Properties

Label 930.2.br.b.11.3
Level $930$
Weight $2$
Character 930.11
Analytic conductor $7.426$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.br (of order \(30\), degree \(8\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 11.3
Character \(\chi\) \(=\) 930.11
Dual form 930.2.br.b.761.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{2} +(-1.15627 - 1.28959i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(1.49818 + 0.869165i) q^{6} +(-0.480398 - 4.57068i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(-0.326079 + 2.98223i) q^{9} +O(q^{10})\) \(q+(-0.951057 + 0.309017i) q^{2} +(-1.15627 - 1.28959i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(1.49818 + 0.869165i) q^{6} +(-0.480398 - 4.57068i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(-0.326079 + 2.98223i) q^{9} +(0.669131 - 0.743145i) q^{10} +(-0.516409 - 0.229920i) q^{11} +(-1.69344 - 0.363661i) q^{12} +(-1.00968 - 4.75019i) q^{13} +(1.86930 + 4.19852i) q^{14} +(1.64615 + 0.538682i) q^{15} +(0.309017 - 0.951057i) q^{16} +(-1.72428 + 0.767698i) q^{17} +(-0.611439 - 2.93703i) q^{18} +(0.927360 + 0.197116i) q^{19} +(-0.406737 + 0.913545i) q^{20} +(-5.33883 + 5.90445i) q^{21} +(0.562183 + 0.0590878i) q^{22} +(-1.21642 - 0.883780i) q^{23} +(1.72294 - 0.177441i) q^{24} +(0.500000 - 0.866025i) q^{25} +(2.42816 + 4.20569i) q^{26} +(4.22288 - 3.02775i) q^{27} +(-3.07523 - 3.41539i) q^{28} +(-0.844119 - 2.59793i) q^{29} +(-1.73205 - 0.00362720i) q^{30} +(4.21421 + 3.63874i) q^{31} +1.00000i q^{32} +(0.300606 + 0.931804i) q^{33} +(1.40265 - 1.26296i) q^{34} +(2.70138 + 3.71812i) q^{35} +(1.48911 + 2.60434i) q^{36} +(-3.87698 - 2.23838i) q^{37} +(-0.942884 + 0.0991011i) q^{38} +(-4.95832 + 6.79458i) q^{39} +(0.104528 - 0.994522i) q^{40} +(-6.77733 - 6.10233i) q^{41} +(3.25295 - 7.26526i) q^{42} +(-2.64923 + 12.4637i) q^{43} +(-0.552927 + 0.117528i) q^{44} +(-1.20872 - 2.74572i) q^{45} +(1.42999 + 0.464631i) q^{46} +(9.02610 + 2.93276i) q^{47} +(-1.58378 + 0.701173i) q^{48} +(-13.8133 + 2.93610i) q^{49} +(-0.207912 + 0.978148i) q^{50} +(2.98375 + 1.33594i) q^{51} +(-3.60894 - 3.24951i) q^{52} +(-0.0116490 + 0.110832i) q^{53} +(-3.08057 + 4.18450i) q^{54} +(0.562183 - 0.0590878i) q^{55} +(3.98013 + 2.29793i) q^{56} +(-0.818080 - 1.42383i) q^{57} +(1.60561 + 2.20993i) q^{58} +(-2.10574 + 1.89601i) q^{59} +(1.64840 - 0.531782i) q^{60} +4.31193i q^{61} +(-5.13239 - 2.15838i) q^{62} +(13.7874 + 0.0577467i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(3.24951 + 3.60894i) q^{65} +(-0.573836 - 0.793306i) q^{66} +(-3.48591 - 6.03777i) q^{67} +(-0.943729 + 1.63459i) q^{68} +(0.266796 + 2.59057i) q^{69} +(-3.71812 - 2.70138i) q^{70} +(-9.48638 - 0.997059i) q^{71} +(-2.22101 - 2.01671i) q^{72} +(-3.17525 + 7.13174i) q^{73} +(4.37893 + 0.930770i) q^{74} +(-1.69495 + 0.356565i) q^{75} +(0.866112 - 0.385618i) q^{76} +(-0.802808 + 2.47079i) q^{77} +(2.61601 - 7.99423i) q^{78} +(5.71023 + 12.8254i) q^{79} +(0.207912 + 0.978148i) q^{80} +(-8.78735 - 1.94488i) q^{81} +(8.33135 + 3.70936i) q^{82} +(-6.99219 + 7.76562i) q^{83} +(-0.848650 + 7.91489i) q^{84} +(1.10942 - 1.52699i) q^{85} +(-1.33191 - 12.6723i) q^{86} +(-2.37423 + 4.09248i) q^{87} +(0.489546 - 0.282640i) q^{88} +(1.50357 - 1.09240i) q^{89} +(1.99804 + 2.23782i) q^{90} +(-21.2265 + 6.89692i) q^{91} -1.50358 q^{92} +(-0.180290 - 9.64197i) q^{93} -9.49061 q^{94} +(-0.901676 + 0.292972i) q^{95} +(1.28959 - 1.15627i) q^{96} +(-1.12756 + 0.819221i) q^{97} +(12.2299 - 7.06094i) q^{98} +(0.854063 - 1.46508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176q + 44q^{4} + 4q^{7} + 4q^{9} + O(q^{10}) \) \( 176q + 44q^{4} + 4q^{7} + 4q^{9} + 22q^{10} + 38q^{13} - 44q^{16} + 4q^{18} + 8q^{19} - 42q^{21} + 4q^{22} + 88q^{25} + 30q^{27} + 36q^{28} + 32q^{31} - 70q^{33} + 14q^{34} - 4q^{36} + 42q^{37} + 58q^{39} - 22q^{40} - 12q^{42} - 46q^{43} + 16q^{45} + 10q^{46} + 38q^{49} + 38q^{51} + 2q^{52} + 4q^{55} + 78q^{57} - 40q^{58} + 16q^{63} + 44q^{64} + 34q^{66} - 76q^{67} + 148q^{69} - 8q^{70} - 4q^{72} - 52q^{73} + 12q^{76} + 60q^{78} + 8q^{79} - 108q^{81} - 40q^{82} - 8q^{84} + 28q^{87} + 6q^{88} + 24q^{90} - 20q^{91} - 28q^{93} - 20q^{94} - 112q^{97} - 132q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{23}{30}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 0.309017i −0.672499 + 0.218508i
\(3\) −1.15627 1.28959i −0.667573 0.744544i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 1.49818 + 0.869165i 0.611631 + 0.354835i
\(7\) −0.480398 4.57068i −0.181573 1.72755i −0.583700 0.811970i \(-0.698395\pi\)
0.402126 0.915584i \(-0.368271\pi\)
\(8\) −0.587785 + 0.809017i −0.207813 + 0.286031i
\(9\) −0.326079 + 2.98223i −0.108693 + 0.994075i
\(10\) 0.669131 0.743145i 0.211598 0.235003i
\(11\) −0.516409 0.229920i −0.155703 0.0693235i 0.327406 0.944884i \(-0.393826\pi\)
−0.483109 + 0.875560i \(0.660492\pi\)
\(12\) −1.69344 0.363661i −0.488855 0.104980i
\(13\) −1.00968 4.75019i −0.280036 1.31747i −0.863098 0.505037i \(-0.831479\pi\)
0.583062 0.812428i \(-0.301855\pi\)
\(14\) 1.86930 + 4.19852i 0.499592 + 1.12210i
\(15\) 1.64615 + 0.538682i 0.425035 + 0.139087i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −1.72428 + 0.767698i −0.418199 + 0.186194i −0.605038 0.796196i \(-0.706842\pi\)
0.186839 + 0.982390i \(0.440176\pi\)
\(18\) −0.611439 2.93703i −0.144118 0.692264i
\(19\) 0.927360 + 0.197116i 0.212751 + 0.0452216i 0.313054 0.949735i \(-0.398648\pi\)
−0.100303 + 0.994957i \(0.531981\pi\)
\(20\) −0.406737 + 0.913545i −0.0909491 + 0.204275i
\(21\) −5.33883 + 5.90445i −1.16503 + 1.28846i
\(22\) 0.562183 + 0.0590878i 0.119858 + 0.0125976i
\(23\) −1.21642 0.883780i −0.253641 0.184281i 0.453698 0.891156i \(-0.350104\pi\)
−0.707339 + 0.706875i \(0.750104\pi\)
\(24\) 1.72294 0.177441i 0.351693 0.0362200i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.42816 + 4.20569i 0.476200 + 0.824803i
\(27\) 4.22288 3.02775i 0.812694 0.582691i
\(28\) −3.07523 3.41539i −0.581163 0.645447i
\(29\) −0.844119 2.59793i −0.156749 0.482424i 0.841585 0.540125i \(-0.181623\pi\)
−0.998334 + 0.0577011i \(0.981623\pi\)
\(30\) −1.73205 0.00362720i −0.316227 0.000662233i
\(31\) 4.21421 + 3.63874i 0.756895 + 0.653537i
\(32\) 1.00000i 0.176777i
\(33\) 0.300606 + 0.931804i 0.0523287 + 0.162206i
\(34\) 1.40265 1.26296i 0.240553 0.216595i
\(35\) 2.70138 + 3.71812i 0.456616 + 0.628478i
