426i
\(626\) −14.4603 −0.577952
\(627\) 0.599620i 0.0239465i
\(628\) 3.96002i 0.158022i
\(629\) 0.760784 0.0303345
\(630\) 1.21018 4.30528i 0.0482149 0.171527i
\(631\) −28.3804 −1.12981 −0.564903 0.825157i \(-0.691086\pi\)
−0.564903 + 0.825157i \(0.691086\pi\)
\(632\) 2.30528i 0.0916992i
\(633\) 24.8407i 0.987331i
\(634\) 3.46455 0.137595
\(635\) 22.4313 + 6.30528i 0.890159 + 0.250217i
\(636\) −0.190196 −0.00754176
\(637\) 2.36945i 0.0938809i
\(638\) 23.0309i 0.911803i
\(639\) 13.8207 0.546740
\(640\) 2.15264 + 0.605092i 0.0850906 + 0.0239184i
\(641\) 3.59058 0.141819 0.0709096 0.997483i \(-0.477410\pi\)
0.0709096 + 0.997483i \(0.477410\pi\)
\(642\) 3.03093i 0.119621i
\(643\) 38.6505i 1.52423i −0.647443 0.762114i \(-0.724161\pi\)
0.647443 0.762114i \(-0.275839\pi\)
\(644\) 8.84074 0.348374
\(645\) 5.21018 18.5355i 0.205151 0.729833i
\(646\) −0.0132448 −0.000521110
\(647\) 32.9026i 1.29353i −0.762687 0.646767i \(-0.776120\pi\)
0.762687 0.646767i \(-0.223880\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 21.8317 0.856969
\(650\) −3.37072 2.05754i −0.132210 0.0807035i
\(651\) −2.00000 −0.0783862
\(652\) 9.82075i 0.384610i
\(653\) 25.5264i 0.998926i 0.866335 + 0.499463i \(0.166469\pi\)
−0.866335 + 0.499463i \(0.833531\pi\)
\(654\) 8.19020 0.320262
\(655\) −0.115086 + 0.409424i −0.00449679 + 0.0159975i
\(656\) 2.00000 0.0780869
\(657\) 10.8407i 0.422937i
\(658\) 0.230172i 0.00897305i
\(659\) −6.84074 −0.266477 −0.133239 0.991084i \(-0.542538\pi\)
−0.133239 + 0.991084i \(0.542538\pi\)
\(660\) −11.2157 3.15264i −0.436569 0.122716i
\(661\) −21.2611 −0.826961 −0.413481 0.910513i \(-0.635687\pi\)
−0.413481 + 0.910513i \(0.635687\pi\)
\(662\) 20.8008i 0.808445i
\(663\) 0.0908968i 0.00353014i
\(664\) −15.1460 −0.587780
\(665\) 0.495478 + 0.139275i 0.0192138 + 0.00540087i
\(666\) 6.61056 0.256154
\(667\) 19.5397i 0.756578i
\(668\) 2.00000i 0.0773823i
\(669\) 19.6306 0.758961
\(670\) −3.52209 + 12.5300i −0.136070 + 0.484075i
\(671\) 65.1037 2.51330
\(672\) 2.00000i 0.0771517i
\(673\) 39.7034i 1.53045i 0.643762 + 0.765226i \(0.277373\pi\)
−0.643762 + 0.765226i \(0.722627\pi\)
\(674\) 23.0709 0.888658
\(675\) −2.60509 + 4.26773i −0.100270 + 0.164265i
\(676\) −12.3762 −0.476007
\(677\) 3.45130i 0.132644i 0.997798 + 0.0663221i \(0.0211265\pi\)
−0.997798 + 0.0663221i \(0.978874\pi\)
\(678\) 10.3804i 0.398657i
\(679\) 18.4204 0.706909
\(680\) −0.0696377 + 0.247739i −0.00267048 + 0.00950036i
\(681\) −6.42037 −0.246029
\(682\) 5.21018i 0.199508i
\(683\) 20.4603i 0.782893i −0.920201 0.391447i \(-0.871975\pi\)
0.920201 0.391447i \(-0.128025\pi\)
\(684\) −0.115086 −0.00440043
\(685\) 46.1770 + 12.9800i 1.76433 + 0.495941i
\(686\) −20.0000 −0.763604
\(687\) 29.7166i 1.13376i
\(688\) 8.61056i 0.328275i
\(689\) 0.150220 0.00572292
\(690\) −9.51547 2.67473i −0.362248 0.101825i
\(691\) −9.94678 −0.378393 −0.189197 0.981939i \(-0.560588\pi\)
−0.189197 + 0.981939i \(0.560588\pi\)
\(692\) 0.535454i 0.0203549i
\(693\) 10.4204i 0.395837i
\(694\) 31.9868 1.21420
\(695\) −9.93583 + 35.3472i −0.376888 + 1.34079i
\(696\) 4.42037 0.167554
\(697\) 0.230172i 0.00871839i
\(698\) 23.4513i 0.887645i
\(699\) −5.38944 −0.203847
\(700\) 5.21018 8.53545i 0.196926 0.322610i
\(701\) −14.7898 −0.558604 −0.279302 0.960203i \(-0.590103\pi\)
−0.279302 + 0.960203i \(0.590103\pi\)
