Properties

Label 930.2.br.a.11.2
Level $930$
Weight $2$
Character 930.11
Analytic conductor $7.426$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.br (of order \(30\), degree \(8\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 11.2
Character \(\chi\) \(=\) 930.11
Dual form 930.2.br.a.761.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{2} +(-1.68179 + 0.414242i) q^{3} +(0.809017 - 0.587785i) q^{4} +(0.866025 - 0.500000i) q^{5} +(1.47147 - 0.913668i) q^{6} +(-0.309626 - 2.94590i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(2.65681 - 1.39333i) q^{9} +O(q^{10})\) \(q+(-0.951057 + 0.309017i) q^{2} +(-1.68179 + 0.414242i) q^{3} +(0.809017 - 0.587785i) q^{4} +(0.866025 - 0.500000i) q^{5} +(1.47147 - 0.913668i) q^{6} +(-0.309626 - 2.94590i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(2.65681 - 1.39333i) q^{9} +(-0.669131 + 0.743145i) q^{10} +(0.630734 + 0.280821i) q^{11} +(-1.11711 + 1.32366i) q^{12} +(-0.960045 - 4.51666i) q^{13} +(1.20480 + 2.70604i) q^{14} +(-1.24935 + 1.19964i) q^{15} +(0.309017 - 0.951057i) q^{16} +(-2.12963 + 0.948174i) q^{17} +(-2.09621 + 2.14614i) q^{18} +(-0.844454 - 0.179494i) q^{19} +(0.406737 - 0.913545i) q^{20} +(1.74104 + 4.82611i) q^{21} +(-0.686642 - 0.0721689i) q^{22} +(0.00251392 + 0.00182647i) q^{23} +(0.653400 - 1.60408i) q^{24} +(0.500000 - 0.866025i) q^{25} +(2.30878 + 3.99892i) q^{26} +(-3.89100 + 3.44385i) q^{27} +(-1.98205 - 2.20129i) q^{28} +(2.51022 + 7.72566i) q^{29} +(0.817492 - 1.52699i) q^{30} +(-5.16920 - 2.06867i) q^{31} +1.00000i q^{32} +(-1.17709 - 0.211004i) q^{33} +(1.73240 - 1.55986i) q^{34} +(-1.74109 - 2.39641i) q^{35} +(1.33042 - 2.68886i) q^{36} +(0.876733 + 0.506182i) q^{37} +(0.858591 - 0.0902415i) q^{38} +(3.48558 + 7.19836i) q^{39} +(-0.104528 + 0.994522i) q^{40} +(-2.95825 - 2.66362i) q^{41} +(-3.14718 - 4.05189i) q^{42} +(-0.490022 + 2.30537i) q^{43} +(0.675336 - 0.143547i) q^{44} +(1.60420 - 2.53507i) q^{45} +(-0.00295529 - 0.000960231i) q^{46} +(-10.3956 - 3.37775i) q^{47} +(-0.125733 + 1.72748i) q^{48} +(-1.73542 + 0.368874i) q^{49} +(-0.207912 + 0.978148i) q^{50} +(3.18881 - 2.47681i) q^{51} +(-3.43152 - 3.08975i) q^{52} +(0.465783 - 4.43163i) q^{53} +(2.63635 - 4.47768i) q^{54} +(0.686642 - 0.0721689i) q^{55} +(2.56528 + 1.48106i) q^{56} +(1.49455 - 0.0479377i) q^{57} +(-4.77472 - 6.57184i) q^{58} +(-6.90993 + 6.22172i) q^{59} +(-0.305615 + 1.70488i) q^{60} -4.47690i q^{61} +(5.55545 + 0.370056i) q^{62} +(-4.92724 - 7.39527i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-3.08975 - 3.43152i) q^{65} +(1.18468 - 0.163063i) q^{66} +(-6.17417 - 10.6940i) q^{67} +(-1.16559 + 2.01886i) q^{68} +(-0.00498447 - 0.00203036i) q^{69} +(2.39641 + 1.74109i) q^{70} +(1.89851 + 0.199542i) q^{71} +(-0.434401 + 2.96838i) q^{72} +(-0.242796 + 0.545329i) q^{73} +(-0.990242 - 0.210482i) q^{74} +(-0.482149 + 