\(36\) 1.48911 + 2.60434i 0.248184 + 0.434056i
\(37\) −3.87698 2.23838i −0.637372 0.367987i 0.146229 0.989251i \(-0.453286\pi\)
−0.783602 + 0.621264i \(0.786620\pi\)
\(38\) −0.942884 + 0.0991011i −0.152956 + 0.0160763i
\(39\) −4.95832 + 6.79458i −0.793967 + 1.08800i
\(40\) 0.104528 0.994522i 0.0165274 0.157248i
\(41\) −6.77733 6.10233i −1.05844 0.953025i −0.0594633 0.998230i \(-0.518939\pi\)
−0.998978 + 0.0452059i \(0.985606\pi\)
\(42\) 3.25295 7.26526i 0.501941 1.12105i
\(43\) −2.64923 + 12.4637i −0.404004 + 1.90069i 0.0295506 + 0.999563i \(0.490592\pi\)
−0.433555 + 0.901127i \(0.642741\pi\)
\(44\) −0.552927 + 0.117528i −0.0833569 + 0.0177180i
\(45\) −1.20872 2.74572i −0.180185 0.409308i
\(46\) 1.42999 + 0.464631i 0.210840 + 0.0685061i
\(47\) 9.02610 + 2.93276i 1.31659 + 0.427787i 0.881323 0.472514i \(-0.156653\pi\)
0.435269 + 0.900300i \(0.356653\pi\)
\(48\) −1.58378 + 0.701173i −0.228599 + 0.101206i
\(49\) −13.8133 + 2.93610i −1.97333 + 0.419443i
\(50\) −0.207912 + 0.978148i −0.0294032 + 0.138331i
\(51\) 2.98375 + 1.33594i 0.417808 + 0.187070i
\(52\) −3.60894 3.24951i −0.500470 0.450625i
\(53\) −0.0116490 + 0.110832i −0.00160011 + 0.0152240i −0.995293 0.0969134i \(-0.969103\pi\)
0.993693 + 0.112137i \(0.0357697\pi\)
\(54\) −3.08057 + 4.18450i −0.419213 + 0.569439i
\(55\) 0.562183 0.0590878i 0.0758047 0.00796740i
\(56\) 3.98013 + 2.29793i 0.531867 + 0.307073i
\(57\) −0.818080 1.42383i −0.108357 0.188591i
\(58\) 1.60561 + 2.20993i 0.210827 + 0.290178i
\(59\) −2.10574 + 1.89601i −0.274143 + 0.246840i −0.794722 0.606974i \(-0.792383\pi\)
0.520578 + 0.853814i \(0.325716\pi\)
\(60\) 1.64840 0.531782i 0.212807 0.0686528i
\(61\) 4.31193i 0.552087i 0.961145 + 0.276043i \(0.0890233\pi\)
−0.961145 + 0.276043i \(0.910977\pi\)
\(62\) −5.13239 2.15838i −0.651814 0.274115i
\(63\) 13.7874 + 0.0577467i 1.73705 + 0.00727540i
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) 3.24951 + 3.60894i 0.403052 + 0.447634i
\(66\) −0.573836 0.793306i −0.0706344 0.0976492i
\(67\) −3.48591 6.03777i −0.425871 0.737631i 0.570630 0.821207i \(-0.306699\pi\)
−0.996501 + 0.0835763i \(0.973366\pi\)
\(68\) −0.943729 + 1.63459i −0.114444 + 0.198223i
\(69\) 0.266796 + 2.59057i 0.0321185 + 0.311868i
\(70\) −3.71812 2.70138i −0.444401 0.322876i
\(71\) −9.48638 0.997059i −1.12583 0.118329i −0.476740 0.879044i \(-0.658182\pi\)
−0.649086 + 0.760715i \(0.724848\pi\)
\(72\) −2.22101 2.01671i −0.261748 0.237672i
\(73\) −3.17525 + 7.13174i −0.371635 + 0.834707i 0.626821 + 0.779163i \(0.284356\pi\)
−0.998456 + 0.0555435i \(0.982311\pi\)
\(74\) 4.37893 + 0.930770i 0.509040 + 0.108200i
\(75\) −1.69495 + 0.356565i −0.195716 + 0.0411726i
\(76\) 0.866112 0.385618i 0.0993499 0.0442334i
\(77\) −0.802808 + 2.47079i −0.0914885 + 0.281573i
\(78\) 2.61601 7.99423i 0.296204 0.905169i
\(79\) 5.71023 + 12.8254i 0.642451 + 1.44297i 0.881606 + 0.471986i \(0.156463\pi\)
−0.239155 + 0.970981i \(0.576870\pi\)
\(80\) 0.207912 + 0.978148i 0.0232452 + 0.109360i
\(81\) −8.78735 1.94488i −0.976372 0.216098i
\(82\) 8.33135 + 3.70936i 0.920044 + 0.409630i
\(83\) −6.99219 + 7.76562i −0.767493 + 0.852387i −0.992535 0.121962i \(-0.961081\pi\)
0.225042 + 0.974349i \(0.427748\pi\)
\(84\) −0.848650 + 7.91489i −0.0925953 + 0.863585i
\(85\) 1.10942 1.52699i 0.120333 0.165625i
\(86\) −1.33191 12.6723i −0.143624 1.36649i
\(87\) −2.37423 + 4.09248i −0.254545 + 0.438760i
\(88\) 0.489546 0.282640i 0.0521858 0.0301295i
\(89\) 1.50357 1.09240i 0.159378 0.115795i −0.505238 0.862980i \(-0.668595\pi\)
0.664616 + 0.747185i \(0.268595\pi\)
\(90\) 1.99804 + 2.23782i 0.210612 + 0.235887i
\(91\) −21.2265 + 6.89692i −2.22515 + 0.722993i
\(92\) −1.50358 −0.156759
\(93\) −0.180290 9.64197i −0.0186952 0.999825i
\(94\) −9.49061 −0.978881
\(95\) −0.901676 + 0.292972i −0.0925100 + 0.0300583i
\(96\) 1.28959 1.15627i 0.131618 0.118011i
\(97\) −1.12756 + 0.819221i −0.114486 + 0.0831793i −0.643555 0.765400i \(-0.722541\pi\)
0.529069 + 0.848579i \(0.322541\pi\)
\(98\) 12.2299 7.06094i 1.23541 0.713263i
\(99\) 0.854063 1.46508i 0.0858366 0.147246i
\(100\) −0.104528 0.994522i −0.0104528 0.0994522i
\(101\) −8.22058 + 11.3147i −0.817978 + 1.12585i 0.172065 + 0.985086i \(0.444956\pi\)
−0.990043 + 0.140765i \(0.955044\pi\)
\(102\) −3.25054 0.348529i −0.321851 0.0345096i
\(103\) −2.70848 + 3.00807i −0.266874 + 0.296394i −0.861655 0.507494i \(-0.830572\pi\)
0.594781 + 0.803888i \(0.297239\pi\)
\(104\) 4.43646 + 1.97524i 0.435031 + 0.193688i
\(105\) 1.67133 7.78282i 0.163105 0.759525i
\(106\) −0.0231703 0.109008i −0.00225050 0.0105878i
\(107\) −7.04877 15.8318i −0.681431 1.53052i −0.839658 0.543116i \(-0.817245\pi\)
0.158227 0.987403i \(-0.449422\pi\)
\(108\) 1.63671 4.93165i 0.157493 0.474548i
\(109\) −0.326699 + 1.00548i −0.0312921 + 0.0963071i −0.965483 0.260467i \(-0.916123\pi\)
0.934191 + 0.356774i \(0.116123\pi\)
\(110\) −0.516409 + 0.229920i −0.0492376 + 0.0219220i
\(111\) 1.59625 + 7.58788i 0.151510 + 0.720210i
\(112\) −4.49542 0.955532i −0.424778 0.0902893i
\(113\) −3.02132 + 6.78599i −0.284221 + 0.638372i −0.998081 0.0619167i \(-0.980279\pi\)
0.713860 + 0.700289i \(0.246945\pi\)
\(114\) 1.21803 + 1.10135i 0.114079 + 0.103150i
\(115\) 1.49534 + 0.157167i 0.139441 + 0.0146559i
\(116\) −2.20993 1.60561i −0.205187 0.149077i
\(117\) 14.4954 1.46217i 1.34010 0.135178i
\(118\) 1.41677 2.45392i 0.130425 0.225902i
\(119\) 4.33724 + 7.51232i 0.397594 + 0.688653i
\(120\) −1.40339 + 1.01514i −0.128111 + 0.0926689i
\(121\) −7.14662 7.93713i −0.649693 0.721557i
\(122\) −1.33246 4.10089i −0.120635 0.371277i
\(123\) −0.0330793 + 15.7959i −0.00298266 + 1.42427i
\(124\) 5.54817 + 0.466750i 0.498240 + 0.0419154i
\(125\) 1.00000i 0.0894427i
\(126\) −13.1305 + 4.20563i −1.16976 + 0.374668i
\(127\) 9.12726 8.21822i 0.809914 0.729249i −0.156100 0.987741i \(-0.549892\pi\)
0.966013 + 0.258492i \(0.0832255\pi\)
\(128\) 0.587785 + 0.809017i 0.0519534 + 0.0715077i
\(129\) 19.1362 10.9949i 1.68485 0.968050i
\(130\) −4.20569 2.42816i −0.368863 0.212963i
\(131\) 20.8565 2.19210i 1.82224 0.191525i 0.869218 0.494429i \(-0.164623\pi\)
0.953021 + 0.302904i \(0.0979560\pi\)
\(132\) 0.790896 + 0.577154i 0.0688386 + 0.0502348i
\(133\) 0.455454 4.33336i 0.0394929 0.375750i
\(134\) 5.18107 + 4.66506i 0.447576 + 0.402999i
\(135\) −2.14325 + 4.73355i −0.184461 + 0.407399i
