Properties

Label 930.2.d.h.559.1
Level $930$
Weight $2$
Character 930.559
Analytic conductor $7.426$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [930,2,Mod(559,930)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("930.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(930, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,-6,-6,0,0,-6,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 559.1
Root \(0.627553 + 1.14620i\) of defining polynomial
Character \(\chi\) \(=\) 930.559
Dual form 930.2.d.h.559.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-2.14620 + 0.627553i) q^{5} -1.00000 q^{6} -0.255105i q^{7} +1.00000i q^{8} -1.00000 q^{9} +(0.627553 + 2.14620i) q^{10} +2.03730 q^{11} +1.00000i q^{12} +1.70760i q^{13} -0.255105 q^{14} +(0.627553 + 2.14620i) q^{15} +1.00000 q^{16} +5.83991i q^{17} +1.00000i q^{18} -6.09501 q^{19} +(2.14620 - 0.627553i) q^{20} -0.255105 q^{21} -2.03730i q^{22} +4.83991i q^{23} +1.00000 q^{24} +(4.21236 - 2.69371i) q^{25} +1.70760 q^{26} +1.00000i q^{27} +0.255105i q^{28} +2.58480 q^{29} +(2.14620 - 0.627553i) q^{30} +1.00000 q^{31} -1.00000i q^{32} -2.03730i q^{33} +5.83991 q^{34} +(0.160092 + 0.547507i) q^{35} +1.00000 q^{36} +6.09501i q^{38} +1.70760 q^{39} +(-0.627553 - 2.14620i) q^{40} +11.1696 q^{41} +0.255105i q^{42} +0.255105i q^{43} -2.03730 q^{44} +(2.14620 - 0.627553i) q^{45} +4.83991 q^{46} +9.83991i q^{47} -1.00000i q^{48} +6.93492 q^{49} +(-2.69371 - 4.21236i) q^{50} +5.83991 q^{51} -1.70760i q^{52} +1.16009i q^{53} +1.00000 q^{54} +(-4.37245 + 1.27851i) q^{55} +0.255105 q^{56} +6.09501i q^{57} -2.58480i q^{58} +5.09501 q^{59} +(-0.627553 - 2.14620i) q^{60} +0.160092 q^{61} -1.00000i q^{62} +0.255105i q^{63} -1.00000 q^{64} +(-1.07161 - 3.66485i) q^{65} -2.03730 q^{66} -7.38741i q^{67} -5.83991i q^{68} +4.83991 q^{69} +(0.547507 - 0.160092i) q^{70} -5.64252 q^{71} -1.00000i q^{72} +9.93492i q^{73} +(-2.69371 - 4.21236i) q^{75} +6.09501 q^{76} -0.519725i q^{77} -1.70760i q^{78} -15.1900 q^{79} +(-2.14620 + 0.627553i) q^{80} +1.00000 q^{81} -11.1696i q^{82} +8.42471i q^{83} +0.255105 q^{84} +(-3.66485 - 12.5336i) q^{85} +0.255105 q^{86} -2.58480i q^{87} +2.03730i q^{88} -10.2551 q^{89} +(-0.627553 - 2.14620i) q^{90} +0.435617 q^{91} -4.83991i q^{92} -1.00000i q^{93} +9.83991 q^{94} +(13.0811 - 3.82494i) q^{95} -1.00000 q^{96} +4.87720i q^{97} -6.93492i q^{98} -2.03730 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{5} - 6 q^{6} - 6 q^{9} + 2 q^{10} + 2 q^{11} + 2 q^{14} + 2 q^{15} + 6 q^{16} - 2 q^{19} + 6 q^{20} + 2 q^{21} + 6 q^{24} - 4 q^{25} + 24 q^{26} - 12 q^{29} + 6 q^{30} + 6 q^{31} + 4 q^{34}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) −2.14620 + 0.627553i −0.959810 + 0.280650i
\(6\) −1.00000 −0.408248
\(7\) 0.255105i 0.0964206i −0.998837 0.0482103i \(-0.984648\pi\)
0.998837 0.0482103i \(-0.0153518\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0.627553 + 2.14620i 0.198450 + 0.678688i
\(11\) 2.03730 0.614268 0.307134 0.951666i \(-0.400630\pi\)
0.307134 + 0.951666i \(0.400630\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 1.70760i 0.473603i 0.971558 + 0.236801i \(0.0760990\pi\)
−0.971558 + 0.236801i \(0.923901\pi\)
\(14\) −0.255105 −0.0681797
\(15\) 0.627553 + 2.14620i 0.162033 + 0.554147i
\(16\) 1.00000 0.250000
\(17\) 5.83991i 1.41639i 0.706019 + 0.708193i \(0.250489\pi\)
−0.706019 + 0.708193i \(0.749511\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −6.09501 −1.39829 −0.699146 0.714979i \(-0.746436\pi\)
−0.699146 + 0.714979i \(0.746436\pi\)
\(20\) 2.14620 0.627553i 0.479905 0.140325i
\(21\) −0.255105 −0.0556685
\(22\) 2.03730i 0.434353i
\(23\) 4.83991i 1.00919i 0.863356 + 0.504595i \(0.168358\pi\)
−0.863356 + 0.504595i \(0.831642\pi\)
\(24\) 1.00000 0.204124
\(25\) 4.21236 2.69371i 0.842471 0.538741i
\(26\) 1.70760 0.334888
\(27\) 1.00000i 0.192450i
\(28\) 0.255105i 0.0482103i
\(29\) 2.58480 0.479986 0.239993 0.970775i \(-0.422855\pi\)
0.239993 + 0.970775i \(0.422855\pi\)
\(30\) 2.14620 0.627553i 0.391841 0.114575i
\(31\) 1.00000 0.179605
\(32\) 1.00000i 0.176777i
\(33\) 2.03730i 0.354648i
\(34\) 5.83991 1.00154
\(35\) 0.160092 + 0.547507i 0.0270605 + 0.0925455i
\(36\) 1.00000 0.166667
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 6.09501i 0.988742i
\(39\) 1.70760 0.273435
\(40\) −0.627553 2.14620i −0.0992248 0.339344i
\(41\) 11.1696 1.74440 0.872200 0.489150i \(-0.162693\pi\)
0.872200 + 0.489150i \(0.162693\pi\)
\(42\) 0.255105i 0.0393636i
\(43\) 0.255105i 0.0389032i 0.999811 + 0.0194516i \(0.00619202\pi\)
−0.999811 + 0.0194516i \(0.993808\pi\)
\(44\) −2.03730 −0.307134
\(45\) 2.14620 0.627553i 0.319937 0.0935500i
\(46\) 4.83991 0.713606
\(47\) 9.83991i 1.43530i 0.696405 + 0.717649i \(0.254782\pi\)
−0.696405 + 0.717649i \(0.745218\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 6.93492 0.990703
\(50\) −2.69371 4.21236i −0.380948 0.595717i
\(51\) 5.83991 0.817751
\(52\) 1.70760i 0.236801i
\(53\) 1.16009i 0.159351i 0.996821 + 0.0796754i \(0.0253884\pi\)
−0.996821 + 0.0796754i \(0.974612\pi\)
\(54\) 1.00000 0.136083
\(55\) −4.37245 + 1.27851i −0.589581 + 0.172394i
\(56\) 0.255105 0.0340898
\(57\) 6.09501i 0.807304i
\(58\) 2.58480i 0.339401i
\(59\) 5.09501 0.663314 0.331657 0.943400i \(-0.392392\pi\)
0.331657 + 0.943400i \(0.392392\pi\)
\(60\) −0.627553 2.14620i −0.0810167 0.277073i
\(61\) 0.160092 0.0204977 0.0102488 0.999947i \(-0.496738\pi\)
0.0102488 + 0.999947i \(0.496738\pi\)
\(62\) 1.00000i 0.127000i
\(63\) 0.255105i 0.0321402i
\(64\) −1.00000 −0.125000
\(65\) −1.07161 3.66485i −0.132917 0.454569i
\(66\) −2.03730 −0.250774
\(67\) 7.38741i 0.902516i −0.892393 0.451258i \(-0.850975\pi\)
0.892393 0.451258i \(-0.149025\pi\)
\(68\) 5.83991i 0.708193i
\(69\) 4.83991 0.582656
\(70\) 0.547507 0.160092i 0.0654396 0.0191346i
