Properties

Label 930.2.d.h.559.3
Level $930$
Weight $2$
Character 930.559
Analytic conductor $7.426$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [930,2,Mod(559,930)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("930.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(930, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,-6,-6,0,0,-6,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.3
Root \(2.19082 - 1.44755i\) of defining polynomial
Character \(\chi\) \(=\) 930.559
Dual form 930.2.d.h.559.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(0.447553 + 2.19082i) q^{5} -1.00000 q^{6} -3.38164i q^{7} +1.00000i q^{8} -1.00000 q^{9} +(2.19082 - 0.447553i) q^{10} -6.27675 q^{11} +1.00000i q^{12} +6.89511i q^{13} -3.38164 q^{14} +(2.19082 - 0.447553i) q^{15} +1.00000 q^{16} -1.40857i q^{17} +1.00000i q^{18} -1.97307 q^{19} +(-0.447553 - 2.19082i) q^{20} -3.38164 q^{21} +6.27675i q^{22} -2.40857i q^{23} +1.00000 q^{24} +(-4.59939 + 1.96102i) q^{25} +6.89511 q^{26} +1.00000i q^{27} +3.38164i q^{28} -7.79021 q^{29} +(-0.447553 - 2.19082i) q^{30} +1.00000 q^{31} -1.00000i q^{32} +6.27675i q^{33} -1.40857 q^{34} +(7.40857 - 1.51346i) q^{35} +1.00000 q^{36} +1.97307i q^{38} +6.89511 q^{39} +(-2.19082 + 0.447553i) q^{40} -9.58043 q^{41} +3.38164i q^{42} +3.38164i q^{43} +6.27675 q^{44} +(-0.447553 - 2.19082i) q^{45} -2.40857 q^{46} +2.59143i q^{47} -1.00000i q^{48} -4.43550 q^{49} +(1.96102 + 4.59939i) q^{50} -1.40857 q^{51} -6.89511i q^{52} +8.40857i q^{53} +1.00000 q^{54} +(-2.80918 - 13.7512i) q^{55} +3.38164 q^{56} +1.97307i q^{57} +7.79021i q^{58} +0.973070 q^{59} +(-2.19082 + 0.447553i) q^{60} +7.40857 q^{61} -1.00000i q^{62} +3.38164i q^{63} -1.00000 q^{64} +(-15.1059 + 3.08593i) q^{65} +6.27675 q^{66} +1.92204i q^{67} +1.40857i q^{68} -2.40857 q^{69} +(-1.51346 - 7.40857i) q^{70} +0.540394 q^{71} -1.00000i q^{72} -1.43550i q^{73} +(1.96102 + 4.59939i) q^{75} +1.97307 q^{76} +21.2257i q^{77} -6.89511i q^{78} -6.94614 q^{79} +(0.447553 + 2.19082i) q^{80} +1.00000 q^{81} +9.58043i q^{82} -9.19878i q^{83} +3.38164 q^{84} +(3.08593 - 0.630411i) q^{85} +3.38164 q^{86} +7.79021i q^{87} -6.27675i q^{88} -13.3816 q^{89} +(-2.19082 + 0.447553i) q^{90} +23.3168 q^{91} +2.40857i q^{92} -1.00000i q^{93} +2.59143 q^{94} +(-0.883054 - 4.32264i) q^{95} -1.00000 q^{96} -10.6853i q^{97} +4.43550i q^{98} +6.27675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{9} + 2 q^{10} + 2 q^{11} + 2 q^{14} + 2 q^{15} + 6 q^{16} - 2 q^{19} + 6 q^{20} + 2 q^{21} + 6 q^{24} - 4 q^{25} + 24 q^{26} - 12 q^{29} + 6 q^{30} + 6 q^{31} + 4 q^{34}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0.447553 + 2.19082i 0.200152 + 0.979765i
\(6\) −1.00000 −0.408248
\(7\) 3.38164i 1.27814i −0.769148 0.639070i \(-0.779319\pi\)
0.769148 0.639070i \(-0.220681\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 2.19082 0.447553i 0.692798 0.141529i
\(11\) −6.27675 −1.89251 −0.946255 0.323420i \(-0.895167\pi\)
−0.946255 + 0.323420i \(0.895167\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 6.89511i 1.91236i 0.292782 + 0.956179i \(0.405419\pi\)
−0.292782 + 0.956179i \(0.594581\pi\)
\(14\) −3.38164 −0.903782
\(15\) 2.19082 0.447553i 0.565668 0.115558i
\(16\) 1.00000 0.250000
\(17\) 1.40857i 0.341629i −0.985303 0.170814i \(-0.945360\pi\)
0.985303 0.170814i \(-0.0546398\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −1.97307 −0.452653 −0.226327 0.974051i \(-0.572672\pi\)
−0.226327 + 0.974051i \(0.572672\pi\)
\(20\) −0.447553 2.19082i −0.100076 0.489882i
\(21\) −3.38164 −0.737935
\(22\) 6.27675i 1.33821i
\(23\) 2.40857i 0.502222i −0.967958 0.251111i \(-0.919204\pi\)
0.967958 0.251111i \(-0.0807959\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.59939 + 1.96102i −0.919878 + 0.392204i
\(26\) 6.89511 1.35224
\(27\) 1.00000i 0.192450i
\(28\) 3.38164i 0.639070i
\(29\) −7.79021 −1.44661 −0.723303 0.690531i \(-0.757377\pi\)
−0.723303 + 0.690531i \(0.757377\pi\)
\(30\) −0.447553 2.19082i −0.0817117 0.399987i
\(31\) 1.00000 0.179605
\(32\) 1.00000i 0.176777i
\(33\) 6.27675i 1.09264i
\(34\) −1.40857 −0.241568
\(35\) 7.40857 1.51346i 1.25228 0.255822i
\(36\) 1.00000 0.166667
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.97307i 0.320074i
\(39\) 6.89511 1.10410
\(40\) −2.19082 + 0.447553i −0.346399 + 0.0707644i
\(41\) −9.58043 −1.49621 −0.748106 0.663580i \(-0.769036\pi\)
−0.748106 + 0.663580i \(0.769036\pi\)
\(42\) 3.38164i 0.521799i
\(43\) 3.38164i 0.515696i 0.966186 + 0.257848i \(0.0830133\pi\)
−0.966186 + 0.257848i \(0.916987\pi\)
\(44\) 6.27675 0.946255
\(45\) −0.447553 2.19082i −0.0667173 0.326588i
\(46\) −2.40857 −0.355124
\(47\) 2.59143i 0.377999i 0.981977 + 0.188999i \(0.0605244\pi\)
−0.981977 + 0.188999i \(0.939476\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −4.43550 −0.633643
\(50\) 1.96102 + 4.59939i 0.277330 + 0.650452i
\(51\) −1.40857 −0.197239
\(52\) 6.89511i 0.956179i
\(53\) 8.40857i 1.15501i 0.816389 + 0.577503i \(0.195973\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.80918 13.7512i −0.378790 1.85422i
\(56\) 3.38164 0.451891
\(57\) 1.97307i 0.261340i
\(58\) 7.79021i 1.02291i
\(59\) 0.973070 0.126683 0.0633415 0.997992i \(-0.479824\pi\)
0.0633415 + 0.997992i \(0.479824\pi\)
\(60\) −2.19082 + 0.447553i −0.282834 + 0.0577789i
\(61\) 7.40857 0.948570 0.474285 0.880371i \(-0.342707\pi\)
0.474285 + 0.880371i \(0.342707\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 3.38164i 0.426047i
\(64\) −1.00000 −0.125000
\(65\) −15.1059 + 3.08593i −1.87366 + 0.382762i
\(66\) 6.27675 0.772614
\(67\) 1.92204i 0.234814i 0.993084 + 0.117407i \(0.0374582\pi\)
−0.993084 + 0.117407i \(0.962542\pi\)
\(68\) 1.40857i 0.170814i
\(69\) −2.40857 −0.289958