\(136\) 0.392424 1.84621i 0.0336501 0.158311i
\(137\) −2.49684 + 0.530719i −0.213319 + 0.0453424i −0.313332 0.949644i \(-0.601445\pi\)
0.100012 + 0.994986i \(0.468112\pi\)
\(138\) −1.05427 2.38133i −0.0897452 0.202713i
\(139\) −8.76782 2.84884i −0.743677 0.241635i −0.0874187 0.996172i \(-0.527862\pi\)
−0.656258 + 0.754536i \(0.727862\pi\)
\(140\) 4.37092 + 1.42020i 0.369410 + 0.120029i
\(141\) −6.65456 15.0310i −0.560415 1.26584i
\(142\) 9.33019 1.98319i 0.782972 0.166426i
\(143\) −0.570753 + 2.68518i −0.0477288 + 0.224546i
\(144\) 2.73550 + 1.23168i 0.227958 + 0.102640i
\(145\) 2.02999 + 1.82782i 0.168582 + 0.151792i
\(146\) 0.816018 7.76389i 0.0675342 0.642545i
\(147\) 19.7583 + 14.4185i 1.62963 + 1.18922i
\(148\) −4.45223 + 0.467948i −0.365971 + 0.0384651i
\(149\) 6.19718 + 3.57794i 0.507693 + 0.293116i 0.731885 0.681429i \(-0.238641\pi\)
−0.224192 + 0.974545i \(0.571974\pi\)
\(150\) 1.50181 0.862882i 0.122622 0.0704540i
\(151\) −4.64699 6.39603i −0.378167 0.520502i 0.576931 0.816793i \(-0.304250\pi\)
−0.955098 + 0.296291i \(0.904250\pi\)
\(152\) −0.704559 + 0.634388i −0.0571473 + 0.0514557i
\(153\) −1.72720 5.39252i −0.139636 0.435959i
\(154\) 2.59794i 0.209348i
\(155\) −5.46898 1.04413i −0.439279 0.0838669i
\(156\) −0.0176148 + 8.41136i −0.00141031 + 0.673448i
\(157\) −3.14740 9.68670i −0.251190 0.773083i −0.994556 0.104199i \(-0.966772\pi\)
0.743367 0.668884i \(-0.233228\pi\)
\(158\) −9.39401 10.4331i −0.747347 0.830013i
\(159\) 0.156398 0.113130i 0.0124031 0.00897178i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −3.45511 + 5.98442i −0.272301 + 0.471639i
\(162\) 8.95826 0.865747i 0.703828 0.0680195i
\(163\) −6.43301 4.67385i −0.503872 0.366084i 0.306622 0.951831i \(-0.400801\pi\)
−0.810494 + 0.585747i \(0.800801\pi\)
\(164\) −9.06984 0.953278i −0.708235 0.0744385i
\(165\) −0.726234 0.656663i −0.0565373 0.0511212i
\(166\) 4.25026 9.54624i 0.329884 0.740932i
\(167\) 21.1368 + 4.49276i 1.63561 + 0.347660i 0.931869 0.362794i \(-0.118177\pi\)
0.703743 + 0.710454i \(0.251511\pi\)
\(168\) −1.63872 7.78975i −0.126430 0.600992i
\(169\) −9.66873 + 4.30480i −0.743749 + 0.331138i
\(170\) −0.583256 + 1.79508i −0.0447337 + 0.137676i
\(171\) −0.890238 + 2.70132i −0.0680782 + 0.206575i
\(172\) 5.18268 + 11.6405i 0.395176 + 0.887579i
\(173\) −1.64417 7.73521i −0.125004 0.588097i −0.995405 0.0957541i \(-0.969474\pi\)
0.870401 0.492343i \(-0.163860\pi\)
\(174\) 0.993385 4.62586i 0.0753084 0.350685i
\(175\) −4.19852 1.86930i −0.317378 0.141306i
\(176\) −0.378246 + 0.420085i −0.0285114 + 0.0316651i
\(177\) 4.87988 + 0.523230i 0.366794 + 0.0393284i
\(178\) −1.09240 + 1.50357i −0.0818792 + 0.112697i
\(179\) −1.86441 17.7387i −0.139353 1.32585i −0.811029 0.585006i \(-0.801092\pi\)
0.671676 0.740845i \(-0.265575\pi\)
\(180\) −2.59177 1.51087i −0.193179 0.112613i
\(181\) 3.59547 2.07585i 0.267250 0.154297i −0.360388 0.932803i \(-0.617356\pi\)
0.627637 + 0.778506i \(0.284022\pi\)
\(182\) 18.0564 13.1187i 1.33843 0.972424i
\(183\) 5.56062 4.98576i 0.411053 0.368558i
\(184\) 1.42999 0.464631i 0.105420 0.0342530i
\(185\) 4.47675 0.329138
\(186\) 3.15100 + 9.11434i 0.231042 + 0.668296i
\(187\) 1.06694 0.0780225
\(188\) 9.02610 2.93276i 0.658296 0.213893i
\(189\) −15.8675 17.8469i −1.15419 1.29817i
\(190\) 0.767011 0.557266i 0.0556448 0.0404283i
\(191\) 14.2033 8.20029i 1.02772 0.593352i 0.111387 0.993777i \(-0.464471\pi\)
0.916330 + 0.400425i \(0.131137\pi\)
\(192\) −0.869165 + 1.49818i −0.0627266 + 0.108122i
\(193\) 0.106420 + 1.01252i 0.00766031 + 0.0728830i 0.997684 0.0680168i \(-0.0216671\pi\)
−0.990024 + 0.140900i \(0.955000\pi\)
\(194\) 0.819221 1.12756i 0.0588166 0.0809542i
\(195\) 0.896745 8.36344i 0.0642172 0.598918i
\(196\) −9.44938 + 10.4946i −0.674956 + 0.749614i
\(197\) −17.3968 7.74555i −1.23947 0.551847i −0.320902 0.947112i \(-0.603986\pi\)
−0.918567 + 0.395265i \(0.870653\pi\)
\(198\) −0.359529 + 1.65729i −0.0255506 + 0.117778i
\(199\) 5.77308 + 27.1602i 0.409242 + 1.92533i 0.377955 + 0.925824i \(0.376627\pi\)
0.0312875 + 0.999510i \(0.490039\pi\)
\(200\) 0.406737 + 0.913545i 0.0287606 + 0.0645974i
\(201\) −3.75559 + 11.4767i −0.264899 + 0.809503i
\(202\) 4.32181 13.3012i 0.304082 0.935868i
\(203\) −11.4688 + 5.10624i −0.804952 + 0.358388i
\(204\) 3.19915 0.673001i 0.223985 0.0471195i
\(205\) 8.92051 + 1.89611i 0.623035 + 0.132430i
\(206\) 1.64637 3.69781i 0.114708 0.257639i
\(207\) 3.03228 3.33945i 0.210758 0.232108i
\(208\) −4.82971 0.507623i −0.334880 0.0351973i
\(209\) −0.433576 0.315011i −0.0299911 0.0217898i
\(210\) 0.815493 + 7.91837i 0.0562743 + 0.546420i
\(211\) −0.124531 + 0.215695i −0.00857310 + 0.0148490i −0.870280 0.492557i \(-0.836062\pi\)
0.861707 + 0.507406i \(0.169396\pi\)
\(212\) 0.0557215 + 0.0965124i 0.00382697 + 0.00662850i
\(213\) 9.68302 + 13.3864i 0.663470 + 0.917221i
\(214\) 11.5961 + 12.8788i 0.792692 + 0.880373i
\(215\) −3.93753 12.1185i −0.268537 0.826472i
\(216\) −0.0326446 + 5.19605i −0.00222118 + 0.353546i
\(217\) 14.6070 21.0098i 0.991588 1.42624i
\(218\) 1.05722i 0.0716039i
\(219\) 12.8685 4.15144i 0.869570 0.280529i
\(220\) 0.420085 0.378246i 0.0283221 0.0255013i
\(221\) 5.38769 + 7.41551i 0.362415 + 0.498821i
\(222\) −3.86291 6.72324i −0.259262 0.451234i
\(223\) −13.8417 7.99152i −0.926910 0.535152i −0.0410768 0.999156i \(-0.513079\pi\)
−0.885833 + 0.464004i \(0.846412\pi\)
\(224\) 4.57068 0.480398i 0.305391 0.0320979i
\(225\) 2.41964 + 1.77351i 0.161310 + 0.118234i
\(226\) 0.776457 7.38749i 0.0516491 0.491409i
\(227\) −10.5420 9.49207i −0.699698 0.630011i 0.240496 0.970650i \(-0.422690\pi\)
−0.940194 + 0.340639i \(0.889356\pi\)
\(228\) −1.49875 0.671050i −0.0992570 0.0444414i
\(229\) 5.03234 23.6753i 0.332547 1.56451i −0.420966 0.907076i \(-0.638309\pi\)
0.753513 0.657433i \(-0.228358\pi\)
\(230\) −1.47072 + 0.312611i −0.0969764 + 0.0206130i
\(231\) 4.11457 1.82161i 0.270719 0.119853i
\(232\) 2.59793 + 0.844119i 0.170563 + 0.0554191i
\(233\) 20.1250 + 6.53900i 1.31843 + 0.428384i 0.881956 0.471332i \(-0.156227\pi\)
0.436475 + 0.899716i \(0.356227\pi\)
\(234\) −13.3341 + 5.86992i −0.871676 + 0.383729i
\(235\) −9.28321 + 1.97321i −0.605570 + 0.128718i
\(236\) −0.589128 + 2.77163i −0.0383489 + 0.180418i
\(237\) 9.93690 22.1934i 0.645471 1.44162i
\(238\) −6.44640 5.80436i −0.417858 0.376241i
\(239\) 1.38479 13.1754i 0.0895746 0.852245i −0.853819 0.520570i \(-0.825720\pi\)