\(71\) −5.64252 −0.669644 −0.334822 0.942281i \(-0.608676\pi\)
−0.334822 + 0.942281i \(0.608676\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 9.93492i 1.16279i 0.813620 + 0.581397i \(0.197494\pi\)
−0.813620 + 0.581397i \(0.802506\pi\)
\(74\) 0 0
\(75\) −2.69371 4.21236i −0.311043 0.486401i
\(76\) 6.09501 0.699146
\(77\) 0.519725i 0.0592281i
\(78\) 1.70760i 0.193347i
\(79\) −15.1900 −1.70901 −0.854506 0.519442i \(-0.826140\pi\)
−0.854506 + 0.519442i \(0.826140\pi\)
\(80\) −2.14620 + 0.627553i −0.239953 + 0.0701625i
\(81\) 1.00000 0.111111
\(82\) 11.1696i 1.23348i
\(83\) 8.42471i 0.924732i 0.886689 + 0.462366i \(0.152999\pi\)
−0.886689 + 0.462366i \(0.847001\pi\)
\(84\) 0.255105 0.0278342
\(85\) −3.66485 12.5336i −0.397509 1.35946i
\(86\) 0.255105 0.0275087
\(87\) 2.58480i 0.277120i
\(88\) 2.03730i 0.217177i
\(89\) −10.2551 −1.08704 −0.543519 0.839397i \(-0.682909\pi\)
−0.543519 + 0.839397i \(0.682909\pi\)
\(90\) −0.627553 2.14620i −0.0661498 0.226229i
\(91\) 0.435617 0.0456651
\(92\) 4.83991i 0.504595i
\(93\) 1.00000i 0.103695i
\(94\) 9.83991 1.01491
\(95\) 13.0811 3.82494i 1.34209 0.392431i
\(96\) −1.00000 −0.102062
\(97\) 4.87720i 0.495205i 0.968862 + 0.247603i \(0.0796427\pi\)
−0.968862 + 0.247603i \(0.920357\pi\)
\(98\) 6.93492i 0.700533i
\(99\) −2.03730 −0.204756
\(100\) −4.21236 + 2.69371i −0.421236 + 0.269371i
\(101\) 0.575289 0.0572434 0.0286217 0.999590i \(-0.490888\pi\)
0.0286217 + 0.999590i \(0.490888\pi\)
\(102\) 5.83991i 0.578237i
\(103\) 5.48979i 0.540925i 0.962730 + 0.270463i \(0.0871766\pi\)
−0.962730 + 0.270463i \(0.912823\pi\)
\(104\) −1.70760 −0.167444
\(105\) 0.547507 0.160092i 0.0534312 0.0156234i
\(106\) 1.16009 0.112678
\(107\) 13.3501i 1.29060i 0.763927 + 0.645302i \(0.223269\pi\)
−0.763927 + 0.645302i \(0.776731\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −6.26462 −0.600042 −0.300021 0.953933i \(-0.596994\pi\)
−0.300021 + 0.953933i \(0.596994\pi\)
\(110\) 1.27851 + 4.37245i 0.121901 + 0.416897i
\(111\) 0 0
\(112\) 0.255105i 0.0241052i
\(113\) 0.255105i 0.0239983i −0.999928 0.0119991i \(-0.996180\pi\)
0.999928 0.0119991i \(-0.00381953\pi\)
\(114\) 6.09501 0.570850
\(115\) −3.03730 10.3874i −0.283229 0.968631i
\(116\) −2.58480 −0.239993
\(117\) 1.70760i 0.157868i
\(118\) 5.09501i 0.469034i
\(119\) 1.48979 0.136569
\(120\) −2.14620 + 0.627553i −0.195920 + 0.0572874i
\(121\) −6.84942 −0.622675
\(122\) 0.160092i 0.0144940i
\(123\) 11.1696i 1.00713i
\(124\) −1.00000 −0.0898027
\(125\) −7.35012 + 8.42471i −0.657415 + 0.753529i
\(126\) 0.255105 0.0227266
\(127\) 7.41520i 0.657992i −0.944331 0.328996i \(-0.893290\pi\)
0.944331 0.328996i \(-0.106710\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0.255105 0.0224607
\(130\) −3.66485 + 1.07161i −0.321429 + 0.0939862i
\(131\) 17.2442 1.50663 0.753316 0.657658i \(-0.228453\pi\)
0.753316 + 0.657658i \(0.228453\pi\)
\(132\) 2.03730i 0.177324i
\(133\) 1.55487i 0.134824i
\(134\) −7.38741 −0.638175
\(135\) −0.627553 2.14620i −0.0540111 0.184716i
\(136\) −5.83991 −0.500768
\(137\) 16.1900i 1.38321i 0.722277 + 0.691604i \(0.243095\pi\)
−0.722277 + 0.691604i \(0.756905\pi\)
\(138\) 4.83991i 0.412000i
\(139\) −15.0950 −1.28034 −0.640171 0.768232i \(-0.721137\pi\)
−0.640171 + 0.768232i \(0.721137\pi\)
\(140\) −0.160092 0.547507i −0.0135302 0.0462728i
\(141\) 9.83991 0.828670
\(142\) 5.64252i 0.473510i
\(143\) 3.47888i 0.290919i
\(144\) −1.00000 −0.0833333
\(145\) −5.54751 + 1.62210i −0.460695 + 0.134708i
\(146\) 9.93492 0.822220
\(147\) 6.93492i 0.571983i
\(148\) 0 0
\(149\) −13.4525 −1.10207 −0.551036 0.834482i \(-0.685767\pi\)
−0.551036 + 0.834482i \(0.685767\pi\)
\(150\) −4.21236 + 2.69371i −0.343937 + 0.219940i
\(151\) 0.934921 0.0760828 0.0380414 0.999276i \(-0.487888\pi\)
0.0380414 + 0.999276i \(0.487888\pi\)
\(152\) 6.09501i 0.494371i
\(153\) 5.83991i 0.472129i
\(154\) −0.519725 −0.0418806
\(155\) −2.14620 + 0.627553i −0.172387 + 0.0504062i
\(156\) −1.70760 −0.136717
\(157\) 1.35012i 0.107751i 0.998548 + 0.0538756i \(0.0171574\pi\)
−0.998548 + 0.0538756i \(0.982843\pi\)
\(158\) 15.1900i 1.20845i
\(159\) 1.16009 0.0920013
\(160\) 0.627553 + 2.14620i 0.0496124 + 0.169672i
\(161\) 1.23468 0.0973068
\(162\) 1.00000i 0.0785674i
\(163\) 20.4824i 1.60431i −0.597117 0.802154i \(-0.703687\pi\)
0.597117 0.802154i \(-0.296313\pi\)
\(164\) −11.1696 −0.872200
\(165\) 1.27851 + 4.37245i 0.0995319 + 0.340395i
\(166\) 8.42471 0.653884
\(167\) 9.42471i 0.729306i −0.931143 0.364653i \(-0.881188\pi\)
0.931143 0.364653i \(-0.118812\pi\)
\(168\) 0.255105i 0.0196818i
\(169\) 10.0841 0.775701
\(170\) −12.5336 + 3.66485i −0.961284 + 0.281081i
\(171\) 6.09501 0.466097
\(172\) 0.255105i 0.0194516i
\(173\) 12.4247i 0.944633i 0.881429 + 0.472317i \(0.156582\pi\)
−0.881429 + 0.472317i \(0.843418\pi\)
\(174\) −2.58480 −0.195953
\(175\) −0.687178 1.07459i −0.0519458 0.0812316i
\(176\) 2.03730 0.153567
\(177\) 5.09501i 0.382965i
\(178\) 10.2551i 0.768653i
\(179\) −10.6126 −0.793222 −0.396611 0.917987i \(-0.629814\pi\)
−0.396611 + 0.917987i \(0.629814\pi\)
\(180\) −2.14620 + 0.627553i −0.159968 + 0.0467750i
\(181\) 22.0841 1.64150 0.820749 0.571288i \(-0.193556\pi\)
0.820749 + 0.571288i \(0.193556\pi\)
\(182\) 0.435617i 0.0322901i
\(183\) 0.160092i 0.0118343i
\(184\) −4.83991 −0.356803
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 11.8976i 0.870040i
\(188\) 9.83991i 0.717649i
\(189\) 0.255105 0.0185562
\(190\) −3.82494 13.0811i −0.277490 0.949004i
\(191\) −5.75441 −0.416374 −0.208187 0.978089i \(-0.566756\pi\)
−0.208187 + 0.978089i \(0.566756\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 13.8976i 1.00037i 0.865918 + 0.500186i \(0.166735\pi\)
−0.865918 + 0.500186i \(0.833265\pi\)
\(194\) 4.87720 0.350163
\(195\) −3.66485 + 1.07161i −0.262445 + 0.0767394i