\(70\) −1.51346 7.40857i −0.180894 0.885494i
\(71\) 0.540394 0.0641330 0.0320665 0.999486i \(-0.489791\pi\)
0.0320665 + 0.999486i \(0.489791\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 1.43550i 0.168013i −0.996465 0.0840063i \(-0.973228\pi\)
0.996465 0.0840063i \(-0.0267716\pi\)
\(74\) 0 0
\(75\) 1.96102 + 4.59939i 0.226439 + 0.531092i
\(76\) 1.97307 0.226327
\(77\) 21.2257i 2.41889i
\(78\) 6.89511i 0.780717i
\(79\) −6.94614 −0.781502 −0.390751 0.920496i \(-0.627785\pi\)
−0.390751 + 0.920496i \(0.627785\pi\)
\(80\) 0.447553 + 2.19082i 0.0500380 + 0.244941i
\(81\) 1.00000 0.111111
\(82\) 9.58043i 1.05798i
\(83\) 9.19878i 1.00970i −0.863208 0.504849i \(-0.831548\pi\)
0.863208 0.504849i \(-0.168452\pi\)
\(84\) 3.38164 0.368967
\(85\) 3.08593 0.630411i 0.334716 0.0683776i
\(86\) 3.38164 0.364652
\(87\) 7.79021i 0.835199i
\(88\) 6.27675i 0.669104i
\(89\) −13.3816 −1.41845 −0.709226 0.704982i \(-0.750955\pi\)
−0.709226 + 0.704982i \(0.750955\pi\)
\(90\) −2.19082 + 0.447553i −0.230933 + 0.0471763i
\(91\) 23.3168 2.44426
\(92\) 2.40857i 0.251111i
\(93\) 1.00000i 0.103695i
\(94\) 2.59143 0.267285
\(95\) −0.883054 4.32264i −0.0905994 0.443494i
\(96\) −1.00000 −0.102062
\(97\) 10.6853i 1.08493i −0.840078 0.542465i \(-0.817491\pi\)
0.840078 0.542465i \(-0.182509\pi\)
\(98\) 4.43550i 0.448053i
\(99\) 6.27675 0.630837
\(100\) 4.59939 1.96102i 0.459939 0.196102i
\(101\) 18.1988 1.81085 0.905423 0.424510i \(-0.139554\pi\)
0.905423 + 0.424510i \(0.139554\pi\)
\(102\) 1.40857i 0.139469i
\(103\) 0.763283i 0.0752086i −0.999293 0.0376043i \(-0.988027\pi\)
0.999293 0.0376043i \(-0.0119726\pi\)
\(104\) −6.89511 −0.676121
\(105\) −1.51346 7.40857i −0.147699 0.723003i
\(106\) 8.40857 0.816713
\(107\) 12.3547i 1.19438i 0.802102 + 0.597188i \(0.203715\pi\)
−0.802102 + 0.597188i \(0.796285\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 18.6074 1.78226 0.891131 0.453747i \(-0.149913\pi\)
0.891131 + 0.453747i \(0.149913\pi\)
\(110\) −13.7512 + 2.80918i −1.31113 + 0.267845i
\(111\) 0 0
\(112\) 3.38164i 0.319535i
\(113\) 3.38164i 0.318118i −0.987269 0.159059i \(-0.949154\pi\)
0.987269 0.159059i \(-0.0508460\pi\)
\(114\) 1.97307 0.184795
\(115\) 5.27675 1.07796i 0.492059 0.100521i
\(116\) 7.79021 0.723303
\(117\) 6.89511i 0.637453i
\(118\) 0.973070i 0.0895784i
\(119\) −4.76328 −0.436649
\(120\) 0.447553 + 2.19082i 0.0408558 + 0.199994i
\(121\) 28.3976 2.58160
\(122\) 7.40857i 0.670741i
\(123\) 9.58043i 0.863838i
\(124\) −1.00000 −0.0898027
\(125\) −6.35471 9.19878i −0.568383 0.822764i
\(126\) 3.38164 0.301261
\(127\) 17.7902i 1.57863i −0.613991 0.789313i \(-0.710437\pi\)
0.613991 0.789313i \(-0.289563\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 3.38164 0.297737
\(130\) 3.08593 + 15.1059i 0.270654 + 1.32488i
\(131\) −20.1339 −1.75911 −0.879554 0.475798i \(-0.842159\pi\)
−0.879554 + 0.475798i \(0.842159\pi\)
\(132\) 6.27675i 0.546321i
\(133\) 6.67222i 0.578555i
\(134\) 1.92204 0.166039
\(135\) −2.19082 + 0.447553i −0.188556 + 0.0385193i
\(136\) 1.40857 0.120784
\(137\) 7.94614i 0.678885i 0.940627 + 0.339442i \(0.110238\pi\)
−0.940627 + 0.339442i \(0.889762\pi\)
\(138\) 2.40857i 0.205031i
\(139\) −10.9731 −0.930724 −0.465362 0.885121i \(-0.654076\pi\)
−0.465362 + 0.885121i \(0.654076\pi\)
\(140\) −7.40857 + 1.51346i −0.626139 + 0.127911i
\(141\) 2.59143 0.218238
\(142\) 0.540394i 0.0453489i
\(143\) 43.2788i 3.61916i
\(144\) −1.00000 −0.0833333
\(145\) −3.48654 17.0670i −0.289541 1.41733i
\(146\) −1.43550 −0.118803
\(147\) 4.43550i 0.365834i
\(148\) 0 0
\(149\) −15.5135 −1.27091 −0.635456 0.772137i \(-0.719188\pi\)
−0.635456 + 0.772137i \(0.719188\pi\)
\(150\) 4.59939 1.96102i 0.375539 0.160116i
\(151\) −10.4355 −0.849229 −0.424615 0.905374i \(-0.639590\pi\)
−0.424615 + 0.905374i \(0.639590\pi\)
\(152\) 1.97307i 0.160037i
\(153\) 1.40857i 0.113876i
\(154\) 21.2257 1.71042
\(155\) 0.447553 + 2.19082i 0.0359483 + 0.175971i
\(156\) −6.89511 −0.552050
\(157\) 0.354712i 0.0283091i 0.999900 + 0.0141546i \(0.00450569\pi\)
−0.999900 + 0.0141546i \(0.995494\pi\)
\(158\) 6.94614i 0.552605i
\(159\) 8.40857 0.666843
\(160\) 2.19082 0.447553i 0.173200 0.0353822i
\(161\) −8.14493 −0.641910
\(162\) 1.00000i 0.0785674i
\(163\) 7.05103i 0.552280i −0.961117 0.276140i \(-0.910945\pi\)
0.961117 0.276140i \(-0.0890553\pi\)
\(164\) 9.58043 0.748106
\(165\) −13.7512 + 2.80918i −1.07053 + 0.218694i
\(166\) −9.19878 −0.713964
\(167\) 8.19878i 0.634441i 0.948352 + 0.317220i \(0.102750\pi\)
−0.948352 + 0.317220i \(0.897250\pi\)
\(168\) 3.38164i 0.260899i
\(169\) −34.5425 −2.65711
\(170\) −0.630411 3.08593i −0.0483503 0.236680i
\(171\) 1.97307 0.150884
\(172\) 3.38164i 0.257848i
\(173\) 5.19878i 0.395256i −0.980277 0.197628i \(-0.936676\pi\)
0.980277 0.197628i \(-0.0633238\pi\)
\(174\) 7.79021 0.590575
\(175\) 6.63146 + 15.5535i 0.501291 + 1.17573i
\(176\) −6.27675 −0.473128
\(177\) 0.973070i 0.0731405i
\(178\) 13.3816i 1.00300i
\(179\) −19.9220 −1.48904 −0.744521 0.667599i \(-0.767322\pi\)
−0.744521 + 0.667599i \(0.767322\pi\)
\(180\) 0.447553 + 2.19082i 0.0333587 + 0.163294i
\(181\) −22.5425 −1.67557 −0.837785 0.546000i \(-0.816150\pi\)
−0.837785 + 0.546000i \(0.816150\pi\)
\(182\) 23.3168i 1.72835i
\(183\) 7.40857i 0.547657i
\(184\) 2.40857 0.177562
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 8.84125i 0.646536i
\(188\) 2.59143i 0.188999i
\(189\) 3.38164 0.245978
\(190\) −4.32264 + 0.883054i −0.313598 + 0.0640635i
\(191\) 25.3706 1.83576 0.917878 0.396864i \(-0.129901\pi\)
0.917878 + 0.396864i \(0.129901\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 10.8412i 0.780370i 0.920736 + 0.390185i \(0.127589\pi\)
−0.920736 + 0.390185i \(0.872411\pi\)
\(194\) −10.6853 −0.767161
\(195\) 3.08593 + 15.1059i 0.220988 + 1.08176i