0.943394 0.331675i \(-0.107614\pi\)
\(240\) 1.02101 1.39912i 0.0659057 0.0903130i
\(241\) 18.1386 1.90645i 1.16841 0.122805i 0.499614 0.866248i \(-0.333475\pi\)
0.668799 + 0.743443i \(0.266809\pi\)
\(242\) 9.24955 + 5.34023i 0.594584 + 0.343283i
\(243\) 7.65245 + 13.5809i 0.490905 + 0.871213i
\(244\) 2.53449 + 3.48843i 0.162254 + 0.223324i
\(245\) 10.4946 9.44938i 0.670476 0.603699i
\(246\) −4.84975 15.0330i −0.309209 0.958471i
\(247\) 4.60416i 0.292956i
\(248\) −5.42085 + 1.27057i −0.344225 + 0.0806814i
\(249\) 18.0993 + 0.0379030i 1.14700 + 0.00240201i
\(250\) −0.309017 0.951057i −0.0195440 0.0601501i
\(251\) −0.111052 0.123336i −0.00700953 0.00778488i 0.739630 0.673014i \(-0.235001\pi\)
−0.746639 + 0.665229i \(0.768334\pi\)
\(252\) 11.1882 8.05734i 0.704792 0.507565i
\(253\) 0.424970 + 0.736070i 0.0267177 + 0.0462764i
\(254\) −6.14097 + 10.6365i −0.385319 + 0.667392i
\(255\) −3.25197 + 0.334912i −0.203646 + 0.0209730i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −10.0097 1.05206i −0.624385 0.0656255i −0.212948 0.977064i \(-0.568306\pi\)
−0.411437 + 0.911438i \(0.634973\pi\)
\(258\) −14.8020 + 16.3702i −0.921533 + 1.01917i
\(259\) −8.36841 + 18.7958i −0.519988 + 1.16791i
\(260\) 4.75019 + 1.00968i 0.294594 + 0.0626179i
\(261\) 8.02287 1.67022i 0.496603 0.103384i
\(262\) −19.1583 + 8.52982i −1.18360 + 0.526974i
\(263\) −1.41186 + 4.34527i −0.0870592 + 0.267941i −0.985103 0.171965i \(-0.944988\pi\)
0.898044 + 0.439906i \(0.144988\pi\)
\(264\) −0.930537 0.304506i −0.0572706 0.0187410i
\(265\) −0.0453279 0.101808i −0.00278447 0.00625403i
\(266\) 0.905919 + 4.26201i 0.0555454 + 0.261321i
\(267\) −3.14728 0.675867i −0.192610 0.0413624i
\(268\) −6.36907 2.83569i −0.389053 0.173218i
\(269\) −4.45749 + 4.95054i −0.271778 + 0.301840i −0.863548 0.504267i \(-0.831763\pi\)
0.591770 + 0.806107i \(0.298429\pi\)
\(270\) 0.575601 5.16417i 0.0350300 0.314282i
\(271\) 3.64164 5.01229i 0.221214 0.304475i −0.683957 0.729522i \(-0.739743\pi\)
0.905171 + 0.425047i \(0.139743\pi\)
\(272\) 0.197293 + 1.87712i 0.0119626 + 0.113817i
\(273\) 33.4378 + 19.3988i 2.02375 + 1.17407i
\(274\) 2.21063 1.27631i 0.133549 0.0771046i
\(275\) −0.457321 + 0.332263i −0.0275775 + 0.0200362i
\(276\) 1.73854 + 1.93900i 0.104648 + 0.116714i
\(277\) 20.4613 6.64829i 1.22940 0.399457i 0.378905 0.925436i \(-0.376301\pi\)
0.850498 + 0.525979i \(0.176301\pi\)
\(278\) 9.21903 0.552921
\(279\) −12.2257 + 11.3812i −0.731934 + 0.681376i
\(280\) −4.59585 −0.274655
\(281\) 13.2811 4.31528i 0.792282 0.257428i 0.115206 0.993342i \(-0.463247\pi\)
0.677075 + 0.735914i \(0.263247\pi\)
\(282\) 10.9737 + 12.2390i 0.653475 + 0.728821i
\(283\) −10.6337 + 7.72580i −0.632105 + 0.459251i −0.857129 0.515102i \(-0.827754\pi\)
0.225024 + 0.974353i \(0.427754\pi\)
\(284\) −8.26070 + 4.76932i −0.490182 + 0.283007i
\(285\) 1.42039 + 0.824036i 0.0841369 + 0.0488117i
\(286\) −0.286949 2.73013i −0.0169676 0.161436i
\(287\) −24.6360 + 33.9085i −1.45422 + 2.00156i
\(288\) −2.98223 0.326079i −0.175729 0.0192144i
\(289\) −8.99145 + 9.98601i −0.528909 + 0.587412i
\(290\) −2.49547 1.11105i −0.146539 0.0652433i
\(291\) 2.36022 + 0.506849i 0.138359 + 0.0297120i
\(292\) 1.62310 + 7.63607i 0.0949845 + 0.446867i
\(293\) 4.84034 + 10.8716i 0.282776 + 0.635125i 0.997962 0.0638088i \(-0.0203248\pi\)
−0.715186 + 0.698934i \(0.753658\pi\)
\(294\) −23.2468 7.60720i −1.35578 0.443661i
\(295\) 0.875614 2.69486i 0.0509802 0.156901i
\(296\) 4.08972 1.82086i 0.237710 0.105835i
\(297\) −2.87687 + 0.592632i −0.166933 + 0.0343880i
\(298\) −6.99951 1.48779i −0.405471 0.0861855i
\(299\) −2.96992 + 6.67056i −0.171755 + 0.385768i
\(300\) −1.16166 + 1.28473i −0.0670685 + 0.0741742i
\(301\) 58.2401 + 6.12128i 3.35690 + 0.352825i
\(302\) 6.39603 + 4.64699i 0.368050 + 0.267404i
\(303\) 24.0965 2.48163i 1.38431 0.142566i
\(304\) 0.474039 0.821060i 0.0271880 0.0470910i
\(305\) −2.15597 3.73424i −0.123450 0.213822i
\(306\) 3.30904 + 4.59486i 0.189165 + 0.262670i
\(307\) 2.14205 + 2.37898i 0.122253 + 0.135776i 0.801164 0.598445i \(-0.204214\pi\)
−0.678911 + 0.734221i \(0.737548\pi\)
\(308\) 0.802808 + 2.47079i 0.0457443 + 0.140786i
\(309\) 7.01090 + 0.0146820i 0.398836 + 0.000835230i
\(310\) 5.52397 0.696978i 0.313740 0.0395857i
\(311\) 10.7395i 0.608980i −0.952516 0.304490i \(-0.901514\pi\)
0.952516 0.304490i \(-0.0984860\pi\)
\(312\) −2.58250 8.00512i −0.146205 0.453201i
\(313\) −9.60134 + 8.64508i −0.542700 + 0.488649i −0.894279 0.447509i \(-0.852311\pi\)
0.351580 + 0.936158i \(0.385645\pi\)
\(314\) 5.98671 + 8.24000i 0.337850 + 0.465010i
\(315\) −11.9691 + 6.84371i −0.674385 + 0.385599i
\(316\) 12.1582 + 7.01956i 0.683954 + 0.394881i
\(317\) −29.2721 + 3.07662i −1.64408 + 0.172800i −0.880874 0.473350i \(-0.843044\pi\)
−0.763210 + 0.646151i \(0.776378\pi\)
\(318\) −0.113784 + 0.155922i −0.00638069 + 0.00874370i
\(319\) −0.161406 + 1.53567i −0.00903699 + 0.0859812i
\(320\) 0.743145 + 0.669131i 0.0415431 + 0.0374055i
\(321\) −12.2662 + 27.3959i −0.684634 + 1.52909i
\(322\) 1.43672 6.75921i 0.0800650 0.376676i
\(323\) −1.75035 + 0.372049i −0.0973922 + 0.0207014i
\(324\) −8.25228 + 3.59163i −0.458460 + 0.199535i
\(325\) −4.61863 1.50068i −0.256195 0.0832429i
\(326\) 7.56245 + 2.45719i 0.418845 + 0.136091i
\(327\) 1.67440 0.741294i 0.0925947 0.0409937i
\(328\) 8.92051 1.89611i 0.492553 0.104695i
\(329\) 9.06858 42.6643i 0.499967 2.35216i
\(330\) 0.893610 + 0.400105i 0.0491916 + 0.0220251i
\(331\) 14.5635 + 13.1131i 0.800485 + 0.720760i 0.964035 0.265775i \(-0.0856280\pi\)
−0.163550 + 0.986535i \(0.552295\pi\)
\(332\) −1.09229 + 10.3924i −0.0599471 + 0.570358i
\(333\) 7.93955 10.8322i 0.435085 0.593598i
\(334\) −21.4906 + 2.25875i −1.17591 + 0.123593i
\(335\) 6.03777 + 3.48591i 0.329879 + 0.190456i
\(336\) 3.96568 + 6.90210i 0.216346 + 0.376541i
\(337\) −10.8198 14.8922i −0.589393 0.811229i 0.405293 0.914187i \(-0.367169\pi\)
−0.994686 + 0.102957i \(0.967169\pi\)
\(338\) 7.86526 7.08191i 0.427814 0.385205i
\(339\) 12.2446 3.95018i 0.665035 0.214544i
\(340\) 1.88746i 0.102362i
\(341\) −1.33964 2.84801i −0.0725454 0.154228i
\(342\) 0.0119126 2.84421i 0.000644157 0.153797i
\(343\) 10.1145 + 31.1292i 0.546130 + 1.68082i
\(344\) −8.52613 9.46923i −0.459698 0.510547i
\(345\) −1.52634 2.11010i −0.0821752 0.113604i
\(346\) 3.95401 + 6.84855i 0.212569 + 0.368180i