\(196\) −6.93492 −0.495352
\(197\) 14.1492i 1.00809i 0.863678 + 0.504044i \(0.168155\pi\)
−0.863678 + 0.504044i \(0.831845\pi\)
\(198\) 2.03730i 0.144784i
\(199\) 16.8698 1.19587 0.597936 0.801544i \(-0.295988\pi\)
0.597936 + 0.801544i \(0.295988\pi\)
\(200\) 2.69371 + 4.21236i 0.190474 + 0.297859i
\(201\) −7.38741 −0.521068
\(202\) 0.575289i 0.0404772i
\(203\) 0.659396i 0.0462805i
\(204\) −5.83991 −0.408875
\(205\) −23.9722 + 7.00951i −1.67429 + 0.489566i
\(206\) 5.48979 0.382492
\(207\) 4.83991i 0.336397i
\(208\) 1.70760i 0.118401i
\(209\) −12.4173 −0.858926
\(210\) −0.160092 0.547507i −0.0110474 0.0377815i
\(211\) −9.23468 −0.635742 −0.317871 0.948134i \(-0.602968\pi\)
−0.317871 + 0.948134i \(0.602968\pi\)
\(212\) 1.16009i 0.0796754i
\(213\) 5.64252i 0.386619i
\(214\) 13.3501 0.912595
\(215\) −0.160092 0.547507i −0.0109182 0.0373396i
\(216\) −1.00000 −0.0680414
\(217\) 0.255105i 0.0173177i
\(218\) 6.26462i 0.424294i
\(219\) 9.93492 0.671340
\(220\) 4.37245 1.27851i 0.294790 0.0861972i
\(221\) −9.97222 −0.670804
\(222\) 0 0
\(223\) 16.9518i 1.13518i 0.823313 + 0.567588i \(0.192123\pi\)
−0.823313 + 0.567588i \(0.807877\pi\)
\(224\) −0.255105 −0.0170449
\(225\) −4.21236 + 2.69371i −0.280824 + 0.179580i
\(226\) −0.255105 −0.0169693
\(227\) 9.16009i 0.607977i −0.952676 0.303988i \(-0.901682\pi\)
0.952676 0.303988i \(-0.0983184\pi\)
\(228\) 6.09501i 0.403652i
\(229\) 4.60522 0.304322 0.152161 0.988356i \(-0.451377\pi\)
0.152161 + 0.988356i \(0.451377\pi\)
\(230\) −10.3874 + 3.03730i −0.684926 + 0.200273i
\(231\) −0.519725 −0.0341954
\(232\) 2.58480i 0.169701i
\(233\) 12.4451i 0.815308i −0.913137 0.407654i \(-0.866347\pi\)
0.913137 0.407654i \(-0.133653\pi\)
\(234\) −1.70760 −0.111629
\(235\) −6.17506 21.1184i −0.402816 1.37761i
\(236\) −5.09501 −0.331657
\(237\) 15.1900i 0.986698i
\(238\) 1.48979i 0.0965687i
\(239\) −20.7748 −1.34381 −0.671906 0.740636i \(-0.734524\pi\)
−0.671906 + 0.740636i \(0.734524\pi\)
\(240\) 0.627553 + 2.14620i 0.0405083 + 0.138537i
\(241\) 4.58480 0.295333 0.147667 0.989037i \(-0.452824\pi\)
0.147667 + 0.989037i \(0.452824\pi\)
\(242\) 6.84942i 0.440298i
\(243\) 1.00000i 0.0641500i
\(244\) −0.160092 −0.0102488
\(245\) −14.8837 + 4.35203i −0.950887 + 0.278041i
\(246\) −11.1696 −0.712148
\(247\) 10.4078i 0.662235i
\(248\) 1.00000i 0.0635001i
\(249\) 8.42471 0.533894
\(250\) 8.42471 + 7.35012i 0.532826 + 0.464862i
\(251\) 13.6052 0.858754 0.429377 0.903125i \(-0.358733\pi\)
0.429377 + 0.903125i \(0.358733\pi\)
\(252\) 0.255105i 0.0160701i
\(253\) 9.86033i 0.619914i
\(254\) −7.41520 −0.465271
\(255\) −12.5336 + 3.66485i −0.784885 + 0.229502i
\(256\) 1.00000 0.0625000
\(257\) 6.25511i 0.390183i −0.980785 0.195091i \(-0.937500\pi\)
0.980785 0.195091i \(-0.0625003\pi\)
\(258\) 0.255105i 0.0158821i
\(259\) 0 0
\(260\) 1.07161 + 3.66485i 0.0664583 + 0.227284i
\(261\) −2.58480 −0.159995
\(262\) 17.2442i 1.06535i
\(263\) 24.5292i 1.51254i −0.654261 0.756269i \(-0.727020\pi\)
0.654261 0.756269i \(-0.272980\pi\)
\(264\) 2.03730 0.125387
\(265\) −0.728019 2.48979i −0.0447218 0.152947i
\(266\) 1.55487 0.0953351
\(267\) 10.2551i 0.627602i
\(268\) 7.38741i 0.451258i
\(269\) −15.1696 −0.924907 −0.462454 0.886643i \(-0.653031\pi\)
−0.462454 + 0.886643i \(0.653031\pi\)
\(270\) −2.14620 + 0.627553i −0.130614 + 0.0381916i
\(271\) 5.51021 0.334721 0.167361 0.985896i \(-0.446476\pi\)
0.167361 + 0.985896i \(0.446476\pi\)
\(272\) 5.83991i 0.354096i
\(273\) 0.435617i 0.0263647i
\(274\) 16.1900 0.978075
\(275\) 8.58182 5.48788i 0.517503 0.330932i
\(276\) −4.83991 −0.291328
\(277\) 27.3319i 1.64221i −0.570776 0.821106i \(-0.693357\pi\)
0.570776 0.821106i \(-0.306643\pi\)
\(278\) 15.0950i 0.905339i
\(279\) −1.00000 −0.0598684
\(280\) −0.547507 + 0.160092i −0.0327198 + 0.00956732i
\(281\) 21.8698 1.30465 0.652323 0.757941i \(-0.273795\pi\)
0.652323 + 0.757941i \(0.273795\pi\)
\(282\) 9.83991i 0.585958i
\(283\) 26.1622i 1.55518i −0.628769 0.777592i \(-0.716441\pi\)
0.628769 0.777592i \(-0.283559\pi\)
\(284\) 5.64252 0.334822
\(285\) −3.82494 13.0811i −0.226570 0.774859i
\(286\) 3.47888 0.205711
\(287\) 2.84942i 0.168196i
\(288\) 1.00000i 0.0589256i
\(289\) −17.1045 −1.00615
\(290\) 1.62210 + 5.54751i 0.0952530 + 0.325761i
\(291\) 4.87720 0.285907
\(292\) 9.93492i 0.581397i
\(293\) 13.3596i 0.780478i 0.920714 + 0.390239i \(0.127608\pi\)
−0.920714 + 0.390239i \(0.872392\pi\)
\(294\) −6.93492 −0.404453
\(295\) −10.9349 + 3.19739i −0.636656 + 0.186159i
\(296\) 0 0
\(297\) 2.03730i 0.118216i
\(298\) 13.4525i 0.779282i
\(299\) −8.26462 −0.477955
\(300\) 2.69371 + 4.21236i 0.155521 + 0.243200i
\(301\) 0.0650786 0.00375107
\(302\) 0.934921i 0.0537987i
\(303\) 0.575289i 0.0330495i
\(304\) −6.09501 −0.349573
\(305\) −0.343589 + 0.100466i −0.0196739 + 0.00575267i
\(306\) −5.83991 −0.333845
\(307\) 18.7748i 1.07154i −0.844365 0.535768i \(-0.820022\pi\)
0.844365 0.535768i \(-0.179978\pi\)
\(308\) 0.519725i 0.0296141i
\(309\) 5.48979 0.312303
\(310\) 0.627553 + 2.14620i 0.0356426 + 0.121896i
\(311\) −14.2924 −0.810448 −0.405224 0.914217i \(-0.632806\pi\)
−0.405224 + 0.914217i \(0.632806\pi\)
\(312\) 1.70760i 0.0966737i
\(313\) 19.1696i 1.08353i 0.840530 + 0.541765i \(0.182244\pi\)
−0.840530 + 0.541765i \(0.817756\pi\)
\(314\) 1.35012 0.0761916
\(315\) −0.160092 0.547507i −0.00902015 0.0308485i
\(316\) 15.1900 0.854506
\(317\) 24.4247i 1.37183i 0.727682 + 0.685914i \(0.240597\pi\)
−0.727682 + 0.685914i \(0.759403\pi\)
\(318\) 1.16009i 0.0650547i
\(319\) 5.26601 0.294840
\(320\) 2.14620 0.627553i 0.119976 0.0350813i
\(321\) 13.3501 0.745131
\(322\) 1.23468i 0.0688063i
\(323\) 35.5943i 1.98052i
\(324\) −1.00000 −0.0555556
\(325\) 4.59977 + 7.19301i 0.255149 + 0.398997i
\(326\) −20.4824 −1.13442
\(327\) 6.26462i 0.346434i