\(196\) 4.43550 0.316821
\(197\) 19.1070i 1.36132i −0.732601 0.680658i \(-0.761694\pi\)
0.732601 0.680658i \(-0.238306\pi\)
\(198\) 6.27675i 0.446069i
\(199\) −5.87100 −0.416184 −0.208092 0.978109i \(-0.566725\pi\)
−0.208092 + 0.978109i \(0.566725\pi\)
\(200\) −1.96102 4.59939i −0.138665 0.325226i
\(201\) 1.92204 0.135570
\(202\) 18.1988i 1.28046i
\(203\) 26.3437i 1.84897i
\(204\) 1.40857 0.0986197
\(205\) −4.28775 20.9890i −0.299470 1.46594i
\(206\) −0.763283 −0.0531805
\(207\) 2.40857i 0.167407i
\(208\) 6.89511i 0.478090i
\(209\) 12.3845 0.856651
\(210\) −7.40857 + 1.51346i −0.511240 + 0.104439i
\(211\) 0.144925 0.00997706 0.00498853 0.999988i \(-0.498412\pi\)
0.00498853 + 0.999988i \(0.498412\pi\)
\(212\) 8.40857i 0.577503i
\(213\) 0.540394i 0.0370272i
\(214\) 12.3547 0.844551
\(215\) −7.40857 + 1.51346i −0.505260 + 0.103217i
\(216\) −1.00000 −0.0680414
\(217\) 3.38164i 0.229561i
\(218\) 18.6074i 1.26025i
\(219\) −1.43550 −0.0970022
\(220\) 2.80918 + 13.7512i 0.189395 + 0.927108i
\(221\) 9.71225 0.653317
\(222\) 0 0
\(223\) 15.2388i 1.02047i −0.860036 0.510233i \(-0.829559\pi\)
0.860036 0.510233i \(-0.170441\pi\)
\(224\) −3.38164 −0.225945
\(225\) 4.59939 1.96102i 0.306626 0.130735i
\(226\) −3.38164 −0.224943
\(227\) 16.4086i 1.08908i −0.838736 0.544538i \(-0.816705\pi\)
0.838736 0.544538i \(-0.183295\pi\)
\(228\) 1.97307i 0.130670i
\(229\) 6.73635 0.445151 0.222575 0.974915i \(-0.428554\pi\)
0.222575 + 0.974915i \(0.428554\pi\)
\(230\) −1.07796 5.27675i −0.0710788 0.347938i
\(231\) 21.2257 1.39655
\(232\) 7.79021i 0.511453i
\(233\) 7.32778i 0.480059i −0.970766 0.240030i \(-0.922843\pi\)
0.970766 0.240030i \(-0.0771571\pi\)
\(234\) −6.89511 −0.450747
\(235\) −5.67736 + 1.15980i −0.370350 + 0.0756572i
\(236\) −0.973070 −0.0633415
\(237\) 6.94614i 0.451200i
\(238\) 4.76328i 0.308758i
\(239\) −2.15593 −0.139455 −0.0697277 0.997566i \(-0.522213\pi\)
−0.0697277 + 0.997566i \(0.522213\pi\)
\(240\) 2.19082 0.447553i 0.141417 0.0288894i
\(241\) −5.79021 −0.372980 −0.186490 0.982457i \(-0.559711\pi\)
−0.186490 + 0.982457i \(0.559711\pi\)
\(242\) 28.3976i 1.82546i
\(243\) 1.00000i 0.0641500i
\(244\) −7.40857 −0.474285
\(245\) −1.98512 9.71739i −0.126825 0.620821i
\(246\) 9.58043 0.610826
\(247\) 13.6045i 0.865636i
\(248\) 1.00000i 0.0635001i
\(249\) −9.19878 −0.582949
\(250\) −9.19878 + 6.35471i −0.581782 + 0.401907i
\(251\) 15.7364 0.993270 0.496635 0.867960i \(-0.334569\pi\)
0.496635 + 0.867960i \(0.334569\pi\)
\(252\) 3.38164i 0.213023i
\(253\) 15.1180i 0.950460i
\(254\) −17.7902 −1.11626
\(255\) −0.630411 3.08593i −0.0394778 0.193248i
\(256\) 1.00000 0.0625000
\(257\) 9.38164i 0.585211i −0.956233 0.292605i \(-0.905478\pi\)
0.956233 0.292605i \(-0.0945222\pi\)
\(258\) 3.38164i 0.210532i
\(259\) 0 0
\(260\) 15.1059 3.08593i 0.936831 0.191381i
\(261\) 7.79021 0.482202
\(262\) 20.1339i 1.24388i
\(263\) 25.2147i 1.55481i 0.629003 + 0.777403i \(0.283463\pi\)
−0.629003 + 0.777403i \(0.716537\pi\)
\(264\) −6.27675 −0.386307
\(265\) −18.4217 + 3.76328i −1.13163 + 0.231177i
\(266\) 6.67222 0.409100
\(267\) 13.3816i 0.818943i
\(268\) 1.92204i 0.117407i
\(269\) 5.58043 0.340245 0.170122 0.985423i \(-0.445584\pi\)
0.170122 + 0.985423i \(0.445584\pi\)
\(270\) 0.447553 + 2.19082i 0.0272372 + 0.133329i
\(271\) 11.7633 0.714569 0.357284 0.933996i \(-0.383703\pi\)
0.357284 + 0.933996i \(0.383703\pi\)
\(272\) 1.40857i 0.0854072i
\(273\) 23.3168i 1.41120i
\(274\) 7.94614 0.480044
\(275\) 28.8692 12.3088i 1.74088 0.742250i
\(276\) 2.40857 0.144979
\(277\) 21.3465i 1.28259i 0.767295 + 0.641294i \(0.221602\pi\)
−0.767295 + 0.641294i \(0.778398\pi\)
\(278\) 10.9731i 0.658121i
\(279\) −1.00000 −0.0598684
\(280\) 1.51346 + 7.40857i 0.0904468 + 0.442747i
\(281\) −0.871002 −0.0519596 −0.0259798 0.999662i \(-0.508271\pi\)
−0.0259798 + 0.999662i \(0.508271\pi\)
\(282\) 2.59143i 0.154317i
\(283\) 1.76611i 0.104984i 0.998621 + 0.0524921i \(0.0167164\pi\)
−0.998621 + 0.0524921i \(0.983284\pi\)
\(284\) −0.540394 −0.0320665
\(285\) −4.32264 + 0.883054i −0.256051 + 0.0523076i
\(286\) −43.2788 −2.55913
\(287\) 32.3976i 1.91237i
\(288\) 1.00000i 0.0589256i
\(289\) 15.0159 0.883290
\(290\) −17.0670 + 3.48654i −1.00221 + 0.204736i
\(291\) −10.6853 −0.626385
\(292\) 1.43550i 0.0840063i
\(293\) 15.6343i 0.913365i −0.889630 0.456682i \(-0.849038\pi\)
0.889630 0.456682i \(-0.150962\pi\)
\(294\) 4.43550 0.258684
\(295\) 0.435501 + 2.13182i 0.0253558 + 0.124120i
\(296\) 0 0
\(297\) 6.27675i 0.364214i
\(298\) 15.5135i 0.898671i
\(299\) 16.6074 0.960428
\(300\) −1.96102 4.59939i −0.113219 0.265546i
\(301\) 11.4355 0.659131
\(302\) 10.4355i 0.600496i
\(303\) 18.1988i 1.04549i
\(304\) −1.97307 −0.113163
\(305\) 3.31573 + 16.2309i 0.189858 + 0.929376i
\(306\) 1.40857 0.0805227
\(307\) 0.155928i 0.00889927i −0.999990 0.00444964i \(-0.998584\pi\)
0.999990 0.00444964i \(-0.00141637\pi\)
\(308\) 21.2257i 1.20945i
\(309\) −0.763283 −0.0434217
\(310\) 2.19082 0.447553i 0.124430 0.0254193i
\(311\) −9.10489 −0.516291 −0.258146 0.966106i \(-0.583111\pi\)
−0.258146 + 0.966106i \(0.583111\pi\)
\(312\) 6.89511i 0.390359i
\(313\) 1.58043i 0.0893310i −0.999002 0.0446655i \(-0.985778\pi\)
0.999002 0.0446655i \(-0.0142222\pi\)
\(314\) 0.354712 0.0200176
\(315\) −7.40857 + 1.51346i −0.417426 + 0.0852741i
\(316\) 6.94614 0.390751
\(317\) 6.80122i 0.381994i 0.981591 + 0.190997i \(0.0611721\pi\)
−0.981591 + 0.190997i \(0.938828\pi\)
\(318\) 8.40857i 0.471529i
\(319\) 48.8972 2.73772
\(320\) −0.447553 2.19082i −0.0250190 0.122471i
\(321\) 12.3547 0.689573
\(322\) 8.14493i 0.453899i
\(323\) 2.77921i 0.154639i
\(324\) −1.00000 −0.0555556
\(325\) −13.5214 31.7133i −0.750034 1.75914i
\(326\) −7.05103 −0.390521
\(327\) 18.6074i 1.02899i