1.66359i) q^{75} +(-0.788682 + 0.351144i) q^{76} +(0.631977 - 1.94503i) q^{77} +(-5.53940 - 5.76894i) q^{78} +(-3.21842 - 7.22868i) q^{79} +(-0.207912 - 0.978148i) q^{80} +(5.11724 - 7.40364i) q^{81} +(3.63656 + 1.61910i) q^{82} +(6.89351 - 7.65602i) q^{83} +(4.24525 + 2.88105i) q^{84} +(-1.37023 + 1.88596i) q^{85} +(-0.246360 - 2.34396i) q^{86} +(-7.42195 - 11.9531i) q^{87} +(-0.597925 + 0.345212i) q^{88} +(2.82405 - 2.05179i) q^{89} +(-0.742302 + 2.90671i) q^{90} +(-13.0084 + 4.22667i) q^{91} +0.00310737 q^{92} +(9.55041 + 1.33777i) q^{93} +10.9306 q^{94} +(-0.821066 + 0.266781i) q^{95} +(-0.414242 - 1.68179i) q^{96} +(-8.31828 + 6.04358i) q^{97} +(1.53649 - 0.887094i) q^{98} +(2.06701 - 0.132736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176q + 44q^{4} + 4q^{7} - 4q^{9} + O(q^{10}) \) \( 176q + 44q^{4} + 4q^{7} - 4q^{9} - 22q^{10} - 38q^{13} - 44q^{16} + 12q^{18} + 8q^{19} - 18q^{21} - 4q^{22} + 88q^{25} - 90q^{27} + 36q^{28} + 24q^{31} + 18q^{33} + 14q^{34} + 4q^{36} - 42q^{37} - 42q^{39} + 22q^{40} - 12q^{42} - 34q^{43} - 8q^{45} + 10q^{46} + 22q^{49} + 26q^{51} - 2q^{52} + 4q^{55} + 114q^{57} + 32q^{63} + 44q^{64} - 42q^{66} + 20q^{67} + 16q^{69} + 8q^{70} - 12q^{72} - 28q^{73} + 12q^{76} - 92q^{78} - 56q^{79} - 124q^{81} - 32q^{82} - 12q^{84} - 36q^{87} - 6q^{88} + 24q^{90} - 140q^{91} - 104q^{93} - 36q^{94} + 88q^{97} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{23}{30}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 0.309017i −0.672499 + 0.218508i
\(3\) −1.68179 + 0.414242i −0.970979 + 0.239163i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 1.47147 0.913668i 0.600723 0.373003i
\(7\) −0.309626 2.94590i −0.117028 1.11345i −0.882610 0.470107i \(-0.844215\pi\)
0.765582 0.643338i \(-0.222451\pi\)
\(8\) −0.587785 + 0.809017i −0.207813 + 0.286031i
\(9\) 2.65681 1.39333i 0.885602 0.464444i
\(10\) −0.669131 + 0.743145i −0.211598 + 0.235003i
\(11\) 0.630734 + 0.280821i 0.190173 + 0.0846706i 0.499614 0.866248i \(-0.333475\pi\)
−0.309441 + 0.950919i \(0.600142\pi\)
\(12\) −1.11711 + 1.32366i −0.322481 + 0.382107i
\(13\) −0.960045 4.51666i −0.266269 1.25269i −0.884441 0.466652i \(-0.845460\pi\)
0.618172 0.786043i \(-0.287873\pi\)
\(14\) 1.20480 + 2.70604i 0.321998 + 0.723219i
\(15\) −1.24935 + 1.19964i −0.322580 + 0.309745i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −2.12963 + 0.948174i −0.516512 + 0.229966i −0.648402 0.761298i \(-0.724562\pi\)
0.131890 + 0.991264i \(0.457896\pi\)
\(18\) −2.09621 + 2.14614i −0.494081 + 0.505849i
\(19\) −0.844454 0.179494i −0.193731 0.0411788i 0.110024 0.993929i \(-0.464907\pi\)
−0.303755 + 0.952750i \(0.598241\pi\)
\(20\) 0.406737 0.913545i 0.0909491 0.204275i
\(21\) 1.74104 + 4.82611i 0.379926 + 1.05314i
\(22\) −0.686642 0.0721689i −0.146392 0.0153865i
\(23\) 0.00251392 + 0.00182647i 0.000524188 + 0.000380845i 0.588047 0.808827i \(-0.299897\pi\)