\(328\) 11.1696i 0.616738i
\(329\) 2.51021 0.138392
\(330\) 4.37245 1.27851i 0.240695 0.0703797i
\(331\) −7.24420 −0.398177 −0.199089 0.979981i \(-0.563798\pi\)
−0.199089 + 0.979981i \(0.563798\pi\)
\(332\) 8.42471i 0.462366i
\(333\) 0 0
\(334\) −9.42471 −0.515697
\(335\) 4.63599 + 15.8549i 0.253291 + 0.866244i
\(336\) −0.255105 −0.0139171
\(337\) 16.5102i 0.899368i −0.893188 0.449684i \(-0.851537\pi\)
0.893188 0.449684i \(-0.148463\pi\)
\(338\) 10.0841i 0.548503i
\(339\) −0.255105 −0.0138554
\(340\) 3.66485 + 12.5336i 0.198754 + 0.679731i
\(341\) 2.03730 0.110326
\(342\) 6.09501i 0.329581i
\(343\) 3.55487i 0.191945i
\(344\) −0.255105 −0.0137543
\(345\) −10.3874 + 3.03730i −0.559240 + 0.163523i
\(346\) 12.4247 0.667957
\(347\) 4.27553i 0.229522i 0.993393 + 0.114761i \(0.0366103\pi\)
−0.993393 + 0.114761i \(0.963390\pi\)
\(348\) 2.58480i 0.138560i
\(349\) −20.1492 −1.07856 −0.539281 0.842126i \(-0.681304\pi\)
−0.539281 + 0.842126i \(0.681304\pi\)
\(350\) −1.07459 + 0.687178i −0.0574394 + 0.0367312i
\(351\) −1.70760 −0.0911449
\(352\) 2.03730i 0.108588i
\(353\) 35.1587i 1.87131i −0.352918 0.935654i \(-0.614810\pi\)
0.352918 0.935654i \(-0.385190\pi\)
\(354\) −5.09501 −0.270797
\(355\) 12.1100 3.54098i 0.642731 0.187936i
\(356\) 10.2551 0.543519
\(357\) 1.48979i 0.0788480i
\(358\) 10.6126i 0.560893i
\(359\) 0.622100 0.0328332 0.0164166 0.999865i \(-0.494774\pi\)
0.0164166 + 0.999865i \(0.494774\pi\)
\(360\) 0.627553 + 2.14620i 0.0330749 + 0.113115i
\(361\) 18.1492 0.955220
\(362\) 22.0841i 1.16071i
\(363\) 6.84942i 0.359501i
\(364\) −0.435617 −0.0228325
\(365\) −6.23468 21.3223i −0.326338 1.11606i
\(366\) −0.160092 −0.00836813
\(367\) 28.0877i 1.46616i 0.680141 + 0.733082i \(0.261919\pi\)
−0.680141 + 0.733082i \(0.738081\pi\)
\(368\) 4.83991i 0.252298i
\(369\) −11.1696 −0.581466
\(370\) 0 0
\(371\) 0.295945 0.0153647
\(372\) 1.00000i 0.0518476i
\(373\) 17.7449i 0.918796i 0.888231 + 0.459398i \(0.151935\pi\)
−0.888231 + 0.459398i \(0.848065\pi\)
\(374\) 11.8976 0.615212
\(375\) 8.42471 + 7.35012i 0.435050 + 0.379558i
\(376\) −9.83991 −0.507455
\(377\) 4.41381i 0.227323i
\(378\) 0.255105i 0.0131212i
\(379\) 25.7748 1.32396 0.661982 0.749520i \(-0.269716\pi\)
0.661982 + 0.749520i \(0.269716\pi\)
\(380\) −13.0811 + 3.82494i −0.671047 + 0.196215i
\(381\) −7.41520 −0.379892
\(382\) 5.75441i 0.294421i
\(383\) 19.7952i 1.01149i 0.862683 + 0.505745i \(0.168782\pi\)
−0.862683 + 0.505745i \(0.831218\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.326154 + 1.11543i 0.0166224 + 0.0568477i
\(386\) 13.8976 0.707370
\(387\) 0.255105i 0.0129677i
\(388\) 4.87720i 0.247603i
\(389\) 23.9444 1.21403 0.607016 0.794690i \(-0.292367\pi\)
0.607016 + 0.794690i \(0.292367\pi\)
\(390\) 1.07161 + 3.66485i 0.0542630 + 0.185577i
\(391\) −28.2646 −1.42940
\(392\) 6.93492i 0.350266i
\(393\) 17.2442i 0.869855i
\(394\) 14.1492 0.712826
\(395\) 32.6008 9.53254i 1.64033 0.479634i
\(396\) 2.03730 0.102378
\(397\) 10.3297i 0.518433i −0.965819 0.259216i \(-0.916536\pi\)
0.965819 0.259216i \(-0.0834643\pi\)
\(398\) 16.8698i 0.845609i
\(399\) 1.55487 0.0778408
\(400\) 4.21236 2.69371i 0.210618 0.134685i
\(401\) 0.398320 0.0198912 0.00994559 0.999951i \(-0.496834\pi\)
0.00994559 + 0.999951i \(0.496834\pi\)
\(402\) 7.38741i 0.368451i
\(403\) 1.70760i 0.0850615i
\(404\) −0.575289 −0.0286217
\(405\) −2.14620 + 0.627553i −0.106646 + 0.0311833i
\(406\) −0.659396 −0.0327253
\(407\) 0 0
\(408\) 5.83991i 0.289119i
\(409\) −2.77483 −0.137206 −0.0686032 0.997644i \(-0.521854\pi\)
−0.0686032 + 0.997644i \(0.521854\pi\)
\(410\) 7.00951 + 23.9722i 0.346175 + 1.18390i
\(411\) 16.1900 0.798595
\(412\) 5.48979i 0.270463i
\(413\) 1.29976i 0.0639572i
\(414\) −4.83991 −0.237869
\(415\) −5.28695 18.0811i −0.259526 0.887567i
\(416\) 1.70760 0.0837219
\(417\) 15.0950i 0.739206i
\(418\) 12.4173i 0.607352i
\(419\) 35.1140 1.71543 0.857717 0.514123i \(-0.171882\pi\)
0.857717 + 0.514123i \(0.171882\pi\)
\(420\) −0.547507 + 0.160092i −0.0267156 + 0.00781168i
\(421\) 12.3392 0.601376 0.300688 0.953722i \(-0.402784\pi\)
0.300688 + 0.953722i \(0.402784\pi\)
\(422\) 9.23468i 0.449537i
\(423\) 9.83991i 0.478433i
\(424\) −1.16009 −0.0563390
\(425\) 15.7310 + 24.5998i 0.763066 + 1.19326i
\(426\) 5.64252 0.273381
\(427\) 0.0408402i 0.00197640i
\(428\) 13.3501i 0.645302i
\(429\) 3.47888 0.167962
\(430\) −0.547507 + 0.160092i −0.0264031 + 0.00772031i
\(431\) 11.9444 0.575343 0.287672 0.957729i \(-0.407119\pi\)
0.287672 + 0.957729i \(0.407119\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 10.7653i 0.517348i 0.965965 + 0.258674i \(0.0832855\pi\)
−0.965965 + 0.258674i \(0.916714\pi\)
\(434\) −0.255105 −0.0122454
\(435\) 1.62210 + 5.54751i 0.0777737 + 0.265983i
\(436\) 6.26462 0.300021
\(437\) 29.4993i 1.41114i
\(438\) 9.93492i 0.474709i
\(439\) 23.2442 1.10939 0.554693 0.832055i \(-0.312836\pi\)
0.554693 + 0.832055i \(0.312836\pi\)
\(440\) −1.27851 4.37245i −0.0609506 0.208448i
\(441\) −6.93492 −0.330234
\(442\) 9.97222i 0.474330i
\(443\) 34.4451i 1.63654i −0.574836 0.818269i \(-0.694934\pi\)
0.574836 0.818269i \(-0.305066\pi\)
\(444\) 0 0
\(445\) 22.0095 6.43562i 1.04335 0.305078i
\(446\) 16.9518 0.802691
\(447\) 13.4525i 0.636281i
\(448\) 0.255105i 0.0120526i
\(449\) −24.5570 −1.15892 −0.579459 0.815002i \(-0.696736\pi\)
−0.579459 + 0.815002i \(0.696736\pi\)
\(450\) 2.69371 + 4.21236i 0.126983 + 0.198572i
\(451\) 22.7558 1.07153
\(452\) 0.255105i 0.0119991i
\(453\) 0.934921i 0.0439264i
\(454\) −9.16009 −0.429904
\(455\) −0.934921 + 0.273373i −0.0438298 + 0.0128159i
\(456\) −6.09501 −0.285425
\(457\) 30.1154i 1.40874i 0.709833 + 0.704370i \(0.248771\pi\)
−0.709833 + 0.704370i \(0.751229\pi\)
\(458\) 4.60522i 0.215188i
\(459\) −5.83991 −0.272584
\(460\) 3.03730 + 10.3874i 0.141615 + 0.484316i