\(328\) 9.58043i 0.528991i
\(329\) 8.76328 0.483135
\(330\) 2.80918 + 13.7512i 0.154640 + 0.756980i
\(331\) 30.1339 1.65631 0.828155 0.560499i \(-0.189391\pi\)
0.828155 + 0.560499i \(0.189391\pi\)
\(332\) 9.19878i 0.504849i
\(333\) 0 0
\(334\) 8.19878 0.448618
\(335\) −4.21084 + 0.860214i −0.230063 + 0.0469985i
\(336\) −3.38164 −0.184484
\(337\) 22.7633i 1.24000i −0.784604 0.619998i \(-0.787134\pi\)
0.784604 0.619998i \(-0.212866\pi\)
\(338\) 34.5425i 1.87886i
\(339\) −3.38164 −0.183666
\(340\) −3.08593 + 0.630411i −0.167358 + 0.0341888i
\(341\) −6.27675 −0.339905
\(342\) 1.97307i 0.106691i
\(343\) 8.67222i 0.468256i
\(344\) −3.38164 −0.182326
\(345\) −1.07796 5.27675i −0.0580356 0.284091i
\(346\) −5.19878 −0.279488
\(347\) 19.9082i 1.06873i 0.845254 + 0.534364i \(0.179449\pi\)
−0.845254 + 0.534364i \(0.820551\pi\)
\(348\) 7.79021i 0.417599i
\(349\) 13.1070 0.701601 0.350801 0.936450i \(-0.385909\pi\)
0.350801 + 0.936450i \(0.385909\pi\)
\(350\) 15.5535 6.63146i 0.831369 0.354466i
\(351\) −6.89511 −0.368034
\(352\) 6.27675i 0.334552i
\(353\) 26.0960i 1.38895i 0.719517 + 0.694475i \(0.244363\pi\)
−0.719517 + 0.694475i \(0.755637\pi\)
\(354\) −0.973070 −0.0517181
\(355\) 0.241855 + 1.18391i 0.0128363 + 0.0628353i
\(356\) 13.3816 0.709226
\(357\) 4.76328i 0.252100i
\(358\) 19.9220i 1.05291i
\(359\) −18.0670 −0.953538 −0.476769 0.879029i \(-0.658192\pi\)
−0.476769 + 0.879029i \(0.658192\pi\)
\(360\) 2.19082 0.447553i 0.115466 0.0235881i
\(361\) −15.1070 −0.795105
\(362\) 22.5425i 1.18481i
\(363\) 28.3976i 1.49049i
\(364\) −23.3168 −1.22213
\(365\) 3.14493 0.642463i 0.164613 0.0336281i
\(366\) −7.40857 −0.387252
\(367\) 16.7874i 0.876295i 0.898903 + 0.438147i \(0.144365\pi\)
−0.898903 + 0.438147i \(0.855635\pi\)
\(368\) 2.40857i 0.125555i
\(369\) 9.58043 0.498737
\(370\) 0 0
\(371\) 28.4348 1.47626
\(372\) 1.00000i 0.0518476i
\(373\) 14.6184i 0.756910i 0.925620 + 0.378455i \(0.123545\pi\)
−0.925620 + 0.378455i \(0.876455\pi\)
\(374\) 8.84125 0.457170
\(375\) −9.19878 + 6.35471i −0.475023 + 0.328156i
\(376\) −2.59143 −0.133643
\(377\) 53.7143i 2.76643i
\(378\) 3.38164i 0.173933i
\(379\) 7.15593 0.367575 0.183788 0.982966i \(-0.441164\pi\)
0.183788 + 0.982966i \(0.441164\pi\)
\(380\) 0.883054 + 4.32264i 0.0452997 + 0.221747i
\(381\) −17.7902 −0.911420
\(382\) 25.3706i 1.29807i
\(383\) 13.6825i 0.699143i 0.936910 + 0.349571i \(0.113673\pi\)
−0.936910 + 0.349571i \(0.886327\pi\)
\(384\) 1.00000 0.0510310
\(385\) −46.5017 + 9.49964i −2.36995 + 0.484146i
\(386\) 10.8412 0.551805
\(387\) 3.38164i 0.171899i
\(388\) 10.6853i 0.542465i
\(389\) −15.4245 −0.782053 −0.391027 0.920379i \(-0.627880\pi\)
−0.391027 + 0.920379i \(0.627880\pi\)
\(390\) 15.1059 3.08593i 0.764919 0.156262i
\(391\) −3.39264 −0.171573
\(392\) 4.43550i 0.224027i
\(393\) 20.1339i 1.01562i
\(394\) −19.1070 −0.962596
\(395\) −3.10877 15.2178i −0.156419 0.765688i
\(396\) −6.27675 −0.315418
\(397\) 3.17185i 0.159191i 0.996827 + 0.0795954i \(0.0253628\pi\)
−0.996827 + 0.0795954i \(0.974637\pi\)
\(398\) 5.87100i 0.294287i
\(399\) 6.67222 0.334029
\(400\) −4.59939 + 1.96102i −0.229970 + 0.0980509i
\(401\) 31.5935 1.57771 0.788853 0.614582i \(-0.210675\pi\)
0.788853 + 0.614582i \(0.210675\pi\)
\(402\) 1.92204i 0.0958624i
\(403\) 6.89511i 0.343470i
\(404\) −18.1988 −0.905423
\(405\) 0.447553 + 2.19082i 0.0222391 + 0.108863i
\(406\) 26.3437 1.30742
\(407\) 0 0
\(408\) 1.40857i 0.0697347i
\(409\) 15.8441 0.783439 0.391719 0.920085i \(-0.371880\pi\)
0.391719 + 0.920085i \(0.371880\pi\)
\(410\) −20.9890 + 4.28775i −1.03657 + 0.211757i
\(411\) 7.94614 0.391954
\(412\) 0.763283i 0.0376043i
\(413\) 3.29058i 0.161919i
\(414\) 2.40857 0.118375
\(415\) 20.1529 4.11695i 0.989266 0.202093i
\(416\) 6.89511 0.338060
\(417\) 10.9731i 0.537354i
\(418\) 12.3845i 0.605744i
\(419\) −25.0049 −1.22157 −0.610785 0.791796i \(-0.709146\pi\)
−0.610785 + 0.791796i \(0.709146\pi\)
\(420\) 1.51346 + 7.40857i 0.0738495 + 0.361501i
\(421\) −29.1609 −1.42121 −0.710606 0.703590i \(-0.751579\pi\)
−0.710606 + 0.703590i \(0.751579\pi\)
\(422\) 0.144925i 0.00705485i
\(423\) 2.59143i 0.126000i
\(424\) −8.40857 −0.408356
\(425\) 2.76223 + 6.47857i 0.133988 + 0.314257i
\(426\) −0.540394 −0.0261822
\(427\) 25.0531i 1.21241i
\(428\) 12.3547i 0.597188i
\(429\) −43.2788 −2.08952
\(430\) 1.51346 + 7.40857i 0.0729858 + 0.357273i
\(431\) −27.4245 −1.32099 −0.660496 0.750830i \(-0.729654\pi\)
−0.660496 + 0.750830i \(0.729654\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 20.1449i 0.968103i 0.875039 + 0.484052i \(0.160835\pi\)
−0.875039 + 0.484052i \(0.839165\pi\)
\(434\) −3.38164 −0.162324
\(435\) −17.0670 + 3.48654i −0.818298 + 0.167167i
\(436\) −18.6074 −0.891131
\(437\) 4.75228i 0.227332i
\(438\) 1.43550i 0.0685909i
\(439\) −14.1339 −0.674575 −0.337288 0.941402i \(-0.609509\pi\)
−0.337288 + 0.941402i \(0.609509\pi\)
\(440\) 13.7512 2.80918i 0.655564 0.133922i
\(441\) 4.43550 0.211214
\(442\) 9.71225i 0.461965i
\(443\) 29.3278i 1.39341i −0.717360 0.696703i \(-0.754650\pi\)
0.717360 0.696703i \(-0.245350\pi\)
\(444\) 0 0
\(445\) −5.98900 29.3168i −0.283906 1.38975i
\(446\) −15.2388 −0.721579
\(447\) 15.5135i 0.733762i
\(448\) 3.38164i 0.159768i
\(449\) 5.50246 0.259677 0.129839 0.991535i \(-0.458554\pi\)
0.129839 + 0.991535i \(0.458554\pi\)
\(450\) −1.96102 4.59939i −0.0924433 0.216817i
\(451\) 60.1339 2.83160
\(452\) 3.38164i 0.159059i
\(453\) 10.4355i 0.490303i
\(454\) −16.4086 −0.770092
\(455\) 10.4355 + 51.0829i 0.489224 + 2.39480i
\(456\) −1.97307 −0.0923975
\(457\) 38.4996i 1.80094i 0.434921 + 0.900469i \(0.356776\pi\)
−0.434921 + 0.900469i \(0.643224\pi\)
\(458\) 6.73635i 0.314769i
\(459\) 1.40857 0.0657465
\(460\) −5.27675 + 1.07796i −0.246030 + 0.0502603i