\(347\) 6.62158 11.4689i 0.355465 0.615683i −0.631733 0.775186i \(-0.717656\pi\)
0.987197 + 0.159503i \(0.0509892\pi\)
\(348\) 0.484702 + 4.70642i 0.0259828 + 0.252291i
\(349\) −15.6867 11.3970i −0.839688 0.610069i 0.0825957 0.996583i \(-0.473679\pi\)
−0.922283 + 0.386514i \(0.873679\pi\)
\(350\) 4.57068 + 0.480398i 0.244313 + 0.0256783i
\(351\) −18.6462 17.0024i −0.995259 0.907521i
\(352\) 0.229920 0.516409i 0.0122548 0.0275247i
\(353\) −19.0711 4.05369i −1.01505 0.215756i −0.329792 0.944054i \(-0.606979\pi\)
−0.685261 + 0.728298i \(0.740312\pi\)
\(354\) −4.80273 + 1.01034i −0.255262 + 0.0536991i
\(355\) 8.71398 3.87971i 0.462490 0.205914i
\(356\) 0.574311 1.76755i 0.0304384 0.0936798i
\(357\) 4.67278 14.2795i 0.247310 0.755753i
\(358\) 7.25471 + 16.2944i 0.383423 + 0.861183i
\(359\) −2.44588 11.5070i −0.129089 0.607315i −0.994364 0.106018i \(-0.966190\pi\)
0.865275 0.501297i \(-0.167144\pi\)
\(360\) 2.93180 + 0.636020i 0.154520 + 0.0335212i
\(361\) −16.5362 7.36240i −0.870327 0.387495i
\(362\) −2.77803 + 3.08531i −0.146010 + 0.162160i
\(363\) −1.97221 + 18.3937i −0.103514 + 0.965417i
\(364\) −13.1187 + 18.0564i −0.687608 + 0.946411i
\(365\) −0.816018 7.76389i −0.0427123 0.406381i
\(366\) −3.74778 + 6.46007i −0.195900 + 0.337673i
\(367\) −23.6599 + 13.6600i −1.23504 + 0.713048i −0.968075 0.250659i \(-0.919353\pi\)
−0.266961 + 0.963707i \(0.586019\pi\)
\(368\) −1.21642 + 0.883780i −0.0634102 + 0.0460702i
\(369\) 20.4085 18.2217i 1.06242 0.948583i
\(370\) −4.25765 + 1.38339i −0.221344 + 0.0719192i
\(371\) 0.512176 0.0265908
\(372\) −5.81326 7.69454i −0.301404 0.398943i
\(373\) −20.8084 −1.07742 −0.538709 0.842492i \(-0.681088\pi\)
−0.538709 + 0.842492i \(0.681088\pi\)
\(374\) −1.01472 + 0.329703i −0.0524700 + 0.0170485i
\(375\) 1.28959 1.15627i 0.0665941 0.0597095i
\(376\) −7.67806 + 5.57844i −0.395966 + 0.287686i
\(377\) −11.4884 + 6.63281i −0.591681 + 0.341607i
\(378\) 20.6059 + 12.0701i 1.05985 + 0.620818i
\(379\) −3.54880 33.7646i −0.182290 1.73437i −0.578037 0.816011i \(-0.696181\pi\)
0.395747 0.918359i \(-0.370486\pi\)
\(380\) −0.557266 + 0.767011i −0.0285872 + 0.0393468i
\(381\) −21.1517 2.26793i −1.08364 0.116190i
\(382\) −10.9741 + 12.1880i −0.561486 + 0.623593i
\(383\) −15.7351 7.00570i −0.804024 0.357974i −0.0367747 0.999324i \(-0.511708\pi\)
−0.767249 + 0.641349i \(0.778375\pi\)
\(384\) 0.363661 1.69344i 0.0185580 0.0864182i
\(385\) −0.540143 2.54117i −0.0275282 0.129510i
\(386\) −0.414099 0.930081i −0.0210771 0.0473399i
\(387\) −36.3056 11.9647i −1.84552 0.608202i
\(388\) −0.430690 + 1.32553i −0.0218650 + 0.0672935i
\(389\) −30.6031 + 13.6254i −1.55164 + 0.690834i −0.990579 0.136941i \(-0.956273\pi\)
−0.561060 + 0.827775i \(0.689606\pi\)
\(390\) 1.73159 + 8.23121i 0.0876825 + 0.416804i
\(391\) 2.77592 + 0.590040i 0.140384 + 0.0298396i
\(392\) 5.74389 12.9010i 0.290110 0.651598i
\(393\) −26.9426 24.3616i −1.35908 1.22888i
\(394\) 18.9388 + 1.99055i 0.954124 + 0.100283i
\(395\) −11.3579 8.25199i −0.571477 0.415203i
\(396\) −0.170198 1.68728i −0.00855277 0.0847888i
\(397\) 18.2364 31.5864i 0.915260 1.58528i 0.108740 0.994070i \(-0.465318\pi\)
0.806520 0.591207i \(-0.201348\pi\)
\(398\) −13.8835 24.0469i −0.695916 1.20536i
\(399\) −6.11488 + 4.42318i −0.306127 + 0.221436i
\(400\) −0.669131 0.743145i −0.0334565 0.0371572i
\(401\) 7.41431 + 22.8189i 0.370253 + 1.13952i 0.946626 + 0.322335i \(0.104468\pi\)
−0.576373 + 0.817187i \(0.695532\pi\)
\(402\) 0.0252882 12.0755i 0.00126126 0.602272i
\(403\) 13.0297 23.6923i 0.649054 1.18020i
\(404\) 13.9857i 0.695814i
\(405\) 8.58250 2.70936i 0.426468 0.134629i
\(406\) 9.32956 8.40037i 0.463018 0.416903i
\(407\) 1.48746 + 2.04731i 0.0737306 + 0.101482i
\(408\) −2.83460 + 1.62865i −0.140334 + 0.0806304i
\(409\) −6.67674 3.85482i −0.330143 0.190608i 0.325761 0.945452i \(-0.394379\pi\)
−0.655905 + 0.754844i \(0.727713\pi\)
\(410\) −9.06984 + 0.953278i −0.447927 + 0.0470791i
\(411\) 3.57143 + 2.60624i 0.176166 + 0.128556i
\(412\) −0.423106 + 4.02558i −0.0208449 + 0.198326i
\(413\) 9.67766 + 8.71380i 0.476206 + 0.428778i
\(414\) −1.85192 + 4.11304i −0.0910170 + 0.202145i
\(415\) 2.17261 10.2213i 0.106649 0.501745i
\(416\) 4.75019 1.00968i 0.232897 0.0495038i
\(417\) 6.46414 + 14.6009i 0.316550 + 0.715010i
\(418\) 0.509699 + 0.165611i 0.0249302 + 0.00810031i
\(419\) −34.7375 11.2869i −1.69704 0.551401i −0.708945 0.705264i \(-0.750828\pi\)
−0.988092 + 0.153863i \(0.950828\pi\)
\(420\) −3.22249 7.27882i −0.157241 0.355170i
\(421\) −32.9456 + 7.00280i −1.60567 + 0.341296i −0.921606 0.388127i \(-0.873122\pi\)
−0.684063 + 0.729422i \(0.739789\pi\)
\(422\) 0.0517831 0.243620i 0.00252076 0.0118592i
\(423\) −11.6894 + 25.9616i −0.568357 + 1.26229i
\(424\) −0.0828183 0.0745699i −0.00402201 0.00362143i
\(425\) −0.197293 + 1.87712i −0.00957012 + 0.0910536i
\(426\) −13.3457 9.73900i −0.646603 0.471856i
\(427\) 19.7085 2.07144i 0.953759 0.100244i
\(428\) −15.0083 8.66503i −0.725453 0.418840i
\(429\) 4.12273 2.36876i 0.199047 0.114365i
\(430\) 7.48962 + 10.3086i 0.361182 + 0.497124i
\(431\) 7.96826 7.17466i 0.383818 0.345591i −0.454526 0.890734i \(-0.650191\pi\)
0.838343 + 0.545143i \(0.183525\pi\)
\(432\) −1.57462 4.95182i −0.0757590 0.238245i
\(433\) 3.58072i 0.172078i −0.996292 0.0860392i \(-0.972579\pi\)
0.996292 0.0860392i \(-0.0274210\pi\)
\(434\) −7.39969 + 24.4954i −0.355196 + 1.17582i
\(435\) 0.00990815 4.73131i 0.000475059 0.226849i
\(436\) 0.326699 + 1.00548i 0.0156460 + 0.0481535i
\(437\) −0.953851 1.05936i −0.0456289 0.0506760i
\(438\) −10.9558 + 7.92483i −0.523487 + 0.378663i
\(439\) 14.5806 + 25.2544i 0.695895 + 1.20533i 0.969878 + 0.243591i \(0.0783256\pi\)
−0.273983 + 0.961735i \(0.588341\pi\)
\(440\) −0.282640 + 0.489546i −0.0134743 + 0.0233382i
\(441\) −4.25191 42.1517i −0.202472 2.00723i
\(442\) −7.41551 5.38769i −0.352720 0.256266i
\(443\) 17.7222 + 1.86268i 0.842007 + 0.0884985i 0.515704 0.856767i \(-0.327530\pi\)
0.326303 + 0.945265i \(0.394197\pi\)
\(444\) 5.75144 + 5.20047i 0.272951 + 0.246803i
\(445\) −0.755924 + 1.69783i −0.0358342 + 0.0804850i
\(446\) 15.6338 + 3.32306i 0.740280 + 0.157351i
\(447\) −2.55154 12.1289i −0.120684 0.573676i
\(448\) −4.19852 + 1.86930i −0.198362 + 0.0883162i
\(449\) 2.87099 8.83599i 0.135490 0.416996i −0.860176 0.509998i \(-0.829646\pi\)
0.995666 + 0.0930018i \(0.0296462\pi\)