\(461\) −22.7748 −1.06073 −0.530365 0.847770i \(-0.677945\pi\)
−0.530365 + 0.847770i \(0.677945\pi\)
\(462\) 0.519725i 0.0241798i
\(463\) 29.0264i 1.34897i −0.738288 0.674485i \(-0.764366\pi\)
0.738288 0.674485i \(-0.235634\pi\)
\(464\) 2.58480 0.119996
\(465\) 0.627553 + 2.14620i 0.0291021 + 0.0995277i
\(466\) −12.4451 −0.576510
\(467\) 17.3188i 0.801418i −0.916205 0.400709i \(-0.868764\pi\)
0.916205 0.400709i \(-0.131236\pi\)
\(468\) 1.70760i 0.0789338i
\(469\) −1.88457 −0.0870212
\(470\) −21.1184 + 6.17506i −0.974120 + 0.284834i
\(471\) 1.35012 0.0622102
\(472\) 5.09501i 0.234517i
\(473\) 0.519725i 0.0238970i
\(474\) 15.1900 0.697701
\(475\) −25.6744 + 16.4182i −1.17802 + 0.753318i
\(476\) −1.48979 −0.0682844
\(477\) 1.16009i 0.0531170i
\(478\) 20.7748i 0.950219i
\(479\) 36.6221 1.67331 0.836653 0.547733i \(-0.184509\pi\)
0.836653 + 0.547733i \(0.184509\pi\)
\(480\) 2.14620 0.627553i 0.0979602 0.0286437i
\(481\) 0 0
\(482\) 4.58480i 0.208832i
\(483\) 1.23468i 0.0561801i
\(484\) 6.84942 0.311337
\(485\) −3.06070 10.4675i −0.138979 0.475303i
\(486\) −1.00000 −0.0453609
\(487\) 34.9371i 1.58315i 0.611072 + 0.791575i \(0.290739\pi\)
−0.611072 + 0.791575i \(0.709261\pi\)
\(488\) 0.160092i 0.00724702i
\(489\) −20.4824 −0.926247
\(490\) 4.35203 + 14.8837i 0.196605 + 0.672379i
\(491\) 24.0095 1.08353 0.541767 0.840529i \(-0.317755\pi\)
0.541767 + 0.840529i \(0.317755\pi\)
\(492\) 11.1696i 0.503565i
\(493\) 15.0950i 0.679845i
\(494\) −10.4078 −0.468271
\(495\) 4.37245 1.27851i 0.196527 0.0574648i
\(496\) 1.00000 0.0449013
\(497\) 1.43944i 0.0645675i
\(498\) 8.42471i 0.377520i
\(499\) −4.65940 −0.208583 −0.104292 0.994547i \(-0.533258\pi\)
−0.104292 + 0.994547i \(0.533258\pi\)
\(500\) 7.35012 8.42471i 0.328707 0.376765i
\(501\) −9.42471 −0.421065
\(502\) 13.6052i 0.607231i
\(503\) 4.30928i 0.192141i −0.995375 0.0960706i \(-0.969373\pi\)
0.995375 0.0960706i \(-0.0306275\pi\)
\(504\) −0.255105 −0.0113633
\(505\) −1.23468 + 0.361024i −0.0549428 + 0.0160653i
\(506\) 9.86033 0.438345
\(507\) 10.0841i 0.447851i
\(508\) 7.41520i 0.328996i
\(509\) 33.1696 1.47022 0.735108 0.677950i \(-0.237131\pi\)
0.735108 + 0.677950i \(0.237131\pi\)
\(510\) 3.66485 + 12.5336i 0.162282 + 0.554998i
\(511\) 2.53445 0.112117
\(512\) 1.00000i 0.0441942i
\(513\) 6.09501i 0.269101i
\(514\) −6.25511 −0.275901
\(515\) −3.44513 11.7822i −0.151811 0.519185i
\(516\) −0.255105 −0.0112304
\(517\) 20.0468i 0.881658i
\(518\) 0 0
\(519\) 12.4247 0.545384
\(520\) 3.66485 1.07161i 0.160714 0.0469931i
\(521\) −20.4138 −0.894345 −0.447173 0.894448i \(-0.647569\pi\)
−0.447173 + 0.894448i \(0.647569\pi\)
\(522\) 2.58480i 0.113134i
\(523\) 18.0841i 0.790763i −0.918517 0.395381i \(-0.870612\pi\)
0.918517 0.395381i \(-0.129388\pi\)
\(524\) −17.2442 −0.753316
\(525\) −1.07459 + 0.687178i −0.0468991 + 0.0299909i
\(526\) −24.5292 −1.06953
\(527\) 5.83991i 0.254390i
\(528\) 2.03730i 0.0886620i
\(529\) −0.424711 −0.0184657
\(530\) −2.48979 + 0.728019i −0.108150 + 0.0316231i
\(531\) −5.09501 −0.221105
\(532\) 1.55487i 0.0674121i
\(533\) 19.0732i 0.826152i
\(534\) 10.2551 0.443782
\(535\) −8.37790 28.6520i −0.362208 1.23874i
\(536\) 7.38741 0.319088
\(537\) 10.6126i 0.457967i
\(538\) 15.1696i 0.654008i
\(539\) 14.1285 0.608557
\(540\) 0.627553 + 2.14620i 0.0270056 + 0.0923578i
\(541\) 10.4546 0.449480 0.224740 0.974419i \(-0.427847\pi\)
0.224740 + 0.974419i \(0.427847\pi\)
\(542\) 5.51021i 0.236684i
\(543\) 22.0841i 0.947720i
\(544\) 5.83991 0.250384
\(545\) 13.4451 3.93138i 0.575926 0.168402i
\(546\) −0.435617 −0.0186427
\(547\) 11.9444i 0.510707i −0.966848 0.255354i \(-0.917808\pi\)
0.966848 0.255354i \(-0.0821919\pi\)
\(548\) 16.1900i 0.691604i
\(549\) −0.160092 −0.00683255
\(550\) −5.48788 8.58182i −0.234004 0.365930i
\(551\) −15.7544 −0.671160
\(552\) 4.83991i 0.206000i
\(553\) 3.87505i 0.164784i
\(554\) −27.3319 −1.16122
\(555\) 0 0
\(556\) 15.0950 0.640171
\(557\) 20.0841i 0.850991i −0.904961 0.425495i \(-0.860100\pi\)
0.904961 0.425495i \(-0.139900\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) −0.435617 −0.0184246
\(560\) 0.160092 + 0.547507i 0.00676511 + 0.0231364i
\(561\) 11.8976 0.502318
\(562\) 21.8698i 0.922524i
\(563\) 28.9050i 1.21820i −0.793093 0.609100i \(-0.791531\pi\)
0.793093 0.609100i \(-0.208469\pi\)
\(564\) −9.83991 −0.414335
\(565\) 0.160092 + 0.547507i 0.00673511 + 0.0230338i
\(566\) −26.1622 −1.09968
\(567\) 0.255105i 0.0107134i
\(568\) 5.64252i 0.236755i
\(569\) 0.724475 0.0303716 0.0151858 0.999885i \(-0.495166\pi\)
0.0151858 + 0.999885i \(0.495166\pi\)
\(570\) −13.0811 + 3.82494i −0.547908 + 0.160209i
\(571\) 12.6594 0.529779 0.264890 0.964279i \(-0.414664\pi\)
0.264890 + 0.964279i \(0.414664\pi\)
\(572\) 3.47888i 0.145459i
\(573\) 5.75441i 0.240394i
\(574\) −2.84942 −0.118933
\(575\) 13.0373 + 20.3874i 0.543693 + 0.850214i
\(576\) 1.00000 0.0416667
\(577\) 31.0117i 1.29103i −0.763746 0.645516i \(-0.776642\pi\)
0.763746 0.645516i \(-0.223358\pi\)
\(578\) 17.1045i 0.711455i
\(579\) 13.8976 0.577566
\(580\) 5.54751 1.62210i 0.230348 0.0673540i
\(581\) 2.14919 0.0891633
\(582\) 4.87720i 0.202167i
\(583\) 2.36345i 0.0978841i
\(584\) −9.93492 −0.411110
\(585\) 1.07161 + 3.66485i 0.0443055 + 0.151523i
\(586\) 13.3596 0.551881
\(587\) 13.2959i 0.548782i 0.961618 + 0.274391i \(0.0884763\pi\)
−0.961618 + 0.274391i \(0.911524\pi\)
\(588\) 6.93492i 0.285991i
\(589\) −6.09501 −0.251141
\(590\) 3.19739 + 10.9349i 0.131634 + 0.450184i
\(591\) 14.1492 0.582020
\(592\) 0 0
\(593\) 3.05417i 0.125420i 0.998032 + 0.0627099i \(0.0199743\pi\)
−0.998032 + 0.0627099i \(0.980026\pi\)
\(594\) 2.03730 0.0835913
\(595\) −3.19739 + 0.934921i −0.131080 + 0.0383280i
\(596\) 13.4525 0.551036
\(597\) 16.8698i 0.690437i
\(598\) 8.26462i 0.337965i
\(599\) 0.983124 0.0401693 0.0200847 0.999798i \(-0.493606\pi\)