−0.587523 + 0.809207i \(0.699897\pi\)
\(24\) 0.653400 1.60408i 0.133375 0.327431i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.30878 + 3.99892i 0.452789 + 0.784254i
\(27\) −3.89100 + 3.44385i −0.748824 + 0.662769i
\(28\) −1.98205 2.20129i −0.374572 0.416004i
\(29\) 2.51022 + 7.72566i 0.466136 + 1.43462i 0.857548 + 0.514404i \(0.171987\pi\)
−0.391412 + 0.920216i \(0.628013\pi\)
\(30\) 0.817492 1.52699i 0.149253 0.278789i
\(31\) −5.16920 2.06867i −0.928415 0.371545i
\(32\) 1.00000i 0.176777i
\(33\) −1.17709 0.211004i −0.204904 0.0367310i
\(34\) 1.73240 1.55986i 0.297104 0.267514i
\(35\) −1.74109 2.39641i −0.294299 0.405067i
\(36\) 1.33042 2.68886i 0.221737 0.448144i
\(37\) 0.876733 + 0.506182i 0.144134 + 0.0832159i 0.570333 0.821414i \(-0.306814\pi\)
−0.426199 + 0.904630i \(0.640148\pi\)
\(38\) 0.858591 0.0902415i 0.139282 0.0146391i
\(39\) 3.48558 + 7.19836i 0.558139 + 1.15266i
\(40\) −0.104528 + 0.994522i −0.0165274 + 0.157248i
\(41\) −2.95825 2.66362i −0.462000 0.415987i 0.404983 0.914324i \(-0.367277\pi\)
−0.866983 + 0.498337i \(0.833944\pi\)
\(42\) −3.14718 4.05189i −0.485620 0.625221i
\(43\) −0.490022 + 2.30537i −0.0747276 + 0.351566i −0.999587 0.0287439i \(-0.990849\pi\)
0.924859 + 0.380310i \(0.124183\pi\)
\(44\) 0.675336 0.143547i 0.101811 0.0216406i
\(45\) 1.60420 2.53507i 0.239139 0.377905i
\(46\) −0.00295529 0.000960231i −0.000435733 0.000141578i
\(47\) −10.3956 3.37775i −1.51636 0.492695i −0.571620 0.820518i \(-0.693685\pi\)
−0.944739 + 0.327823i \(0.893685\pi\)
\(48\) −0.125733 + 1.72748i −0.0181479 + 0.249340i
\(49\) −1.73542 + 0.368874i −0.247917 + 0.0526963i
\(50\) −0.207912 + 0.978148i −0.0294032 + 0.138331i
\(51\) 3.18881 2.47681i 0.446523 0.346823i
\(52\) −3.43152 3.08975i −0.475866 0.428471i
\(53\) 0.465783 4.43163i 0.0639802 0.608731i −0.914813 0.403879i \(-0.867662\pi\)
0.978793 0.204853i \(-0.0656715\pi\)
\(54\) 2.63635 4.47768i 0.358762 0.609335i
\(55\) 0.686642 0.0721689i 0.0925867 0.00973126i
\(56\) 2.56528 + 1.48106i 0.342799 + 0.197915i
\(57\) 1.49455 0.0479377i 0.197957 0.00634950i
\(58\) −4.77472 6.57184i −0.626952 0.862925i
\(59\) −6.90993 + 6.22172i −0.899596 + 0.810000i −0.982443 0.186563i \(-0.940265\pi\)
0.0828474 + 0.996562i \(0.473599\pi\)
\(60\) −0.305615 + 1.70488i −0.0394547 + 0.220098i
\(61\) 4.47690i 0.573208i −0.958049 0.286604i \(-0.907474\pi\)
0.958049 0.286604i \(-0.0925265\pi\)
\(62\) 5.55545 + 0.370056i 0.705543 + 0.0469972i
\(63\) −4.92724 7.39527i −0.620773 0.931717i
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) −3.08975 3.43152i −0.383236 0.425627i
\(66\) 1.18468 0.163063i 0.145824 0.0200717i
\(67\) −6.17417 10.6940i −0.754295 1.30648i −0.945724 0.324970i \(-0.894646\pi\)
0.191430 0.981506i \(-0.438688\pi\)
\(68\) −1.16559 + 2.01886i −0.141348 + 0.244822i
\(69\) −0.00498447 0.00203036i −0.000600060 0.000244426i