\(450\) −2.84926 0.938993i −0.134315 0.0442645i
\(451\) 2.09682 + 4.70954i 0.0987355 + 0.221764i
\(452\) 1.54441 + 7.26586i 0.0726428 + 0.341757i
\(453\) −2.87508 + 13.3883i −0.135083 + 0.629035i
\(454\) 12.9593 + 5.76983i 0.608208 + 0.270792i
\(455\) 14.9343 16.5862i 0.700129 0.777572i
\(456\) 1.63276 + 0.175068i 0.0764610 + 0.00819830i
\(457\) 6.37627 8.77618i 0.298269 0.410532i −0.633409 0.773817i \(-0.718345\pi\)
0.931678 + 0.363285i \(0.118345\pi\)
\(458\) 2.53003 + 24.0716i 0.118221 + 1.12479i
\(459\) −4.95702 + 8.46258i −0.231374 + 0.395000i
\(460\) 1.30214 0.751788i 0.0607124 0.0350523i
\(461\) −19.5268 + 14.1871i −0.909454 + 0.660757i −0.940877 0.338749i \(-0.889996\pi\)
0.0314228 + 0.999506i \(0.489996\pi\)
\(462\) −3.35028 + 3.00392i −0.155869 + 0.139755i
\(463\) −25.6083 + 8.32064i −1.19012 + 0.386693i −0.836117 0.548552i \(-0.815179\pi\)
−0.354002 + 0.935245i \(0.615179\pi\)
\(464\) −2.73163 −0.126813
\(465\) 4.97712 + 8.26004i 0.230808 + 0.383050i
\(466\) −21.1606 −0.980248
\(467\) −19.3442 + 6.28531i −0.895142 + 0.290849i −0.720230 0.693735i \(-0.755964\pi\)
−0.174912 + 0.984584i \(0.555964\pi\)
\(468\) 10.8676 9.70309i 0.502353 0.448525i
\(469\) −25.9221 + 18.8335i −1.19697 + 0.869650i
\(470\) 8.21911 4.74530i 0.379119 0.218885i
\(471\) −8.85262 + 15.2593i −0.407907 + 0.703111i
\(472\) −0.296186 2.81802i −0.0136331 0.129710i
\(473\) 4.23373 5.82723i 0.194667 0.267936i
\(474\) −2.59240 + 24.1779i −0.119073 + 1.11053i
\(475\) 0.634388 0.704559i 0.0291077 0.0323274i
\(476\) 7.92453 + 3.52823i 0.363220 + 0.161716i
\(477\) −0.326729 0.0708799i −0.0149599 0.00324537i
\(478\) 2.75441 + 12.9585i 0.125984 + 0.592706i
\(479\) 8.76637 + 19.6896i 0.400546 + 0.899640i 0.995400 + 0.0958067i \(0.0305431\pi\)
−0.594854 + 0.803834i \(0.702790\pi\)
\(480\) −0.538682 + 1.64615i −0.0245873 + 0.0751363i
\(481\) −6.71819 + 20.6765i −0.306323 + 0.942765i
\(482\) −16.6618 + 7.41829i −0.758922 + 0.337894i
\(483\) 11.7125 2.46394i 0.532937 0.112113i
\(484\) −10.4471 2.22059i −0.474867 0.100936i
\(485\) 0.566886 1.27325i 0.0257410 0.0578152i
\(486\) −11.4746 10.5514i −0.520500 0.478623i
\(487\) −6.28113 0.660174i −0.284625 0.0299153i −0.0388599 0.999245i \(-0.512373\pi\)
−0.245765 + 0.969329i \(0.579039\pi\)
\(488\) −3.48843 2.53449i −0.157914 0.114731i
\(489\) 1.41094 + 13.7002i 0.0638051 + 0.619543i
\(490\) −7.06094 + 12.2299i −0.318981 + 0.552491i
\(491\) 2.64454 + 4.58048i 0.119347 + 0.206714i 0.919509 0.393069i \(-0.128587\pi\)
−0.800162 + 0.599784i \(0.795253\pi\)
\(492\) 9.25784 + 12.7986i 0.417376 + 0.577006i
\(493\) 3.44992 + 3.83153i 0.155377 + 0.172563i
\(494\) 1.42276 + 4.37882i 0.0640132 + 0.197012i
\(495\) −0.00710271 + 1.69582i −0.000319243 + 0.0762216i
\(496\) 4.76291 2.88352i 0.213861 0.129474i
\(497\) 43.8382i 1.96641i
\(498\) −17.2252 + 5.55695i −0.771879 + 0.249013i
\(499\) 25.4800 22.9423i 1.14064 1.02704i 0.141331 0.989962i \(-0.454862\pi\)
0.999312 0.0370775i \(-0.0118048\pi\)
\(500\) 0.587785 + 0.809017i 0.0262866 + 0.0361803i
\(501\) −18.6460 32.4526i −0.833042 1.44987i
\(502\) 0.143729 + 0.0829822i 0.00641496 + 0.00370368i
\(503\) 12.1005 1.27181i 0.539534 0.0567073i 0.169157 0.985589i \(-0.445895\pi\)
0.370376 + 0.928882i \(0.379229\pi\)
\(504\) −8.15077 + 11.1203i −0.363064 + 0.495339i
\(505\) 1.46190 13.9091i 0.0650538 0.618946i
\(506\) −0.631629 0.568721i −0.0280793 0.0252828i
\(507\) 16.7311 + 7.49118i 0.743054 + 0.332695i
\(508\) 2.55356 12.0136i 0.113296 0.533015i
\(509\) −11.4546 + 2.43475i −0.507716 + 0.107918i −0.454646 0.890672i \(-0.650234\pi\)
−0.0530703 + 0.998591i \(0.516901\pi\)
\(510\) 2.98932 1.32343i 0.132369 0.0586027i
\(511\) 34.1223 + 11.0870i 1.50948 + 0.490460i
\(512\) 0.951057 + 0.309017i 0.0420312 + 0.0136568i
\(513\) 4.51295 1.97542i 0.199252 0.0872168i
\(514\) 9.84485 2.09259i 0.434238 0.0923000i
\(515\) 0.841576 3.95930i 0.0370843 0.174468i
\(516\) 9.01887 20.1431i 0.397034 0.886750i
\(517\) −3.98686 3.58978i −0.175342 0.157878i
\(518\) 2.15062 20.4618i 0.0944929 0.899040i
\(519\) −8.07414 + 11.0643i −0.354415 + 0.485669i
\(520\) −4.82971 + 0.507623i −0.211797 + 0.0222607i
\(521\) 25.8959 + 14.9510i 1.13452 + 0.655015i 0.945068 0.326874i \(-0.105995\pi\)
0.189452 + 0.981890i \(0.439329\pi\)
\(522\) −7.11407 + 4.06768i −0.311375 + 0.178038i
\(523\) 9.18368 + 12.6403i 0.401574 + 0.552720i 0.961138 0.276068i \(-0.0890313\pi\)
−0.559564 + 0.828787i \(0.689031\pi\)
\(524\) 15.5848 14.0326i 0.680824 0.613016i
\(525\) 2.44399 + 7.57579i 0.106665 + 0.330634i
\(526\) 4.56889i 0.199213i
\(527\) −10.0599 3.03896i −0.438217 0.132379i
\(528\) 0.979091 + 0.00205038i 0.0426095 + 8.92314e-5i
\(529\) −6.40878 19.7242i −0.278643 0.857574i
\(530\) 0.0745699 + 0.0828183i 0.00323911 + 0.00359740i
\(531\) −4.96770 6.89803i −0.215580 0.299349i
\(532\) −2.17861 3.77347i −0.0944549 0.163601i
\(533\) −22.1443 + 38.3550i −0.959175 + 1.66134i
\(534\) 3.20210 0.329775i 0.138568 0.0142708i
\(535\) 14.0203 + 10.1864i 0.606151 + 0.440395i
\(536\) 6.93362 + 0.728753i 0.299487 + 0.0314773i
\(537\) −20.7198 + 22.9150i −0.894127 + 0.988856i
\(538\) 2.70952 6.08569i 0.116816 0.262373i
\(539\) 7.80837 + 1.65972i 0.336330 + 0.0714892i
\(540\) 1.04839 + 5.08929i 0.0451154 + 0.219008i
\(541\) −14.8215 + 6.59894i −0.637225 + 0.283711i −0.699810 0.714329i \(-0.746732\pi\)
0.0625854 + 0.998040i \(0.480065\pi\)
\(542\) −1.91452 + 5.89230i −0.0822358 + 0.253096i
\(543\) −6.83433 2.23644i −0.293289 0.0959749i
\(544\) −0.767698 1.72428i −0.0329148 0.0739278i
\(545\) −0.219808 1.03412i −0.00941555 0.0442967i
\(546\) −37.7958 8.11651i −1.61751 0.347354i
\(547\) 13.1188 + 5.84087i 0.560920 + 0.249738i 0.667555 0.744561i \(-0.267341\pi\)
−0.106635 + 0.994298i \(0.534008\pi\)
\(548\) −1.70803 + 1.89696i −0.0729636 + 0.0810343i
\(549\) −12.8592 1.40603i −0.548816 0.0600079i
\(550\) 0.332263 0.457321i 0.0141677 0.0195002i
\(551\) −0.270707 2.57561i −0.0115325 0.109725i
\(552\) −2.25263 1.30686i −0.0958784 0.0556235i
\(553\) 55.8775 32.2609i 2.37615 1.37187i
\(554\) −17.4055 + 12.6458i −0.739487 + 0.537269i
\(555\) −5.17634 5.77317i −0.219723 0.245058i
\(556\) −8.76782 + 2.84884i −0.371838 + 0.120818i
\(557\) 23.6826 1.00346 0.501732 0.865023i \(-0.332696\pi\)
0.501732 + 0.865023i \(0.332696\pi\)
\(558\) 8.11035 14.6021i 0.343338 0.618158i
\(559\) 61.8796 2.61723