0.0200847 + 0.999798i \(0.493606\pi\)
\(600\) 4.21236 2.69371i 0.171969 0.109970i
\(601\) 43.8290 1.78782 0.893911 0.448244i \(-0.147950\pi\)
0.893911 + 0.448244i \(0.147950\pi\)
\(602\) 0.0650786i 0.00265240i
\(603\) 7.38741i 0.300839i
\(604\) −0.934921 −0.0380414
\(605\) 14.7002 4.29837i 0.597650 0.174754i
\(606\) −0.575289 −0.0233695
\(607\) 4.91450i 0.199473i 0.995014 + 0.0997367i \(0.0318001\pi\)
−0.995014 + 0.0997367i \(0.968200\pi\)
\(608\) 6.09501i 0.247185i
\(609\) −0.659396 −0.0267201
\(610\) 0.100466 + 0.343589i 0.00406775 + 0.0139115i
\(611\) −16.8026 −0.679761
\(612\) 5.83991i 0.236064i
\(613\) 28.6316i 1.15642i 0.815888 + 0.578210i \(0.196249\pi\)
−0.815888 + 0.578210i \(0.803751\pi\)
\(614\) −18.7748 −0.757690
\(615\) 7.00951 + 23.9722i 0.282651 + 0.966653i
\(616\) 0.519725 0.0209403
\(617\) 22.5943i 0.909613i 0.890590 + 0.454806i \(0.150292\pi\)
−0.890590 + 0.454806i \(0.849708\pi\)
\(618\) 5.48979i 0.220832i
\(619\) −21.0204 −0.844882 −0.422441 0.906390i \(-0.638827\pi\)
−0.422441 + 0.906390i \(0.638827\pi\)
\(620\) 2.14620 0.627553i 0.0861935 0.0252031i
\(621\) −4.83991 −0.194219
\(622\) 14.2924i 0.573073i
\(623\) 2.61613i 0.104813i
\(624\) 1.70760 0.0683586
\(625\) 10.4879 22.6937i 0.419515 0.907748i
\(626\) 19.1696 0.766172
\(627\) 12.4173i 0.495901i
\(628\) 1.35012i 0.0538756i
\(629\) 0 0
\(630\) −0.547507 + 0.160092i −0.0218132 + 0.00637821i
\(631\) −46.6352 −1.85652 −0.928258 0.371937i \(-0.878694\pi\)
−0.928258 + 0.371937i \(0.878694\pi\)
\(632\) 15.1900i 0.604227i
\(633\) 9.23468i 0.367046i
\(634\) 24.4247 0.970029
\(635\) 4.65343 + 15.9145i 0.184666 + 0.631548i
\(636\) −1.16009 −0.0460006
\(637\) 11.8421i 0.469200i
\(638\) 5.26601i 0.208483i
\(639\) 5.64252 0.223215
\(640\) −0.627553 2.14620i −0.0248062 0.0848360i
\(641\) 36.5015 1.44172 0.720860 0.693080i \(-0.243747\pi\)
0.720860 + 0.693080i \(0.243747\pi\)
\(642\) 13.3501i 0.526887i
\(643\) 4.45986i 0.175880i −0.996126 0.0879398i \(-0.971972\pi\)
0.996126 0.0879398i \(-0.0280283\pi\)
\(644\) −1.23468 −0.0486534
\(645\) −0.547507 + 0.160092i −0.0215581 + 0.00630361i
\(646\) −35.5943 −1.40044
\(647\) 10.4451i 0.410640i 0.978695 + 0.205320i \(0.0658236\pi\)
−0.978695 + 0.205320i \(0.934176\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 10.3801 0.407453
\(650\) 7.19301 4.59977i 0.282133 0.180418i
\(651\) −0.255105 −0.00999835
\(652\) 20.4824i 0.802154i
\(653\) 26.4437i 1.03482i −0.855737 0.517412i \(-0.826896\pi\)
0.855737 0.517412i \(-0.173104\pi\)
\(654\) 6.26462 0.244966
\(655\) −37.0095 + 10.8216i −1.44608 + 0.422836i
\(656\) 11.1696 0.436100
\(657\) 9.93492i 0.387598i
\(658\) 2.51021i 0.0978582i
\(659\) 17.2104 0.670424 0.335212 0.942143i \(-0.391192\pi\)
0.335212 + 0.942143i \(0.391192\pi\)
\(660\) −1.27851 4.37245i −0.0497660 0.170197i
\(661\) −28.1154 −1.09356 −0.546782 0.837275i \(-0.684147\pi\)
−0.546782 + 0.837275i \(0.684147\pi\)
\(662\) 7.24420i 0.281554i
\(663\) 9.97222i 0.387289i
\(664\) −8.42471 −0.326942
\(665\) −0.975762 3.33706i −0.0378384 0.129406i
\(666\) 0 0
\(667\) 12.5102i 0.484397i
\(668\) 9.42471i 0.364653i
\(669\) 16.9518 0.655394
\(670\) 15.8549 4.63599i 0.612527 0.179104i
\(671\) 0.326154 0.0125911
\(672\) 0.255105i 0.00984089i
\(673\) 9.56438i 0.368680i 0.982863 + 0.184340i \(0.0590147\pi\)
−0.982863 + 0.184340i \(0.940985\pi\)
\(674\) −16.5102 −0.635950
\(675\) 2.69371 + 4.21236i 0.103681 + 0.162134i
\(676\) −10.0841 −0.387850
\(677\) 16.0841i 0.618162i −0.951036 0.309081i \(-0.899978\pi\)
0.951036 0.309081i \(-0.100022\pi\)
\(678\) 0.255105i 0.00979725i
\(679\) 1.24420 0.0477480
\(680\) 12.5336 3.66485i 0.480642 0.140541i
\(681\) −9.16009 −0.351015
\(682\) 2.03730i 0.0780121i
\(683\) 31.4247i 1.20243i −0.799086 0.601217i \(-0.794683\pi\)
0.799086 0.601217i \(-0.205317\pi\)
\(684\) −6.09501 −0.233049
\(685\) −10.1601 34.7470i −0.388197 1.32762i
\(686\) −3.55487 −0.135726
\(687\) 4.60522i 0.175700i
\(688\) 0.255105i 0.00972579i
\(689\) −1.98097 −0.0754690
\(690\) 3.03730 + 10.3874i 0.115628 + 0.395442i
\(691\) −15.4546 −0.587922 −0.293961 0.955817i \(-0.594974\pi\)
−0.293961 + 0.955817i \(0.594974\pi\)
\(692\) 12.4247i 0.472317i
\(693\) 0.519725i 0.0197427i
\(694\) 4.27553 0.162297
\(695\) 32.3969 9.47291i 1.22889 0.359328i
\(696\) 2.58480 0.0979767
\(697\) 65.2295i 2.47074i
\(698\) 20.1492i 0.762658i
\(699\) −12.4451 −0.470718
\(700\) 0.687178 + 1.07459i 0.0259729 + 0.0406158i
\(701\) −39.2069 −1.48082 −0.740412 0.672153i \(-0.765370\pi\)
−0.740412 + 0.672153i \(0.765370\pi\)
\(702\) 1.70760i 0.0644491i
\(703\) 0 0
\(704\) −2.03730 −0.0767835
\(705\) −21.1184 + 6.17506i −0.795366 + 0.232566i
\(706\) −35.1587 −1.32322
\(707\) 0.146759i 0.00551944i
\(708\) 5.09501i 0.191482i
\(709\) −14.0950 −0.529349 −0.264675 0.964338i \(-0.585265\pi\)
−0.264675 + 0.964338i \(0.585265\pi\)
\(710\) −3.54098 12.1100i −0.132891 0.454479i
\(711\) 15.1900 0.569670
\(712\) 10.2551i 0.384326i
\(713\) 4.83991i 0.181256i
\(714\) −1.48979 −0.0557540
\(715\) −2.18318 7.46638i −0.0816464 0.279227i
\(716\) 10.6126 0.396611
\(717\) 20.7748i 0.775850i
\(718\) 0.622100i 0.0232166i
\(719\) −19.6052 −0.731151 −0.365576 0.930782i \(-0.619128\pi\)
−0.365576 + 0.930782i \(0.619128\pi\)
\(720\) 2.14620 0.627553i 0.0799842 0.0233875i
\(721\) 1.40047 0.0521563
\(722\) 18.1492i 0.675443i
\(723\) 4.58480i 0.170511i
\(724\) −22.0841 −0.820749
\(725\) 10.8881 6.96270i 0.404374 0.258588i
\(726\) 6.84942 0.254206
\(727\) 2.89547i 0.107387i 0.998557 + 0.0536936i \(0.0170994\pi\)
−0.998557 + 0.0536936i \(0.982901\pi\)
\(728\) 0.435617i 0.0161450i
\(729\) −1.00000 −0.0370370
\(730\) −21.3223 + 6.23468i −0.789175 + 0.230756i
\(731\) −1.48979 −0.0551019
\(732\) 0.160092i 0.00591716i
\(733\) 10.2646i 0.379132i −0.981868 0.189566i \(-0.939292\pi\)