\(70\) 2.39641 + 1.74109i 0.286426 + 0.208100i
\(71\) 1.89851 + 0.199542i 0.225312 + 0.0236812i 0.216512 0.976280i \(-0.430532\pi\)
0.00880025 + 0.999961i \(0.497199\pi\)
\(72\) −0.434401 + 2.96838i −0.0511947 + 0.349827i
\(73\) −0.242796 + 0.545329i −0.0284171 + 0.0638259i −0.927196 0.374575i \(-0.877788\pi\)
0.898779 + 0.438401i \(0.144455\pi\)
\(74\) −0.990242 0.210482i −0.115113 0.0244681i
\(75\) −0.482149 + 1.66359i −0.0556737 + 0.192095i
\(76\) −0.788682 + 0.351144i −0.0904680 + 0.0402790i
\(77\) 0.631977 1.94503i 0.0720205 0.221656i
\(78\) −5.53940 5.76894i −0.627213 0.653204i
\(79\) −3.21842 7.22868i −0.362100 0.813290i −0.999100 0.0424258i \(-0.986491\pi\)
0.637000 0.770864i \(-0.280175\pi\)
\(80\) −0.207912 0.978148i −0.0232452 0.109360i
\(81\) 5.11724 7.40364i 0.568583 0.822626i
\(82\) 3.63656 + 1.61910i 0.401591 + 0.178800i
\(83\) 6.89351 7.65602i 0.756661 0.840357i −0.234625 0.972086i \(-0.575386\pi\)
0.991286 + 0.131729i \(0.0420527\pi\)
\(84\) 4.24525 + 2.88105i 0.463195 + 0.314348i
\(85\) −1.37023 + 1.88596i −0.148622 + 0.204561i
\(86\) −0.246360 2.34396i −0.0265657 0.252756i
\(87\) −7.42195 11.9531i −0.795716 1.28150i
\(88\) −0.597925 + 0.345212i −0.0637390 + 0.0367997i
\(89\) 2.82405 2.05179i 0.299349 0.217490i −0.427964 0.903796i \(-0.640769\pi\)
0.727313 + 0.686306i \(0.240769\pi\)
\(90\) −0.742302 + 2.90671i −0.0782455 + 0.306395i
\(91\) −13.0084 + 4.22667i −1.36365 + 0.443075i
\(92\) 0.00310737 0.000323966
\(93\) 9.55041 + 1.33777i 0.990332 + 0.138720i
\(94\) 10.9306 1.12741
\(95\) −0.821066 + 0.266781i −0.0842396 + 0.0273711i
\(96\) −0.414242 1.68179i −0.0422784 0.171647i
\(97\) −8.31828 + 6.04358i −0.844593 + 0.613633i −0.923650 0.383237i \(-0.874809\pi\)
0.0790567 + 0.996870i \(0.474809\pi\)
\(98\) 1.53649 0.887094i 0.155209 0.0896100i
\(99\) 2.06701 0.132736i 0.207743 0.0133405i
\(100\) −0.104528 0.994522i −0.0104528 0.0994522i
\(101\) −5.13792 + 7.07173i −0.511242 + 0.703664i −0.984128 0.177460i \(-0.943212\pi\)
0.472886 + 0.881123i \(0.343212\pi\)
\(102\) −2.26737 + 3.34098i −0.224503 + 0.330807i
\(103\) −7.52831 + 8.36103i −0.741786 + 0.823837i −0.989430 0.145014i \(-0.953677\pi\)
0.247643 + 0.968851i \(0.420344\pi\)
\(104\) 4.21835 + 1.87813i 0.413643 + 0.184166i
\(105\) 3.92084 + 3.30901i 0.382635 + 0.322927i
\(106\) 0.926463 + 4.35867i 0.0899861 + 0.423351i
\(107\) −4.70138 10.5595i −0.454500 1.02082i −0.984908 0.173081i \(-0.944628\pi\)
0.530408 0.847743i \(-0.322039\pi\)
\(108\) −1.12364 + 5.07321i −0.108123 + 0.488170i
\(109\) 6.20347 19.0923i 0.594185 1.82871i 0.0354424 0.999372i \(-0.488716\pi\)
0.558742 0.829341i \(-0.311284\pi\)
\(110\) −0.630734 + 0.280821i −0.0601381 + 0.0267752i
\(111\) −1.68416 0.488110i −0.159853 0.0463294i
\(112\) −2.89740 0.615861i −0.273778 0.0581933i
\(113\) 3.13828 7.04868i 0.295224 0.663084i −0.703649 0.710548i \(-0.748447\pi\)