\(461\) −4.15593 −0.193561 −0.0967804 0.995306i \(-0.530854\pi\)
−0.0967804 + 0.995306i \(0.530854\pi\)
\(462\) 21.2257i 0.987510i
\(463\) 19.7923i 0.919827i 0.887964 + 0.459913i \(0.152120\pi\)
−0.887964 + 0.459913i \(0.847880\pi\)
\(464\) −7.79021 −0.361652
\(465\) 2.19082 0.447553i 0.101597 0.0207548i
\(466\) −7.32778 −0.339453
\(467\) 36.6874i 1.69769i 0.528641 + 0.848846i \(0.322702\pi\)
−0.528641 + 0.848846i \(0.677298\pi\)
\(468\) 6.89511i 0.318726i
\(469\) 6.49964 0.300125
\(470\) 1.15980 + 5.67736i 0.0534977 + 0.261877i
\(471\) 0.354712 0.0163443
\(472\) 0.973070i 0.0447892i
\(473\) 21.2257i 0.975959i
\(474\) 6.94614 0.319047
\(475\) 9.07492 3.86923i 0.416386 0.177532i
\(476\) 4.76328 0.218325
\(477\) 8.40857i 0.385002i
\(478\) 2.15593i 0.0986098i
\(479\) 17.9330 0.819381 0.409691 0.912224i \(-0.365637\pi\)
0.409691 + 0.912224i \(0.365637\pi\)
\(480\) −0.447553 2.19082i −0.0204279 0.0999968i
\(481\) 0 0
\(482\) 5.79021i 0.263737i
\(483\) 8.14493i 0.370607i
\(484\) −28.3976 −1.29080
\(485\) 23.4096 4.78225i 1.06298 0.217151i
\(486\) −1.00000 −0.0453609
\(487\) 11.6102i 0.526107i −0.964781 0.263054i \(-0.915270\pi\)
0.964781 0.263054i \(-0.0847297\pi\)
\(488\) 7.40857i 0.335370i
\(489\) −7.05103 −0.318859
\(490\) −9.71739 + 1.98512i −0.438987 + 0.0896787i
\(491\) −3.98900 −0.180021 −0.0900105 0.995941i \(-0.528690\pi\)
−0.0900105 + 0.995941i \(0.528690\pi\)
\(492\) 9.58043i 0.431919i
\(493\) 10.9731i 0.494202i
\(494\) −13.6045 −0.612097
\(495\) 2.80918 + 13.7512i 0.126263 + 0.618072i
\(496\) 1.00000 0.0449013
\(497\) 1.82742i 0.0819710i
\(498\) 9.19878i 0.412207i
\(499\) 22.3437 1.00024 0.500121 0.865956i \(-0.333289\pi\)
0.500121 + 0.865956i \(0.333289\pi\)
\(500\) 6.35471 + 9.19878i 0.284191 + 0.411382i
\(501\) 8.19878 0.366295
\(502\) 15.7364i 0.702348i
\(503\) 21.6984i 0.967485i 0.875210 + 0.483742i \(0.160723\pi\)
−0.875210 + 0.483742i \(0.839277\pi\)
\(504\) −3.38164 −0.150630
\(505\) 8.14493 + 39.8703i 0.362444 + 1.77420i
\(506\) 15.1180 0.672077
\(507\) 34.5425i 1.53409i
\(508\) 17.7902i 0.789313i
\(509\) 12.4196 0.550488 0.275244 0.961374i \(-0.411241\pi\)
0.275244 + 0.961374i \(0.411241\pi\)
\(510\) −3.08593 + 0.630411i −0.136647 + 0.0279151i
\(511\) −4.85435 −0.214744
\(512\) 1.00000i 0.0441942i
\(513\) 1.97307i 0.0871132i
\(514\) −9.38164 −0.413806
\(515\) 1.67222 0.341610i 0.0736867 0.0150531i
\(516\) −3.38164 −0.148868
\(517\) 16.2657i 0.715367i
\(518\) 0 0
\(519\) −5.19878 −0.228201
\(520\) −3.08593 15.1059i −0.135327 0.662439i
\(521\) 37.7143 1.65230 0.826148 0.563453i \(-0.190528\pi\)
0.826148 + 0.563453i \(0.190528\pi\)
\(522\) 7.79021i 0.340968i
\(523\) 26.5425i 1.16062i 0.814395 + 0.580311i \(0.197069\pi\)
−0.814395 + 0.580311i \(0.802931\pi\)
\(524\) 20.1339 0.879554
\(525\) 15.5535 6.63146i 0.678810 0.289421i
\(526\) 25.2147 1.09941
\(527\) 1.40857i 0.0613583i
\(528\) 6.27675i 0.273160i
\(529\) 17.1988 0.747773
\(530\) 3.76328 + 18.4217i 0.163467 + 0.800186i
\(531\) −0.973070 −0.0422277
\(532\) 6.67222i 0.289277i
\(533\) 66.0581i 2.86129i
\(534\) 13.3816 0.579080
\(535\) −27.0670 + 5.52939i −1.17021 + 0.239056i
\(536\) −1.92204 −0.0830193
\(537\) 19.9220i 0.859699i
\(538\) 5.58043i 0.240589i
\(539\) 27.8405 1.19918
\(540\) 2.19082 0.447553i 0.0942779 0.0192596i
\(541\) −22.6612 −0.974282 −0.487141 0.873323i \(-0.661960\pi\)
−0.487141 + 0.873323i \(0.661960\pi\)
\(542\) 11.7633i 0.505276i
\(543\) 22.5425i 0.967391i
\(544\) −1.40857 −0.0603920
\(545\) 8.32778 + 40.7654i 0.356723 + 1.74620i
\(546\) −23.3168 −0.997866
\(547\) 27.4245i 1.17259i 0.810099 + 0.586293i \(0.199413\pi\)
−0.810099 + 0.586293i \(0.800587\pi\)
\(548\) 7.94614i 0.339442i
\(549\) −7.40857 −0.316190
\(550\) −12.3088 28.8692i −0.524850 1.23099i
\(551\) 15.3706 0.654811
\(552\) 2.40857i 0.102516i
\(553\) 23.4894i 0.998869i
\(554\) 21.3465 0.906927
\(555\) 0 0
\(556\) 10.9731 0.465362
\(557\) 24.5425i 1.03990i 0.854197 + 0.519949i \(0.174049\pi\)
−0.854197 + 0.519949i \(0.825951\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) −23.3168 −0.986195
\(560\) 7.40857 1.51346i 0.313069 0.0639556i
\(561\) 8.84125 0.373278
\(562\) 0.871002i 0.0367410i
\(563\) 33.0269i 1.39192i −0.718081 0.695960i \(-0.754979\pi\)
0.718081 0.695960i \(-0.245021\pi\)
\(564\) −2.59143 −0.109119
\(565\) 7.40857 1.51346i 0.311681 0.0636719i
\(566\) 1.76611 0.0742351
\(567\) 3.38164i 0.142016i
\(568\) 0.540394i 0.0226744i
\(569\) −14.9082 −0.624985 −0.312492 0.949920i \(-0.601164\pi\)
−0.312492 + 0.949920i \(0.601164\pi\)
\(570\) 0.883054 + 4.32264i 0.0369871 + 0.181056i
\(571\) −14.3437 −0.600266 −0.300133 0.953897i \(-0.597031\pi\)
−0.300133 + 0.953897i \(0.597031\pi\)
\(572\) 43.2788i 1.80958i
\(573\) 25.3706i 1.05987i
\(574\) 32.3976 1.35225
\(575\) 4.72325 + 11.0780i 0.196973 + 0.461983i
\(576\) 1.00000 0.0416667
\(577\) 32.1637i 1.33899i 0.742816 + 0.669496i \(0.233490\pi\)
−0.742816 + 0.669496i \(0.766510\pi\)
\(578\) 15.0159i 0.624580i
\(579\) 10.8412 0.450547
\(580\) 3.48654 + 17.0670i 0.144770 + 0.708667i
\(581\) −31.1070 −1.29054
\(582\) 10.6853i 0.442921i
\(583\) 52.7785i 2.18586i
\(584\) 1.43550 0.0594014
\(585\) 15.1059 3.08593i 0.624554 0.127587i
\(586\) −15.6343 −0.645846
\(587\) 41.4348i 1.71020i 0.518466 + 0.855098i \(0.326503\pi\)
−0.518466 + 0.855098i \(0.673497\pi\)
\(588\) 4.43550i 0.182917i
\(589\) −1.97307 −0.0812990
\(590\) 2.13182 0.435501i 0.0877658 0.0179293i
\(591\) −19.1070 −0.785957
\(592\) 0 0
\(593\) 26.0801i 1.07098i −0.844542 0.535490i \(-0.820127\pi\)
0.844542 0.535490i \(-0.179873\pi\)
\(594\) −6.27675 −0.257538
\(595\) −2.13182 10.4355i −0.0873962 0.427814i
\(596\) 15.5135 0.635456
\(597\) 5.87100i 0.240284i
\(598\) 16.6074i 0.679125i
\(599\) 21.8033 0.890859 0.445430 0.895317i \(-0.353051\pi\)