\(560\) 4.37092 1.42020i 0.184705 0.0600143i
\(561\) −1.23367 1.37592i −0.0520857 0.0580912i
\(562\) −11.2975 + 8.20815i −0.476558 + 0.346240i
\(563\) −26.1212 + 15.0811i −1.10088 + 0.635593i −0.936452 0.350796i \(-0.885911\pi\)
−0.164427 + 0.986389i \(0.552578\pi\)
\(564\) −14.2187 8.24890i −0.598714 0.347341i
\(565\) −0.776457 7.38749i −0.0326658 0.310794i
\(566\) 7.72580 10.6337i 0.324740 0.446966i
\(567\) −4.66801 + 41.0984i −0.196038 + 1.72597i
\(568\) 6.38259 7.08859i 0.267808 0.297430i
\(569\) −30.5701 13.6107i −1.28157 0.570590i −0.350883 0.936419i \(-0.614119\pi\)
−0.930682 + 0.365830i \(0.880785\pi\)
\(570\) −1.60552 0.344779i −0.0672477 0.0144412i
\(571\) −8.29677 39.0333i −0.347209 1.63349i −0.711842 0.702340i \(-0.752139\pi\)
0.364633 0.931151i \(-0.381194\pi\)
\(572\) 1.11656 + 2.50784i 0.0466858 + 0.104858i
\(573\) −26.9979 8.83469i −1.12785 0.369075i
\(574\) 12.9519 39.8619i 0.540602 1.66380i
\(575\) −1.37359 + 0.611560i −0.0572825 + 0.0255038i
\(576\) 2.93703 0.611439i 0.122376 0.0254766i
\(577\) 29.4890 + 6.26808i 1.22764 + 0.260944i 0.775699 0.631102i \(-0.217397\pi\)
0.451944 + 0.892046i \(0.350731\pi\)
\(578\) 5.46553 12.2758i 0.227336 0.510605i
\(579\) 1.18269 1.30799i 0.0491508 0.0543582i
\(580\) 2.71666 + 0.285533i 0.112803 + 0.0118561i
\(581\) 38.8532 + 28.2285i 1.61190 + 1.17111i
\(582\) −2.40133 + 0.247307i −0.0995384 + 0.0102512i
\(583\) 0.0314982 0.0545565i 0.00130452 0.00225950i
\(584\) −3.90333 6.76077i −0.161521 0.279763i
\(585\) −11.8223 + 8.51396i −0.488791 + 0.352009i
\(586\) −7.96295 8.84375i −0.328946 0.365332i
\(587\) 0.684066 + 2.10534i 0.0282344 + 0.0868966i 0.964181 0.265246i \(-0.0854532\pi\)
−0.935946 + 0.352143i \(0.885453\pi\)
\(588\) 24.4598 + 0.0512229i 1.00870 + 0.00211239i
\(589\) 3.19084 + 4.20511i 0.131476 + 0.173269i
\(590\) 2.83355i 0.116655i
\(591\) 10.1268 + 31.3906i 0.416561 + 1.29124i
\(592\) −3.32688 + 2.99553i −0.136734 + 0.123116i
\(593\) −26.9270 37.0619i −1.10576 1.52195i −0.827520 0.561437i \(-0.810249\pi\)
−0.278240 0.960511i \(-0.589751\pi\)
\(594\) 2.55293 1.45263i 0.104748 0.0596021i
\(595\) −7.51232 4.33724i −0.307975 0.177810i
\(596\) 7.11668 0.747994i 0.291511 0.0306390i
\(597\) 28.3502 38.8494i 1.16030 1.59000i
\(598\) 0.763249 7.26183i 0.0312116 0.296958i
\(599\) 20.4922 + 18.4512i 0.837287 + 0.753897i 0.971496 0.237056i \(-0.0761825\pi\)
−0.134209 + 0.990953i \(0.542849\pi\)
\(600\) 0.707801 1.58083i 0.0288958 0.0645370i
\(601\) 1.36595 6.42627i 0.0557181 0.262133i −0.941468 0.337103i \(-0.890553\pi\)
0.997186 + 0.0749702i \(0.0238862\pi\)
\(602\) −57.2812 + 12.1755i −2.33461 + 0.496236i
\(603\) 19.1427 8.42698i 0.779550 0.343173i
\(604\) −7.51899 2.44307i −0.305943 0.0994070i
\(605\) 10.1577 + 3.30044i 0.412970 + 0.134182i
\(606\) −22.1502 + 9.80639i −0.899792 + 0.398357i
\(607\) 33.9229 7.21053i 1.37689 0.292666i 0.540748 0.841185i \(-0.318141\pi\)
0.836139 + 0.548518i \(0.184808\pi\)
\(608\) −0.197116 + 0.927360i −0.00799413 + 0.0376094i
\(609\) 19.8460 + 8.88584i 0.804199 + 0.360072i
\(610\) 3.20439 + 2.88525i 0.129742 + 0.116820i
\(611\) 4.81765 45.8368i 0.194901 1.85436i
\(612\) −4.56698 3.34742i −0.184609 0.135311i
\(613\) −8.70831 + 0.915280i −0.351725 + 0.0369678i −0.278744 0.960365i \(-0.589918\pi\)
−0.0729815 + 0.997333i \(0.523251\pi\)
\(614\) −2.77235 1.60062i −0.111883 0.0645957i
\(615\) −7.86931 13.6962i −0.317321 0.552284i
\(616\) −1.52703 2.10178i −0.0615259 0.0846831i
\(617\) 7.52209 6.77292i 0.302828 0.272667i −0.503681 0.863890i \(-0.668021\pi\)
0.806508 + 0.591223i \(0.201354\pi\)
\(618\) −6.67230 + 2.15252i −0.268399 + 0.0865873i
\(619\) 38.2325i 1.53669i 0.640034 + 0.768347i \(0.278920\pi\)
−0.640034 + 0.768347i \(0.721080\pi\)
\(620\) −5.03823 + 2.36987i −0.202340 + 0.0951761i
\(621\) −7.81266 0.0490836i −0.313511 0.00196966i
\(622\) 3.31868 + 10.2139i 0.133067 + 0.409538i
\(623\) −5.71534 6.34752i −0.228980 0.254308i
\(624\) 4.92982 + 6.81528i 0.197351 + 0.272830i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 6.45994 11.1889i 0.258191 0.447200i
\(627\) 0.0950957 + 0.923372i 0.00379776 + 0.0368759i
\(628\) −8.24000 5.98671i −0.328812 0.238896i
\(629\) 8.40340 + 0.883232i 0.335065 + 0.0352168i
\(630\) 9.26851 10.2074i 0.369266 0.406674i
\(631\) −16.1501 + 36.2738i −0.642926 + 1.44404i 0.238229 + 0.971209i \(0.423433\pi\)
−0.881155 + 0.472827i \(0.843234\pi\)
\(632\) −13.7323 2.91890i −0.546243 0.116108i
\(633\) 0.422150 0.0888071i 0.0167789 0.00352976i
\(634\) 26.8887 11.9716i 1.06789 0.475453i
\(635\) −3.79533 + 11.6808i −0.150613 + 0.463539i
\(636\) 0.0600323 0.183452i 0.00238043 0.00727435i
\(637\) 27.8941 + 62.6512i 1.10520 + 2.48233i
\(638\) −0.321043 1.51039i −0.0127102 0.0597969i
\(639\) 6.06676 27.9654i 0.239997 1.10629i
\(640\) −0.913545 0.406737i −0.0361111 0.0160777i
\(641\) −10.0008 + 11.1070i −0.395006 + 0.438699i −0.907538 0.419969i \(-0.862041\pi\)
0.512532 + 0.858668i \(0.328708\pi\)
\(642\) 3.20009 29.8455i 0.126298 1.17791i
\(643\) 4.57814 6.30126i 0.180544 0.248498i −0.709147 0.705061i \(-0.750920\pi\)
0.889691 + 0.456563i \(0.150920\pi\)
\(644\) 0.722315 + 6.87236i 0.0284632 + 0.270809i
\(645\) −11.0750 + 19.0900i −0.436077 + 0.751668i
\(646\) 1.54972 0.894728i 0.0609727 0.0352026i
\(647\) −34.5060 + 25.0700i −1.35657 + 0.985605i −0.357914 + 0.933754i \(0.616512\pi\)
−0.998655 + 0.0518506i \(0.983488\pi\)
\(648\) 6.73851 5.96594i 0.264714 0.234364i
\(649\) 1.52335 0.494967i 0.0597968 0.0194291i
\(650\) 4.85631 0.190480
\(651\) −43.9837 + 5.45603i −1.72386 + 0.213839i
\(652\) −7.95163 −0.311410
\(653\) −10.5038 + 3.41290i −0.411047 + 0.133557i −0.507239 0.861806i \(-0.669334\pi\)
0.0961918 + 0.995363i \(0.469334\pi\)
\(654\) −1.36338 + 1.22243i −0.0533123 + 0.0478009i
\(655\) −16.9662 + 12.3267i −0.662924 + 0.481642i
\(656\) −7.89798 + 4.55990i −0.308364 + 0.178034i
\(657\) −20.2331 11.7948i −0.789367 0.460160i
\(658\) 4.55927 + 43.3785i 0.177739 + 1.69107i
\(659\) 21.4601 29.5373i 0.835966 1.15061i −0.150818 0.988562i \(-0.548191\pi\)
0.986783 0.162046i \(-0.0518094\pi\)
\(660\) −0.973513 0.104382i −0.0378939 0.00406306i
\(661\) 4.92255 5.46704i 0.191465 0.212643i −0.639767 0.768569i \(-0.720969\pi\)
0.831232 + 0.555925i \(0.187636\pi\)
\(662\) −17.9029 7.97089i −0.695816 0.309797i
\(663\) 3.33334 15.5222i 0.129456 0.602834i