0.998873 + 0.0474636i \(0.0151138\pi\)
\(114\) −1.40658 + 0.507431i −0.131739 + 0.0475253i
\(115\) 0.00309035 0.000324809i 0.000288177 3.02886e-5i
\(116\) 6.57184 + 4.77472i 0.610180 + 0.443322i
\(117\) −8.84386 10.6622i −0.817615 0.985723i
\(118\) 4.64911 8.05250i 0.427985 0.741292i
\(119\) 3.45262 + 5.98011i 0.316501 + 0.548195i
\(120\) −0.236178 1.71587i −0.0215600 0.156637i
\(121\) −7.04147 7.82035i −0.640134 0.710941i
\(122\) 1.38344 + 4.25779i 0.125251 + 0.385482i
\(123\) 6.07852 + 3.25420i 0.548082 + 0.293422i
\(124\) −5.39790 + 1.36479i −0.484746 + 0.122561i
\(125\) 1.00000i 0.0894427i
\(126\) 6.97134 + 5.51072i 0.621057 + 0.490934i
\(127\) −15.3221 + 13.7961i −1.35962 + 1.22421i −0.409506 + 0.912307i \(0.634299\pi\)
−0.950115 + 0.311901i \(0.899034\pi\)
\(128\) 0.587785 + 0.809017i 0.0519534 + 0.0715077i
\(129\) −0.130870 4.08013i −0.0115225 0.359235i
\(130\) 3.99892 + 2.30878i 0.350729 + 0.202493i
\(131\) −14.4710 + 1.52096i −1.26434 + 0.132887i −0.712861 0.701305i \(-0.752601\pi\)
−0.551474 + 0.834192i \(0.685934\pi\)
\(132\) −1.07631 + 0.521168i −0.0936806 + 0.0453619i
\(133\) −0.267307 + 2.54325i −0.0231784 + 0.220528i
\(134\) 9.17660 + 8.26265i 0.792738 + 0.713784i
\(135\) −1.64778 + 4.92796i −0.141818 + 0.424131i
\(136\) 0.484678 2.28023i 0.0415608 0.195528i
\(137\) 4.99555 1.06184i 0.426799 0.0907189i 0.0104959 0.999945i \(-0.496659\pi\)
0.416303 + 0.909226i \(0.363326\pi\)
\(138\) 0.00536793 0.000390698i 0.000456948 3.32584e-5i
\(139\) −4.38568 1.42499i −0.371989 0.120866i 0.117056 0.993125i \(-0.462654\pi\)
−0.489044 + 0.872259i \(0.662654\pi\)
\(140\) −2.81715 0.915347i −0.238093 0.0773610i
\(141\) 18.8824 + 1.37434i 1.59019 + 0.115740i
\(142\) −1.86725 + 0.396897i −0.156696 + 0.0333068i
\(143\) 0.662838 3.11841i 0.0554293 0.260774i
\(144\) −0.504140 2.95734i −0.0420117 0.246445i
\(145\) 6.03675 + 5.43551i 0.501325 + 0.451395i
\(146\) 0.0623969 0.593667i 0.00516400 0.0491322i
\(147\) 2.76580 1.33925i 0.228119 0.110460i
\(148\) 1.00682 0.105821i 0.0827600 0.00869843i
\(149\) 7.51618 + 4.33947i 0.615749 + 0.355503i 0.775212 0.631701i \(-0.217643\pi\)
−0.159463 + 0.987204i \(0.550976\pi\)
\(150\) −0.0555271 1.73116i −0.00453377 0.141349i
\(151\) 13.8048 + 19.0007i 1.12342 + 1.54625i 0.800004 + 0.599994i \(0.204831\pi\)
0.323414 + 0.946258i \(0.395169\pi\)
\(152\) 0.641572 0.577674i 0.0520383 0.0468555i
\(153\) −4.33690 + 5.48641i −0.350618 + 0.443550i
\(154\) 2.04512i 0.164801i
\(155\) −5.51099 + 0.793074i −0.442654 + 0.0637012i
\(156\) 7.05098 + 3.77482i 0.564530 + 0.302228i
\(157\) −1.03270 3.17833i −0.0824185 0.253658i 0.901353 0.433086i \(-0.142575\pi\)
−0.983771 + 0.179428i \(0.942575\pi\)
\(158\) 5.29468 + 5.88034i 0.421222 + 0.467815i
\(159\) 1.05242 + 7.64600i 0.0834624 + 0.606367i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 0.00460221 0.00797127i 0.000362705 0.000628224i