0.445430 + 0.895317i \(0.353051\pi\)
\(600\) −4.59939 + 1.96102i −0.187769 + 0.0800582i
\(601\) −3.92414 −0.160069 −0.0800344 0.996792i \(-0.525503\pi\)
−0.0800344 + 0.996792i \(0.525503\pi\)
\(602\) 11.4355i 0.466076i
\(603\) 1.92204i 0.0782714i
\(604\) 10.4355 0.424615
\(605\) 12.7094 + 62.2140i 0.516712 + 2.52936i
\(606\) −18.1988 −0.739275
\(607\) 18.9621i 0.769647i −0.922990 0.384823i \(-0.874262\pi\)
0.922990 0.384823i \(-0.125738\pi\)
\(608\) 1.97307i 0.0800186i
\(609\) 26.3437 1.06750
\(610\) 16.2309 3.31573i 0.657168 0.134250i
\(611\) −17.8682 −0.722869
\(612\) 1.40857i 0.0569381i
\(613\) 18.0560i 0.729273i −0.931150 0.364637i \(-0.881193\pi\)
0.931150 0.364637i \(-0.118807\pi\)
\(614\) −0.155928 −0.00629274
\(615\) −20.9890 + 4.28775i −0.846358 + 0.172899i
\(616\) −21.2257 −0.855208
\(617\) 15.7792i 0.635247i −0.948217 0.317624i \(-0.897115\pi\)
0.948217 0.317624i \(-0.102885\pi\)
\(618\) 0.763283i 0.0307038i
\(619\) −33.5266 −1.34755 −0.673773 0.738938i \(-0.735328\pi\)
−0.673773 + 0.738938i \(0.735328\pi\)
\(620\) −0.447553 2.19082i −0.0179742 0.0879855i
\(621\) 2.40857 0.0966526
\(622\) 9.10489i 0.365073i
\(623\) 45.2519i 1.81298i
\(624\) 6.89511 0.276025
\(625\) 17.3088 18.0390i 0.692353 0.721559i
\(626\) −1.58043 −0.0631665
\(627\) 12.3845i 0.494588i
\(628\) 0.354712i 0.0141546i
\(629\) 0 0
\(630\) 1.51346 + 7.40857i 0.0602979 + 0.295165i
\(631\) −33.2739 −1.32461 −0.662307 0.749233i \(-0.730423\pi\)
−0.662307 + 0.749233i \(0.730423\pi\)
\(632\) 6.94614i 0.276303i
\(633\) 0.144925i 0.00576026i
\(634\) 6.80122 0.270111
\(635\) 38.9752 7.96207i 1.54668 0.315965i
\(636\) −8.40857 −0.333422
\(637\) 30.5833i 1.21175i
\(638\) 48.8972i 1.93586i
\(639\) −0.540394 −0.0213777
\(640\) −2.19082 + 0.447553i −0.0865998 + 0.0176911i
\(641\) −32.9270 −1.30054 −0.650268 0.759705i \(-0.725344\pi\)
−0.650268 + 0.759705i \(0.725344\pi\)
\(642\) 12.3547i 0.487602i
\(643\) 13.6991i 0.540242i −0.962826 0.270121i \(-0.912936\pi\)
0.962826 0.270121i \(-0.0870636\pi\)
\(644\) 8.14493 0.320955
\(645\) 1.51346 + 7.40857i 0.0595926 + 0.291712i
\(646\) 2.77921 0.109347
\(647\) 5.32778i 0.209457i 0.994501 + 0.104728i \(0.0333973\pi\)
−0.994501 + 0.104728i \(0.966603\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −6.10772 −0.239749
\(650\) −31.7133 + 13.5214i −1.24390 + 0.530354i
\(651\) −3.38164 −0.132537
\(652\) 7.05103i 0.276140i
\(653\) 47.1768i 1.84617i 0.384596 + 0.923085i \(0.374341\pi\)
−0.384596 + 0.923085i \(0.625659\pi\)
\(654\) −18.6074 −0.727605
\(655\) −9.01100 44.1098i −0.352089 1.72351i
\(656\) −9.58043 −0.374053
\(657\) 1.43550i 0.0560042i
\(658\) 8.76328i 0.341628i
\(659\) 21.4727 0.836458 0.418229 0.908342i \(-0.362651\pi\)
0.418229 + 0.908342i \(0.362651\pi\)
\(660\) 13.7512 2.80918i 0.535266 0.109347i
\(661\) −36.4996 −1.41967 −0.709836 0.704367i \(-0.751231\pi\)
−0.709836 + 0.704367i \(0.751231\pi\)
\(662\) 30.1339i 1.17119i
\(663\) 9.71225i 0.377192i
\(664\) 9.19878 0.356982
\(665\) −14.6176 + 2.98617i −0.566847 + 0.115799i
\(666\) 0 0
\(667\) 18.7633i 0.726517i
\(668\) 8.19878i 0.317220i
\(669\) −15.2388 −0.589167
\(670\) 0.860214 + 4.21084i 0.0332329 + 0.162679i
\(671\) −46.5017 −1.79518
\(672\) 3.38164i 0.130450i
\(673\) 13.3168i 0.513324i −0.966501 0.256662i \(-0.917377\pi\)
0.966501 0.256662i \(-0.0826227\pi\)
\(674\) −22.7633 −0.876809
\(675\) −1.96102 4.59939i −0.0754796 0.177031i
\(676\) 34.5425 1.32856
\(677\) 28.5425i 1.09698i 0.836158 + 0.548489i \(0.184797\pi\)
−0.836158 + 0.548489i \(0.815203\pi\)
\(678\) 3.38164i 0.129871i
\(679\) −36.1339 −1.38669
\(680\) 0.630411 + 3.08593i 0.0241751 + 0.118340i
\(681\) −16.4086 −0.628778
\(682\) 6.27675i 0.240349i
\(683\) 13.8012i 0.528089i −0.964511 0.264044i \(-0.914943\pi\)
0.964511 0.264044i \(-0.0850566\pi\)
\(684\) −1.97307 −0.0754422
\(685\) −17.4086 + 3.55632i −0.665147 + 0.135880i
\(686\) −8.67222 −0.331107
\(687\) 6.73635i 0.257008i
\(688\) 3.38164i 0.128924i
\(689\) −57.9780 −2.20879
\(690\) −5.27675 + 1.07796i −0.200882 + 0.0410374i
\(691\) 17.6612 0.671864 0.335932 0.941886i \(-0.390949\pi\)
0.335932 + 0.941886i \(0.390949\pi\)
\(692\) 5.19878i 0.197628i
\(693\) 21.2257i 0.806298i
\(694\) 19.9082 0.755705
\(695\) −4.91103 24.0400i −0.186286 0.911890i
\(696\) −7.79021 −0.295287
\(697\) 13.4947i 0.511149i
\(698\) 13.1070i 0.496107i
\(699\) −7.32778 −0.277162
\(700\) −6.63146 15.5535i −0.250646 0.587867i
\(701\) −10.1428 −0.383089 −0.191545 0.981484i \(-0.561350\pi\)
−0.191545 + 0.981484i \(0.561350\pi\)
\(702\) 6.89511i 0.260239i
\(703\) 0 0
\(704\) 6.27675 0.236564
\(705\) 1.15980 + 5.67736i 0.0436807 + 0.213822i
\(706\) 26.0960 0.982136
\(707\) 61.5418i 2.31452i
\(708\) 0.973070i 0.0365702i
\(709\) −9.97307 −0.374547 −0.187273 0.982308i \(-0.559965\pi\)
−0.187273 + 0.982308i \(0.559965\pi\)
\(710\) 1.18391 0.241855i 0.0444312 0.00907667i
\(711\) 6.94614 0.260501
\(712\) 13.3816i 0.501498i
\(713\) 2.40857i 0.0902017i
\(714\) 4.76328 0.178261
\(715\) 94.8162 19.3696i 3.54592 0.724382i
\(716\) 19.9220 0.744521
\(717\) 2.15593i 0.0805146i
\(718\) 18.0670i 0.674253i
\(719\) −21.7364 −0.810629 −0.405315 0.914177i \(-0.632838\pi\)
−0.405315 + 0.914177i \(0.632838\pi\)
\(720\) −0.447553 2.19082i −0.0166793 0.0816471i
\(721\) −2.58115 −0.0961271
\(722\) 15.1070i 0.562224i
\(723\) 5.79021i 0.215340i
\(724\) 22.5425 0.837785
\(725\) 35.8302 15.2767i 1.33070 0.567364i
\(726\) −28.3976 −1.05393
\(727\) 35.0159i 1.29867i 0.760503 + 0.649334i \(0.224952\pi\)
−0.760503 + 0.649334i \(0.775048\pi\)
\(728\) 23.3168i 0.864177i
\(729\) −1.00000 −0.0370370
\(730\) −0.642463 3.14493i −0.0237786 0.116399i
\(731\) 4.76328 0.176176
\(732\) 7.40857i 0.273829i
\(733\) 14.6074i 0.539535i 0.962925 + 0.269767i \(0.0869468\pi\)