0.981868 0.189566i \(-0.0607082\pi\)
\(734\) 28.0877 1.03673
\(735\) 4.35203 + 14.8837i 0.160527 + 0.548995i
\(736\) 4.83991 0.178401
\(737\) 15.0504i 0.554387i
\(738\) 11.1696i 0.411159i
\(739\) −13.9444 −0.512954 −0.256477 0.966550i \(-0.582562\pi\)
−0.256477 + 0.966550i \(0.582562\pi\)
\(740\) 0 0
\(741\) −10.4078 −0.382341
\(742\) 0.295945i 0.0108645i
\(743\) 27.1454i 0.995867i −0.867215 0.497933i \(-0.834092\pi\)
0.867215 0.497933i \(-0.165908\pi\)
\(744\) 1.00000 0.0366618
\(745\) 28.8718 8.44215i 1.05778 0.309296i
\(746\) 17.7449 0.649687
\(747\) 8.42471i 0.308244i
\(748\) 11.8976i 0.435020i
\(749\) 3.40568 0.124441
\(750\) 7.35012 8.42471i 0.268388 0.307627i
\(751\) 7.16961 0.261623 0.130811 0.991407i \(-0.458242\pi\)
0.130811 + 0.991407i \(0.458242\pi\)
\(752\) 9.83991i 0.358825i
\(753\) 13.6052i 0.495802i
\(754\) 4.41381 0.160741
\(755\) −2.00653 + 0.586712i −0.0730251 + 0.0213526i
\(756\) −0.255105 −0.00927808
\(757\) 39.2104i 1.42513i 0.701607 + 0.712564i \(0.252466\pi\)
−0.701607 + 0.712564i \(0.747534\pi\)
\(758\) 25.7748i 0.936184i
\(759\) 9.86033 0.357907
\(760\) 3.82494 + 13.0811i 0.138745 + 0.474502i
\(761\) −38.7566 −1.40492 −0.702462 0.711721i \(-0.747916\pi\)
−0.702462 + 0.711721i \(0.747916\pi\)
\(762\) 7.41520i 0.268624i
\(763\) 1.59814i 0.0578564i
\(764\) 5.75441 0.208187
\(765\) 3.66485 + 12.5336i 0.132503 + 0.453154i
\(766\) 19.7952 0.715231
\(767\) 8.70024i 0.314147i
\(768\) 1.00000i 0.0360844i
\(769\) −15.7449 −0.567775 −0.283888 0.958858i \(-0.591624\pi\)
−0.283888 + 0.958858i \(0.591624\pi\)
\(770\) 1.11543 0.326154i 0.0401974 0.0117538i
\(771\) −6.25511 −0.225272
\(772\) 13.8976i 0.500186i
\(773\) 21.9758i 0.790413i −0.918592 0.395207i \(-0.870673\pi\)
0.918592 0.395207i \(-0.129327\pi\)
\(774\) −0.255105 −0.00916956
\(775\) 4.21236 2.69371i 0.151312 0.0967608i
\(776\) −4.87720 −0.175081
\(777\) 0 0
\(778\) 23.9444i 0.858450i
\(779\) −68.0789 −2.43918
\(780\) 3.66485 1.07161i 0.131223 0.0383697i
\(781\) −11.4955 −0.411341
\(782\) 28.2646i 1.01074i
\(783\) 2.58480i 0.0923733i
\(784\) 6.93492 0.247676
\(785\) −0.847270 2.89762i −0.0302404 0.103421i
\(786\) −17.2442 −0.615080
\(787\) 6.00951i 0.214216i −0.994247 0.107108i \(-0.965841\pi\)
0.994247 0.107108i \(-0.0341591\pi\)
\(788\) 14.1492i 0.504044i
\(789\) −24.5292 −0.873264
\(790\) −9.53254 32.6008i −0.339153 1.15989i
\(791\) −0.0650786 −0.00231393
\(792\) 2.03730i 0.0723922i
\(793\) 0.273373i 0.00970774i
\(794\) −10.3297 −0.366587
\(795\) −2.48979 + 0.728019i −0.0883037 + 0.0258202i
\(796\) −16.8698 −0.597936
\(797\) 6.58480i 0.233246i 0.993176 + 0.116623i \(0.0372069\pi\)
−0.993176 + 0.116623i \(0.962793\pi\)
\(798\) 1.55487i 0.0550417i
\(799\) −57.4642 −2.03294
\(800\) −2.69371 4.21236i −0.0952369 0.148929i
\(801\) 10.2551 0.362346
\(802\) 0.398320i 0.0140652i
\(803\) 20.2404i 0.714268i
\(804\) 7.38741 0.260534
\(805\) −2.64988 + 0.774830i −0.0933961 + 0.0273092i
\(806\) 1.70760 0.0601476
\(807\) 15.1696i 0.533995i
\(808\) 0.575289i 0.0202386i
\(809\) 42.2273 1.48463 0.742317 0.670049i \(-0.233727\pi\)
0.742317 + 0.670049i \(0.233727\pi\)
\(810\) 0.627553 + 2.14620i 0.0220499 + 0.0754098i
\(811\) 3.29455 0.115687 0.0578437 0.998326i \(-0.481577\pi\)
0.0578437 + 0.998326i \(0.481577\pi\)
\(812\) 0.659396i 0.0231403i
\(813\) 5.51021i 0.193252i
\(814\) 0 0
\(815\) 12.8538 + 43.9594i 0.450249 + 1.53983i
\(816\) 5.83991 0.204438
\(817\) 1.55487i 0.0543980i
\(818\) 2.77483i 0.0970196i
\(819\) −0.435617 −0.0152217
\(820\) 23.9722 7.00951i 0.837146 0.244783i
\(821\) 6.52924 0.227872 0.113936 0.993488i \(-0.463654\pi\)
0.113936 + 0.993488i \(0.463654\pi\)
\(822\) 16.1900i 0.564692i
\(823\) 44.6725i 1.55718i 0.627531 + 0.778592i \(0.284066\pi\)
−0.627531 + 0.778592i \(0.715934\pi\)
\(824\) −5.48979 −0.191246
\(825\) −5.48788 8.58182i −0.191063 0.298781i
\(826\) −1.29976 −0.0452246
\(827\) 23.2551i 0.808659i 0.914613 + 0.404330i \(0.132495\pi\)
−0.914613 + 0.404330i \(0.867505\pi\)
\(828\) 4.83991i 0.168198i
\(829\) 44.6352 1.55024 0.775122 0.631812i \(-0.217689\pi\)
0.775122 + 0.631812i \(0.217689\pi\)
\(830\) −18.0811 + 5.28695i −0.627605 + 0.183513i
\(831\) −27.3319 −0.948131
\(832\) 1.70760i 0.0592003i
\(833\) 40.4993i 1.40322i
\(834\) 15.0950 0.522698
\(835\) 5.91450 + 20.2273i 0.204680 + 0.699995i
\(836\) 12.4173 0.429463
\(837\) 1.00000i 0.0345651i
\(838\) 35.1140i 1.21299i
\(839\) −40.1587 −1.38643 −0.693216 0.720730i \(-0.743807\pi\)
−0.693216 + 0.720730i \(0.743807\pi\)
\(840\) 0.160092 + 0.547507i 0.00552369 + 0.0188908i
\(841\) −22.3188 −0.769614
\(842\) 12.3392i 0.425237i
\(843\) 21.8698i 0.753237i
\(844\) 9.23468 0.317871
\(845\) −21.6425 + 6.32831i −0.744525 + 0.217700i
\(846\) −9.83991 −0.338303
\(847\) 1.74732i 0.0600387i
\(848\) 1.16009i 0.0398377i
\(849\) −26.1622 −0.897886
\(850\) 24.5998 15.7310i 0.843765 0.539569i
\(851\) 0 0
\(852\) 5.64252i 0.193310i
\(853\) 10.8589i 0.371803i 0.982568 + 0.185901i \(0.0595205\pi\)
−0.982568 + 0.185901i \(0.940479\pi\)
\(854\) −0.0408402 −0.00139752
\(855\) −13.0811 + 3.82494i −0.447365 + 0.130810i
\(856\) −13.3501 −0.456298
\(857\) 36.0190i 1.23039i 0.788376 + 0.615193i \(0.210922\pi\)
−0.788376 + 0.615193i \(0.789078\pi\)
\(858\) 3.47888i 0.118767i
\(859\) 35.9782 1.22756 0.613780 0.789477i \(-0.289648\pi\)
0.613780 + 0.789477i \(0.289648\pi\)
\(860\) 0.160092 + 0.547507i 0.00545909 + 0.0186698i
\(861\) −2.84942 −0.0971081
\(862\) 11.9444i 0.406829i
\(863\) 48.5388i 1.65228i 0.563466 + 0.826139i \(0.309468\pi\)
−0.563466 + 0.826139i \(0.690532\pi\)
\(864\) 1.00000 0.0340207
\(865\) −7.79716 26.6659i −0.265111 0.906669i
\(866\) 10.7653 0.365820
\(867\) 17.1045i 0.580900i
\(868\) 0.255105i 0.00865883i
\(869\) −30.9466 −1.04979
\(870\) 5.54751 1.62210i 0.188078 0.0549943i