\(664\) −2.17261 10.2213i −0.0843135 0.396664i
\(665\) 1.77224 + 3.98053i 0.0687247 + 0.154358i
\(666\) −4.20364 + 12.7554i −0.162888 + 0.494263i
\(667\) −1.26920 + 3.90619i −0.0491435 + 0.151248i
\(668\) 19.7408 8.78916i 0.763794 0.340063i
\(669\) 5.69899 + 27.0905i 0.220336 + 1.04738i
\(670\) −6.81947 1.44952i −0.263459 0.0559999i
\(671\) 0.991399 2.22672i 0.0382726 0.0859616i
\(672\) −5.90445 5.33883i −0.227769 0.205950i
\(673\) 2.26597 + 0.238163i 0.0873466 + 0.00918050i 0.148101 0.988972i \(-0.452684\pi\)
−0.0607543 + 0.998153i \(0.519351\pi\)
\(674\) 14.8922 + 10.8198i 0.573626 + 0.416764i
\(675\) −0.510669 5.17100i −0.0196557 0.199032i
\(676\) −5.29187 + 9.16579i −0.203534 + 0.352531i
\(677\) 0.445412 + 0.771476i 0.0171186 + 0.0296502i 0.874458 0.485102i \(-0.161217\pi\)
−0.857339 + 0.514752i \(0.827884\pi\)
\(678\) −10.4246 + 7.54063i −0.400355 + 0.289596i
\(679\) 4.28607 + 4.76017i 0.164484 + 0.182678i
\(680\) 0.583256 + 1.79508i 0.0223669 + 0.0688381i
\(681\) −0.0514542 + 24.5703i −0.00197173 + 0.941534i
\(682\) 2.15415 + 2.29465i 0.0824868 + 0.0878665i
\(683\) 6.63621i 0.253928i −0.991907 0.126964i \(-0.959477\pi\)
0.991907 0.126964i \(-0.0405232\pi\)
\(684\) 0.867579 + 2.70868i 0.0331727 + 0.103569i
\(685\) 1.89696 1.70803i 0.0724793 0.0652607i
\(686\) −19.2389 26.4800i −0.734544 1.01101i
\(687\) −36.3502 + 20.8854i −1.38685 + 0.796828i
\(688\) 11.0350 + 6.37105i 0.420705 + 0.242894i
\(689\) 0.538237 0.0565710i 0.0205052 0.00215518i
\(690\) 2.10369 + 1.53516i 0.0800861 + 0.0584426i
\(691\) 4.77691 45.4493i 0.181722 1.72897i −0.400807 0.916162i \(-0.631270\pi\)
0.582530 0.812809i \(-0.302063\pi\)
\(692\) −5.87681 5.29150i −0.223403 0.201153i
\(693\) −7.10668 3.19983i −0.269960 0.121551i
\(694\) −2.75341 + 12.9538i −0.104518 + 0.491718i
\(695\) 9.01758 1.91674i 0.342056 0.0727063i
\(696\) −1.91534 4.32629i −0.0726009 0.163988i
\(697\) 16.3708 + 5.31918i 0.620086 + 0.201478i
\(698\) 18.4408 + 5.99177i 0.697994 + 0.226792i
\(699\) −14.8373 33.5138i −0.561198 1.26761i
\(700\) −4.49542 + 0.955532i −0.169911 + 0.0361157i
\(701\) 9.01448 42.4098i 0.340472 1.60180i −0.391310 0.920259i \(-0.627978\pi\)
0.731783 0.681538i \(-0.238689\pi\)
\(702\) 22.9876 + 10.4083i 0.867611 + 0.392835i
\(703\) −3.15414 2.84000i −0.118961 0.107113i
\(704\) −0.0590878 + 0.562183i −0.00222696 + 0.0211881i
\(705\) 13.2785 + 9.68997i 0.500098 + 0.364945i
\(706\) 19.3904 2.03801i 0.729766 0.0767015i
\(707\) 55.6648 + 32.1381i 2.09349 + 1.20868i
\(708\) 4.25545 2.44502i 0.159930 0.0918894i
\(709\) −16.7918 23.1119i −0.630628 0.867984i 0.367445 0.930045i \(-0.380233\pi\)
−0.998072 + 0.0620609i \(0.980233\pi\)
\(710\) −7.08859 + 6.38259i −0.266030 + 0.239534i
\(711\) −40.1102 + 12.8471i −1.50425 + 0.481804i
\(712\) 1.85851i 0.0696506i
\(713\) −1.91040 8.15067i −0.0715451 0.305245i
\(714\) −0.0314641 + 15.0246i −0.00117751 + 0.562282i
\(715\) −0.848305 2.61081i −0.0317248 0.0976389i
\(716\) −11.9349 13.2550i −0.446027 0.495363i
\(717\) −18.5920 + 13.4485i −0.694332 + 0.502243i
\(718\) 5.88202 + 10.1880i 0.219515 + 0.380211i
\(719\) −2.29211 + 3.97006i −0.0854814 + 0.148058i −0.905596 0.424141i \(-0.860576\pi\)
0.820115 + 0.572199i \(0.193909\pi\)
\(720\) −2.98485 + 0.301087i −0.111239 + 0.0112208i
\(721\) 15.0501 + 10.9345i 0.560494 + 0.407222i
\(722\) 18.0020 + 1.89209i 0.669965 + 0.0704161i
\(723\) −23.4317 21.1870i −0.871435 0.787954i
\(724\) 1.68865 3.79276i 0.0627581 0.140957i
\(725\) −2.67193 0.567937i −0.0992331 0.0210927i
\(726\) −3.80828 18.1029i −0.141338 0.671860i
\(727\) −30.5255 + 13.5908i −1.13213 + 0.504055i −0.885307 0.465006i \(-0.846052\pi\)
−0.246819 + 0.969062i \(0.579385\pi\)
\(728\) 6.89692 21.2265i 0.255617 0.786708i
\(729\) 8.66544 25.5717i 0.320942 0.947099i
\(730\) 3.17525 + 7.13174i 0.117521 + 0.263958i
\(731\) −5.00031 23.5246i −0.184943 0.870090i
\(732\) 1.56808 7.30202i 0.0579580 0.269890i
\(733\) −25.6819 11.4343i −0.948583 0.422337i −0.126667 0.991945i \(-0.540428\pi\)
−0.821916 + 0.569609i \(0.807095\pi\)
\(734\) 18.2807 20.3028i 0.674753 0.749389i
\(735\) −24.3204 2.60768i −0.897072 0.0961859i
\(736\) 0.883780 1.21642i 0.0325766 0.0448378i
\(737\) 0.411949 + 3.91944i 0.0151743 + 0.144374i
\(738\) −13.7788 + 23.6364i −0.507205 + 0.870069i
\(739\) 4.62354 2.66940i 0.170080 0.0981956i −0.412544 0.910938i \(-0.635360\pi\)
0.582623 + 0.812742i \(0.302026\pi\)
\(740\) 3.62177 2.63137i 0.133139 0.0967311i
\(741\) −5.93747 + 5.32365i −0.218119 + 0.195569i
\(742\) −0.487108 + 0.158271i −0.0178823 + 0.00581031i
\(743\) 51.7169 1.89731 0.948655 0.316314i \(-0.102445\pi\)
0.948655 + 0.316314i \(0.102445\pi\)
\(744\) 7.90649 + 5.52155i 0.289866 + 0.202430i
\(745\) −7.15588 −0.262171
\(746\) 19.7900 6.43015i 0.724562 0.235424i
\(747\) −20.8788 23.3845i −0.763916 0.855594i
\(748\) 0.863173 0.627132i 0.0315607 0.0229302i
\(749\) −68.9759 + 39.8232i −2.52032 + 1.45511i
\(750\) −0.869165 + 1.49818i −0.0317374 + 0.0547059i
\(751\) −4.04236 38.4605i −0.147508 1.40344i −0.778495 0.627650i \(-0.784017\pi\)
0.630987 0.775793i \(-0.282650\pi\)
\(752\) 5.57844 7.67806i 0.203425 0.279990i
\(753\) −0.0306463 + 0.285821i −0.00111681 + 0.0104159i
\(754\) 8.87644 9.85828i 0.323261 0.359017i
\(755\) 7.22243 + 3.21563i 0.262851 + 0.117029i
\(756\) −23.3273 5.11174i −0.848404 0.185912i
\(757\) 9.59651 + 45.1480i 0.348791 + 1.64093i 0.706944 + 0.707269i \(0.250073\pi\)
−0.358153 + 0.933663i \(0.616593\pi\)
\(758\) 13.8089 + 31.0154i 0.501563 + 1.12653i
\(759\) 0.457848 1.39913i 0.0166188 0.0507853i
\(760\) 0.292972 0.901676i 0.0106272 0.0327072i
\(761\) 5.25115 2.33796i 0.190354 0.0847510i −0.309346 0.950949i \(-0.600110\pi\)
0.499700 + 0.866198i \(0.333444\pi\)
\(762\) 20.8173 4.37931i 0.754131 0.158646i
\(763\) 4.75265 + 1.01021i 0.172057 + 0.0365720i
\(764\) 6.67072 14.9827i 0.241338 0.542054i
\(765\) 4.19206 + 3.80646i 0.151564 + 0.137623i
\(766\) 17.1298 + 1.80042i 0.618925 + 0.0650517i
\(767\) 11.1325 + 8.08827i 0.401973 + 0.292050i
\(768\) 0.177441 + 1.72294i 0.00640285 + 0.0621712i
\(769\) 7.04604 12.2041i 0.254087 0.440091i −0.710560 0.703636i \(-0.751558\pi\)
0.964647 + 0.263545i \(0.0848918\pi\)
\(770\) 1.29897 + 2.24988i 0.0468117 + 0.0810802i
\(771\) 10.2171 + 14.1248i 0.367961 + 0.508692i
\(772\) 0.681242 + 0.756596i 0.0245184 + 0.0272305i
\(773\) 0.742095 + 2.28393i 0.0266913 + 0.0821473i