−0.962925 + 0.269767i \(0.913053\pi\)
\(734\) 16.7874 0.619634
\(735\) −9.71739 + 1.98512i −0.358431 + 0.0732224i
\(736\) −2.40857 −0.0887811
\(737\) 12.0641i 0.444388i
\(738\) 9.58043i 0.352660i
\(739\) 25.4245 0.935255 0.467628 0.883926i \(-0.345109\pi\)
0.467628 + 0.883926i \(0.345109\pi\)
\(740\) 0 0
\(741\) −13.6045 −0.499775
\(742\) 28.4348i 1.04387i
\(743\) 20.0372i 0.735094i −0.930005 0.367547i \(-0.880198\pi\)
0.930005 0.367547i \(-0.119802\pi\)
\(744\) 1.00000 0.0366618
\(745\) −6.94310 33.9872i −0.254376 1.24520i
\(746\) 14.6184 0.535216
\(747\) 9.19878i 0.336566i
\(748\) 8.84125i 0.323268i
\(749\) 41.7792 1.52658
\(750\) 6.35471 + 9.19878i 0.232041 + 0.335892i
\(751\) −13.5804 −0.495557 −0.247778 0.968817i \(-0.579700\pi\)
−0.247778 + 0.968817i \(0.579700\pi\)
\(752\) 2.59143i 0.0944997i
\(753\) 15.7364i 0.573465i
\(754\) −53.7143 −1.95616
\(755\) −4.67044 22.8623i −0.169975 0.832045i
\(756\) −3.38164 −0.122989
\(757\) 43.4727i 1.58004i 0.613079 + 0.790021i \(0.289931\pi\)
−0.613079 + 0.790021i \(0.710069\pi\)
\(758\) 7.15593i 0.259915i
\(759\) 15.1180 0.548748
\(760\) 4.32264 0.883054i 0.156799 0.0320317i
\(761\) 27.5453 0.998517 0.499259 0.866453i \(-0.333606\pi\)
0.499259 + 0.866453i \(0.333606\pi\)
\(762\) 17.7902i 0.644471i
\(763\) 62.9234i 2.27798i
\(764\) −25.3706 −0.917878
\(765\) −3.08593 + 0.630411i −0.111572 + 0.0227925i
\(766\) 13.6825 0.494369
\(767\) 6.70942i 0.242263i
\(768\) 1.00000i 0.0360844i
\(769\) −12.6184 −0.455030 −0.227515 0.973775i \(-0.573060\pi\)
−0.227515 + 0.973775i \(0.573060\pi\)
\(770\) 9.49964 + 46.5017i 0.342343 + 1.67581i
\(771\) −9.38164 −0.337872
\(772\) 10.8412i 0.390185i
\(773\) 35.6176i 1.28108i −0.767926 0.640539i \(-0.778711\pi\)
0.767926 0.640539i \(-0.221289\pi\)
\(774\) −3.38164 −0.121551
\(775\) −4.59939 + 1.96102i −0.165215 + 0.0704418i
\(776\) 10.6853 0.383581
\(777\) 0 0
\(778\) 15.4245i 0.552995i
\(779\) 18.9029 0.677265
\(780\) −3.08593 15.1059i −0.110494 0.540880i
\(781\) −3.39192 −0.121372
\(782\) 3.39264i 0.121321i
\(783\) 7.79021i 0.278400i
\(784\) −4.43550 −0.158411
\(785\) −0.777111 + 0.158753i −0.0277363 + 0.00566612i
\(786\) 20.1339 0.718153
\(787\) 21.9890i 0.783823i 0.920003 + 0.391912i \(0.128186\pi\)
−0.920003 + 0.391912i \(0.871814\pi\)
\(788\) 19.1070i 0.680658i
\(789\) 25.2147 0.897667
\(790\) −15.2178 + 3.10877i −0.541423 + 0.110605i
\(791\) −11.4355 −0.406600
\(792\) 6.27675i 0.223035i
\(793\) 51.0829i 1.81401i
\(794\) 3.17185 0.112565
\(795\) 3.76328 + 18.4217i 0.133470 + 0.653349i
\(796\) 5.87100 0.208092
\(797\) 3.79021i 0.134256i −0.997744 0.0671281i \(-0.978616\pi\)
0.997744 0.0671281i \(-0.0213836\pi\)
\(798\) 6.67222i 0.236194i
\(799\) 3.65021 0.129135
\(800\) 1.96102 + 4.59939i 0.0693325 + 0.162613i
\(801\) 13.3816 0.472817
\(802\) 31.5935i 1.11561i
\(803\) 9.01028i 0.317966i
\(804\) −1.92204 −0.0677850
\(805\) −3.64529 17.8441i −0.128480 0.628921i
\(806\) 6.89511 0.242870
\(807\) 5.58043i 0.196440i
\(808\) 18.1988i 0.640231i
\(809\) 25.6694 0.902488 0.451244 0.892401i \(-0.350980\pi\)
0.451244 + 0.892401i \(0.350980\pi\)
\(810\) 2.19082 0.447553i 0.0769776 0.0157254i
\(811\) −37.0698 −1.30170 −0.650848 0.759208i \(-0.725587\pi\)
−0.650848 + 0.759208i \(0.725587\pi\)
\(812\) 26.3437i 0.924483i
\(813\) 11.7633i 0.412556i
\(814\) 0 0
\(815\) 15.4476 3.15571i 0.541104 0.110540i
\(816\) −1.40857 −0.0493099
\(817\) 6.67222i 0.233431i
\(818\) 15.8441i 0.553975i
\(819\) −23.3168 −0.814754
\(820\) 4.28775 + 20.9890i 0.149735 + 0.732968i
\(821\) −43.2147 −1.50820 −0.754102 0.656757i \(-0.771928\pi\)
−0.754102 + 0.656757i \(0.771928\pi\)
\(822\) 7.94614i 0.277153i
\(823\) 22.9972i 0.801631i 0.916159 + 0.400816i \(0.131273\pi\)
−0.916159 + 0.400816i \(0.868727\pi\)
\(824\) 0.763283 0.0265902
\(825\) −12.3088 28.8692i −0.428538 1.00510i
\(826\) −3.29058 −0.114494
\(827\) 26.3816i 0.917380i 0.888596 + 0.458690i \(0.151681\pi\)
−0.888596 + 0.458690i \(0.848319\pi\)
\(828\) 2.40857i 0.0837036i
\(829\) 31.2739 1.08619 0.543094 0.839672i \(-0.317253\pi\)
0.543094 + 0.839672i \(0.317253\pi\)
\(830\) −4.11695 20.1529i −0.142901 0.699517i
\(831\) 21.3465 0.740503
\(832\) 6.89511i 0.239045i
\(833\) 6.24772i 0.216471i
\(834\) 10.9731 0.379966
\(835\) −17.9621 + 3.66939i −0.621603 + 0.126985i
\(836\) −12.3845 −0.428326
\(837\) 1.00000i 0.0345651i
\(838\) 25.0049i 0.863781i
\(839\) 21.0960 0.728314 0.364157 0.931337i \(-0.381357\pi\)
0.364157 + 0.931337i \(0.381357\pi\)
\(840\) 7.40857 1.51346i 0.255620 0.0522195i
\(841\) 31.6874 1.09267
\(842\) 29.1609i 1.00495i
\(843\) 0.871002i 0.0299989i
\(844\) −0.144925 −0.00498853
\(845\) −15.4596 75.6764i −0.531827 2.60335i
\(846\) −2.59143 −0.0890952
\(847\) 96.0304i 3.29964i
\(848\) 8.40857i 0.288752i
\(849\) 1.76611 0.0606127
\(850\) 6.47857 2.76223i 0.222213 0.0947438i
\(851\) 0 0
\(852\) 0.540394i 0.0185136i
\(853\) 52.3866i 1.79368i −0.442353 0.896841i \(-0.645856\pi\)
0.442353 0.896841i \(-0.354144\pi\)
\(854\) −25.0531 −0.857301
\(855\) 0.883054 + 4.32264i 0.0301998 + 0.147831i
\(856\) −12.3547 −0.422275
\(857\) 19.9780i 0.682435i −0.939984 0.341218i \(-0.889161\pi\)
0.939984 0.341218i \(-0.110839\pi\)
\(858\) 43.2788i 1.47752i
\(859\) −45.0311 −1.53644 −0.768221 0.640185i \(-0.778858\pi\)
−0.768221 + 0.640185i \(0.778858\pi\)
\(860\) 7.40857 1.51346i 0.252630 0.0516087i
\(861\) 32.3976 1.10411
\(862\) 27.4245i 0.934082i
\(863\) 29.2037i 0.994106i −0.867720 0.497053i \(-0.834415\pi\)
0.867720 0.497053i \(-0.165585\pi\)
\(864\) 1.00000 0.0340207
\(865\) 11.3896 2.32673i 0.387258 0.0791113i
\(866\) 20.1449 0.684552
\(867\) 15.0159i 0.509968i
\(868\) 3.38164i 0.114780i
\(869\) 43.5992 1.47900
\(870\) 3.48654 + 17.0670i 0.118205 + 0.578624i