\(871\) 12.6147 0.427434
\(872\) 6.26462i 0.212147i
\(873\) 4.87720i 0.165068i
\(874\) −29.4993 −0.997829
\(875\) 2.14919 + 1.87505i 0.0726558 + 0.0633883i
\(876\) −9.93492 −0.335670
\(877\) 56.7748i 1.91715i −0.284841 0.958575i \(-0.591941\pi\)
0.284841 0.958575i \(-0.408059\pi\)
\(878\) 23.2442i 0.784454i
\(879\) 13.3596 0.450609
\(880\) −4.37245 + 1.27851i −0.147395 + 0.0430986i
\(881\) −1.34657 −0.0453673 −0.0226836 0.999743i \(-0.507221\pi\)
−0.0226836 + 0.999743i \(0.507221\pi\)
\(882\) 6.93492i 0.233511i
\(883\) 36.3705i 1.22397i −0.790871 0.611983i \(-0.790372\pi\)
0.790871 0.611983i \(-0.209628\pi\)
\(884\) 9.97222 0.335402
\(885\) 3.19739 + 10.9349i 0.107479 + 0.367573i
\(886\) −34.4451 −1.15721
\(887\) 4.38005i 0.147068i 0.997293 + 0.0735339i \(0.0234277\pi\)
−0.997293 + 0.0735339i \(0.976572\pi\)
\(888\) 0 0
\(889\) −1.89165 −0.0634440
\(890\) −6.43562 22.0095i −0.215722 0.737761i
\(891\) 2.03730 0.0682520
\(892\) 16.9518i 0.567588i
\(893\) 59.9744i 2.00697i
\(894\) 13.4525 0.449919
\(895\) 22.7767 6.65995i 0.761342 0.222618i
\(896\) 0.255105 0.00852246
\(897\) 8.26462i 0.275948i
\(898\) 24.5570i 0.819478i
\(899\) 2.58480 0.0862080
\(900\) 4.21236 2.69371i 0.140412 0.0897902i
\(901\) −6.77483 −0.225702
\(902\) 22.7558i 0.757685i
\(903\) 0.0650786i 0.00216568i
\(904\) 0.255105 0.00848467
\(905\) −47.3969 + 13.8589i −1.57553 + 0.460687i
\(906\) −0.934921 −0.0310607
\(907\) 6.29240i 0.208936i 0.994528 + 0.104468i \(0.0333139\pi\)
−0.994528 + 0.104468i \(0.966686\pi\)
\(908\) 9.16009i 0.303988i
\(909\) −0.575289 −0.0190811
\(910\) 0.273373 + 0.934921i 0.00906221 + 0.0309923i
\(911\) −32.1682 −1.06578 −0.532890 0.846184i \(-0.678894\pi\)
−0.532890 + 0.846184i \(0.678894\pi\)
\(912\) 6.09501i 0.201826i
\(913\) 17.1636i 0.568033i
\(914\) 30.1154 0.996130
\(915\) 0.100466 + 0.343589i 0.00332130 + 0.0113587i
\(916\) −4.60522 −0.152161
\(917\) 4.39908i 0.145270i
\(918\) 5.83991i 0.192746i
\(919\) 32.1154 1.05939 0.529695 0.848188i \(-0.322306\pi\)
0.529695 + 0.848188i \(0.322306\pi\)
\(920\) 10.3874 3.03730i 0.342463 0.100137i
\(921\) −18.7748 −0.618652
\(922\) 22.7748i 0.750049i
\(923\) 9.63516i 0.317145i
\(924\) 0.519725 0.0170977
\(925\) 0 0
\(926\) −29.0264 −0.953866
\(927\) 5.48979i 0.180308i
\(928\) 2.58480i 0.0848503i
\(929\) 59.9540 1.96703 0.983513 0.180839i \(-0.0578814\pi\)
0.983513 + 0.180839i \(0.0578814\pi\)
\(930\) 2.14620 0.627553i 0.0703767 0.0205783i
\(931\) −42.2684 −1.38529
\(932\) 12.4451i 0.407654i
\(933\) 14.2924i 0.467912i
\(934\) −17.3188 −0.566688
\(935\) −7.46638 25.5347i −0.244177 0.835074i
\(936\) 1.70760 0.0558146
\(937\) 52.7661i 1.72379i −0.507085 0.861896i \(-0.669277\pi\)
0.507085 0.861896i \(-0.330723\pi\)
\(938\) 1.88457i 0.0615333i
\(939\) 19.1696 0.625576
\(940\) 6.17506 + 21.1184i 0.201408 + 0.688807i
\(941\) −54.3055 −1.77031 −0.885154 0.465299i \(-0.845947\pi\)
−0.885154 + 0.465299i \(0.845947\pi\)
\(942\) 1.35012i 0.0439892i
\(943\) 54.0599i 1.76043i
\(944\) 5.09501 0.165829
\(945\) −0.547507 + 0.160092i −0.0178104 + 0.00520779i
\(946\) 0.519725 0.0168977
\(947\) 49.2741i 1.60119i −0.599203 0.800597i \(-0.704516\pi\)
0.599203 0.800597i \(-0.295484\pi\)
\(948\) 15.1900i 0.493349i
\(949\) −16.9649 −0.550703
\(950\) 16.4182 + 25.6744i 0.532676 + 0.832986i
\(951\) 24.4247 0.792026
\(952\) 1.48979i 0.0482844i
\(953\) 20.9012i 0.677055i 0.940956 + 0.338528i \(0.109929\pi\)
−0.940956 + 0.338528i \(0.890071\pi\)
\(954\) −1.16009 −0.0375594
\(955\) 12.3501 3.61119i 0.399640 0.116855i
\(956\) 20.7748 0.671906
\(957\) 5.26601i 0.170226i
\(958\) 36.6221i 1.18321i
\(959\) 4.13016 0.133370
\(960\) −0.627553 2.14620i −0.0202542 0.0692683i
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 13.3501i 0.430202i
\(964\) −4.58480 −0.147667
\(965\) −8.72149 29.8271i −0.280755 0.960168i
\(966\) −1.23468 −0.0397253
\(967\) 7.19739i 0.231452i 0.993281 + 0.115726i \(0.0369195\pi\)
−0.993281 + 0.115726i \(0.963080\pi\)
\(968\) 6.84942i 0.220149i
\(969\) −35.5943 −1.14345
\(970\) −10.4675 + 3.06070i −0.336090 + 0.0982732i
\(971\) −42.7939 −1.37332 −0.686660 0.726979i \(-0.740924\pi\)
−0.686660 + 0.726979i \(0.740924\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 3.85081i 0.123451i
\(974\) 34.9371 1.11946
\(975\) 7.19301 4.59977i 0.230361 0.147311i
\(976\) 0.160092 0.00512441
\(977\) 18.1492i 0.580644i −0.956929 0.290322i \(-0.906238\pi\)
0.956929 0.290322i \(-0.0937624\pi\)
\(978\) 20.4824i 0.654956i
\(979\) −20.8927 −0.667733
\(980\) 14.8837 4.35203i 0.475443 0.139020i
\(981\) 6.26462 0.200014
\(982\) 24.0095i 0.766174i
\(983\) 6.30546i 0.201113i −0.994931 0.100556i \(-0.967938\pi\)
0.994931 0.100556i \(-0.0320623\pi\)
\(984\) 11.1696 0.356074
\(985\) −8.87936 30.3670i −0.282920 0.967573i
\(986\) 15.0950 0.480723
\(987\) 2.51021i 0.0799009i
\(988\) 10.4078i 0.331117i
\(989\) −1.23468 −0.0392607
\(990\) −1.27851 4.37245i −0.0406337 0.138966i
\(991\) −27.5549 −0.875309 −0.437655 0.899143i \(-0.644191\pi\)
−0.437655 + 0.899143i \(0.644191\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) 7.24420i 0.229888i
\(994\) 1.43944 0.0456561
\(995\) −36.2061 + 10.5867i −1.14781 + 0.335621i
\(996\) −8.42471 −0.266947
\(997\) 0.945827i 0.0299546i 0.999888 + 0.0149773i \(0.00476761\pi\)
−0.999888 + 0.0149773i \(0.995232\pi\)
\(998\) 4.65940i 0.147491i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 930.2.d.h.559.1 6
3.2 odd 2 2790.2.d.k.559.6 6
5.2 odd 4 4650.2.a.cn.1.2 3
5.3 odd 4 4650.2.a.ck.1.2 3
5.4 even 2 inner 930.2.d.h.559.4 yes 6
15.14 odd 2 2790.2.d.k.559.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.d.h.559.1 6 1.1 even 1 trivial
930.2.d.h.559.4 yes 6 5.4 even 2 inner
2790.2.d.k.559.3 6 15.14 odd 2
2790.2.d.k.559.6 6 3.2 odd 2
4650.2.a.ck.1.2 3 5.3 odd 4
4650.2.a.cn.1.2 3 5.2 odd 4