\(702\) 0.789816i 0.0298097i
\(703\) 0.760784i 0.0286935i
\(704\) −5.21018 −0.196366
\(705\) 0.0696377 0.247739i 0.00262271 0.00933039i
\(706\) 3.88491 0.146211
\(707\) 0 0
\(708\) 4.19020i 0.157477i
\(709\) 10.4336 0.391843 0.195921 0.980620i \(-0.437230\pi\)
0.195921 + 0.980620i \(0.437230\pi\)
\(710\) 29.7511 + 8.36283i 1.11654 + 0.313851i
\(711\) 2.30528 0.0864548
\(712\) 2.23017i 0.0835792i
\(713\) 4.42037i 0.165544i
\(714\) 0.230172 0.00861398
\(715\) 8.85830 + 2.49001i 0.331282 + 0.0931209i
\(716\) 10.4313 0.389836
\(717\) 7.03093i 0.262575i
\(718\) 21.3604i 0.797163i
\(719\) 20.3320 0.758256 0.379128 0.925344i \(-0.376224\pi\)
0.379128 + 0.925344i \(0.376224\pi\)
\(720\) −0.605092 + 2.15264i −0.0225504 + 0.0802242i
\(721\) −12.0000 −0.446903
\(722\) 18.9868i 0.706614i
\(723\) 0.190196i 0.00707347i
\(724\) −17.4513 −0.648572
\(725\) 18.8649 + 11.5155i 0.700626 + 0.427674i
\(726\) 16.1460 0.599235
\(727\) 37.5132i 1.39129i 0.718387 + 0.695643i \(0.244881\pi\)
−0.718387 + 0.695643i \(0.755119\pi\)
\(728\) 1.57963i 0.0585450i
\(729\) −1.00000 −0.0370370
\(730\) −6.55964 + 23.3362i −0.242783 + 0.863712i
\(731\) 0.990956 0.0366518
\(732\) 12.4955i 0.461846i
\(733\) 28.6505i 1.05823i 0.848550 + 0.529116i \(0.177476\pi\)
−0.848550 + 0.529116i \(0.822524\pi\)
\(734\) 20.4713 0.755609
\(735\) 6.45792 + 1.81528i 0.238204 + 0.0669575i
\(736\) −4.42037 −0.162937
\(737\) 30.3272i 1.11712i
\(738\) 2.00000i 0.0736210i
\(739\) −21.6415 −0.796095 −0.398048 0.917365i \(-0.630312\pi\)
−0.398048 + 0.917365i \(0.630312\pi\)
\(740\) 14.2302 + 4.00000i 0.523112 + 0.147043i
\(741\) 0.0908968 0.00333918
\(742\) 0.380392i 0.0139646i
\(743\) 5.76983i 0.211674i −0.994383 0.105837i \(-0.966248\pi\)
0.994383 0.105837i \(-0.0337522\pi\)
\(744\) 1.00000 0.0366618
\(745\) 2.19682 7.81528i 0.0804852 0.286330i
\(746\) −9.76983 −0.357699
\(747\) 15.1460i 0.554164i
\(748\) 0.599620i 0.0219243i
\(749\) 6.06187 0.221496
\(750\) −8.19020 + 7.61056i −0.299064 + 0.277899i
\(751\) −31.7698 −1.15930 −0.579649 0.814866i \(-0.696810\pi\)
−0.579649 + 0.814866i \(0.696810\pi\)
\(752\) 0.115086i 0.00419676i
\(753\) 14.4204i 0.525507i
\(754\) −3.49128 −0.127145
\(755\) −9.53418 + 33.9183i −0.346984 + 1.23441i
\(756\) 2.00000 0.0727393
\(757\) 14.6905i 0.533936i −0.963705 0.266968i \(-0.913978\pi\)
0.963705 0.266968i \(-0.0860218\pi\)
\(758\) 3.65474i 0.132746i
\(759\) 23.0309 0.835970
\(760\) −0.247739 0.0696377i −0.00898644 0.00252602i
\(761\) 44.1528 1.60054 0.800268 0.599642i \(-0.204690\pi\)
0.800268 + 0.599642i \(0.204690\pi\)
\(762\) 10.4204i 0.377490i
\(763\) 16.3804i 0.593010i
\(764\) −19.2611 −0.696842
\(765\) −0.247739 0.0696377i −0.00895703 0.00251776i
\(766\) −25.4913 −0.921037
\(767\) 3.30948i 0.119499i
\(768\) 1.00000i 0.0360844i
\(769\) −2.07995 −0.0750050 −0.0375025 0.999297i \(-0.511940\pi\)
−0.0375025 + 0.999297i \(0.511940\pi\)
\(770\) −6.30528 + 22.4313i −0.227227 + 0.808368i
\(771\) −1.76983 −0.0637388
\(772\) 14.4313i 0.519394i
\(773\) 30.1502i 1.08443i 0.840240 + 0.542214i \(0.182414\pi\)
−0.840240 + 0.542214i \(0.817586\pi\)
\(774\) 8.61056 0.309500
\(775\) 4.26773 + 2.60509i 0.153301 + 0.0935777i
\(776\) −9.21018 −0.330626
\(777\) 13.2211i 0.474305i
\(778\) 4.65054i 0.166730i
\(779\) −0.230172 −0.00824678
\(780\) 0.477911 1.70019i 0.0171120 0.0608766i
\(781\) −72.0086 −2.57667