\(871\) −13.2526 −0.449049
\(872\) 18.6074i 0.630125i
\(873\) 10.6853i 0.361643i
\(874\) 4.75228 0.160748
\(875\) −31.1070 + 21.4894i −1.05161 + 0.726473i
\(876\) 1.43550 0.0485011
\(877\) 38.1559i 1.28843i −0.764843 0.644217i \(-0.777183\pi\)
0.764843 0.644217i \(-0.222817\pi\)
\(878\) 14.1339i 0.476997i
\(879\) −15.6343 −0.527331
\(880\) −2.80918 13.7512i −0.0946974 0.463554i
\(881\) 32.9752 1.11096 0.555481 0.831529i \(-0.312534\pi\)
0.555481 + 0.831529i \(0.312534\pi\)
\(882\) 4.43550i 0.149351i
\(883\) 47.8813i 1.61133i −0.592369 0.805667i \(-0.701807\pi\)
0.592369 0.805667i \(-0.298193\pi\)
\(884\) −9.71225 −0.326658
\(885\) 2.13182 0.435501i 0.0716604 0.0146392i
\(886\) −29.3278 −0.985286
\(887\) 12.1077i 0.406537i −0.979123 0.203269i \(-0.934844\pi\)
0.979123 0.203269i \(-0.0651565\pi\)
\(888\) 0 0
\(889\) −60.1601 −2.01771
\(890\) −29.3168 + 5.98900i −0.982701 + 0.200752i
\(891\) −6.27675 −0.210279
\(892\) 15.2388i 0.510233i
\(893\) 5.11307i 0.171102i
\(894\) 15.5135 0.518848
\(895\) −8.91617 43.6456i −0.298035 1.45891i
\(896\) 3.38164 0.112973
\(897\) 16.6074i 0.554503i
\(898\) 5.50246i 0.183620i
\(899\) −7.79021 −0.259818
\(900\) −4.59939 + 1.96102i −0.153313 + 0.0653673i
\(901\) 11.8441 0.394583
\(902\) 60.1339i 2.00224i
\(903\) 11.4355i 0.380550i
\(904\) 3.38164 0.112472
\(905\) −10.0890 49.3866i −0.335369 1.64167i
\(906\) 10.4355 0.346696
\(907\) 1.10489i 0.0366874i 0.999832 + 0.0183437i \(0.00583931\pi\)
−0.999832 + 0.0183437i \(0.994161\pi\)
\(908\) 16.4086i 0.544538i
\(909\) −18.1988 −0.603616
\(910\) 51.0829 10.4355i 1.69338 0.345933i
\(911\) 57.0850 1.89131 0.945655 0.325172i \(-0.105422\pi\)
0.945655 + 0.325172i \(0.105422\pi\)
\(912\) 1.97307i 0.0653349i
\(913\) 57.7385i 1.91086i
\(914\) 38.4996 1.27345
\(915\) 16.2309 3.31573i 0.536575 0.109615i
\(916\) −6.73635 −0.222575
\(917\) 68.0857i 2.24839i
\(918\) 1.40857i 0.0464898i
\(919\) 40.4996 1.33596 0.667980 0.744179i \(-0.267159\pi\)
0.667980 + 0.744179i \(0.267159\pi\)
\(920\) 1.07796 + 5.27675i 0.0355394 + 0.173969i
\(921\) −0.155928 −0.00513800
\(922\) 4.15593i 0.136868i
\(923\) 3.72608i 0.122645i
\(924\) −21.2257 −0.698275
\(925\) 0 0
\(926\) 19.7923 0.650416
\(927\) 0.763283i 0.0250695i
\(928\) 7.79021i 0.255726i
\(929\) −7.41350 −0.243229 −0.121614 0.992577i \(-0.538807\pi\)
−0.121614 + 0.992577i \(0.538807\pi\)
\(930\) −0.447553 2.19082i −0.0146758 0.0718398i
\(931\) 8.75156 0.286821
\(932\) 7.32778i 0.240030i
\(933\) 9.10489i 0.298081i
\(934\) 36.6874 1.20045
\(935\) −19.3696 + 3.95693i −0.633453 + 0.129405i
\(936\) 6.89511 0.225374
\(937\) 41.5343i 1.35687i 0.734662 + 0.678433i \(0.237341\pi\)
−0.734662 + 0.678433i \(0.762659\pi\)
\(938\) 6.49964i 0.212221i
\(939\) −1.58043 −0.0515753
\(940\) 5.67736 1.15980i 0.185175 0.0378286i
\(941\) −54.4458 −1.77488 −0.887441 0.460922i \(-0.847519\pi\)
−0.887441 + 0.460922i \(0.847519\pi\)
\(942\) 0.354712i 0.0115571i
\(943\) 23.0751i 0.751430i
\(944\) 0.973070 0.0316707
\(945\) 1.51346 + 7.40857i 0.0492330 + 0.241001i
\(946\) −21.2257 −0.690107
\(947\) 3.59635i 0.116866i 0.998291 + 0.0584329i \(0.0186104\pi\)
−0.998291 + 0.0584329i \(0.981390\pi\)
\(948\) 6.94614i 0.225600i
\(949\) 9.89793 0.321300
\(950\) −3.86923 9.07492i −0.125534 0.294429i
\(951\) 6.80122 0.220545
\(952\) 4.76328i 0.154379i
\(953\) 51.1711i 1.65760i 0.559548 + 0.828798i \(0.310975\pi\)
−0.559548 + 0.828798i \(0.689025\pi\)
\(954\) −8.40857 −0.272238
\(955\) 11.3547 + 55.5825i 0.367430 + 1.79861i
\(956\) 2.15593 0.0697277
\(957\) 48.8972i 1.58062i
\(958\) 17.9330i 0.579390i
\(959\) 26.8710 0.867710
\(960\) −2.19082 + 0.447553i −0.0707084 + 0.0144447i
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 12.3547i 0.398125i
\(964\) 5.79021 0.186490
\(965\) −23.7512 + 4.85204i −0.764579 + 0.156193i
\(966\) 8.14493 0.262059
\(967\) 6.13182i 0.197186i 0.995128 + 0.0985931i \(0.0314342\pi\)
−0.995128 + 0.0985931i \(0.968566\pi\)
\(968\) 28.3976i 0.912732i
\(969\) 2.77921 0.0892811
\(970\) −4.78225 23.4096i −0.153549 0.751638i
\(971\) 31.8221 1.02122 0.510609 0.859813i \(-0.329420\pi\)
0.510609 + 0.859813i \(0.329420\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 37.1070i 1.18960i
\(974\) −11.6102 −0.372014
\(975\) −31.7133 + 13.5214i −1.01564 + 0.433032i
\(976\) 7.40857 0.237143
\(977\) 15.1070i 0.483316i 0.970362 + 0.241658i \(0.0776911\pi\)
−0.970362 + 0.241658i \(0.922309\pi\)
\(978\) 7.05103i 0.225467i
\(979\) 83.9932 2.68443
\(980\) 1.98512 + 9.71739i 0.0634124 + 0.310411i
\(981\) −18.6074 −0.594087
\(982\) 3.98900i 0.127294i
\(983\) 6.44578i 0.205588i −0.994703 0.102794i \(-0.967222\pi\)
0.994703 0.102794i \(-0.0327783\pi\)
\(984\) −9.58043 −0.305413
\(985\) 41.8600 8.55140i 1.33377 0.272470i
\(986\) 10.9731 0.349454
\(987\) 8.76328i 0.278938i
\(988\) 13.6045i 0.432818i
\(989\) 8.14493 0.258994
\(990\) 13.7512 2.80918i 0.437043 0.0892816i
\(991\) −32.6722 −1.03787 −0.518934 0.854815i \(-0.673671\pi\)
−0.518934 + 0.854815i \(0.673671\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) 30.1339i 0.956271i
\(994\) −1.82742 −0.0579622
\(995\) −2.62759 12.8623i −0.0833001 0.407763i
\(996\) 9.19878 0.291475
\(997\) 30.0801i 0.952645i 0.879271 + 0.476323i \(0.158031\pi\)
−0.879271 + 0.476323i \(0.841969\pi\)
\(998\) 22.3437i 0.707278i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 930.2.d.h.559.3 6
3.2 odd 2 2790.2.d.k.559.4 6
5.2 odd 4 4650.2.a.cn.1.3 3
5.3 odd 4 4650.2.a.ck.1.1 3
5.4 even 2 inner 930.2.d.h.559.6 yes 6
15.14 odd 2 2790.2.d.k.559.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.d.h.559.3 6 1.1 even 1 trivial
930.2.d.h.559.6 yes 6 5.4 even 2 inner
2790.2.d.k.559.1 6 15.14 odd 2
2790.2.d.k.559.4 6 3.2 odd 2
4650.2.a.ck.1.1 3 5.3 odd 4
4650.2.a.cn.1.3 3 5.2 odd 4