\(162\) −2.57894 + 8.62259i −0.202621 + 0.677455i
\(163\) 16.4947 + 11.9841i 1.29197 + 0.938668i 0.999843 0.0177130i \(-0.00563852\pi\)
0.292122 + 0.956381i \(0.405639\pi\)
\(164\) −3.95891 0.416098i −0.309139 0.0324918i
\(165\) −1.12489 + 0.405809i −0.0875725 + 0.0315922i
\(166\) −4.19028 + 9.41152i −0.325229 + 0.730476i
\(167\) −10.1156 2.15014i −0.782771 0.166383i −0.200843 0.979623i \(-0.564368\pi\)
−0.581928 + 0.813240i \(0.697701\pi\)
\(168\) −4.92776 1.42818i −0.380185 0.110187i
\(169\) −7.60240 + 3.38481i −0.584800 + 0.260370i
\(170\) 0.720373 2.21708i 0.0552501 0.170042i
\(171\) −2.49365 + 0.699725i −0.190694 + 0.0535093i
\(172\) 0.958627 + 2.15311i 0.0730946 + 0.164173i
\(173\) 4.25903 + 20.0372i 0.323808 + 1.52340i 0.775571 + 0.631260i \(0.217462\pi\)
−0.451763 + 0.892138i \(0.649205\pi\)
\(174\) 10.7524 + 9.07454i 0.815137 + 0.687939i
\(175\) −2.70604 1.20480i −0.204557 0.0910747i
\(176\) 0.461984 0.513085i 0.0348233 0.0386752i
\(177\) 9.04371 13.3260i 0.679767 1.00164i
\(178\) −2.05179 + 2.82405i −0.153788 + 0.211672i
\(179\) −1.40972 13.4126i −0.105367 1.00250i −0.911649 0.410970i \(-0.865190\pi\)
0.806282 0.591532i \(-0.201477\pi\)
\(180\) −0.192253 2.99383i −0.0143297 0.223147i
\(181\) 8.31904 4.80300i 0.618349 0.357004i −0.157877 0.987459i \(-0.550465\pi\)
0.776226 + 0.630455i \(0.217132\pi\)
\(182\) 11.0656 8.03961i 0.820234 0.595935i
\(183\) 1.85452 + 7.52919i 0.137090 + 0.556574i
\(184\) −0.00295529 0.000960231i −0.000217867 7.07892e-5i
\(185\) 1.01236 0.0744305
\(186\) −9.49637 + 1.67895i −0.696308 + 0.123106i
\(187\) −1.60950 −0.117698
\(188\) −10.3956 + 3.37775i −0.758180 + 0.246348i
\(189\) 11.3500 + 10.3962i 0.825590 + 0.756212i
\(190\) 0.698441 0.507447i 0.0506702 0.0368141i
\(191\) −2.67383 + 1.54374i −0.193472 + 0.111701i −0.593607 0.804755i \(-0.702297\pi\)
0.400135 + 0.916456i \(0.368963\pi\)
\(192\) 0.913668 + 1.47147i 0.0659383 + 0.106194i
\(193\) −0.234825 2.23421i −0.0169030 0.160822i 0.982814 0.184597i \(-0.0590980\pi\)
−0.999717 + 0.0237754i \(0.992431\pi\)
\(194\) 6.04358 8.31828i 0.433904 0.597218i
\(195\) 6.61778 + 4.49117i 0.473909 + 0.321619i
\(196\) −1.18716 + 1.31848i −0.0847974 + 0.0941770i
\(197\) 16.3397 + 7.27491i 1.16416 + 0.518316i 0.895561 0.444938i \(-0.146774\pi\)
0.268594 + 0.963253i \(0.413441\pi\)
\(198\) −1.92483 + 0.764982i −0.136792 + 0.0543649i
\(199\) 0.602835 + 2.83612i 0.0427339 + 0.201047i 0.994335 0.106287i \(-0.0338963\pi\)
−0.951602 + 0.307334i \(0.900563\pi\)
\(200\) 0.406737 + 0.913545i 0.0287606 + 0.0645974i
\(201\) 14.8135 + 15.4274i 1.04487 + 1.08816i
\(202\) 2.70116 8.31332i 0.190053 0.584923i
\(203\) 21.9818 9.78692i 1.54282 0.686907i
\(204\) 1.12397 3.87812i 0.0786938 0.271523i
\(205\) −3.89372 0.827637i −0.271950 0.0578047i
\(206\) 4.57615 10.2782i 0.318835 0.716115i
\(207\) 0.00922387 + 0.00134985i 0.000641103 + 9.38209e-5i
\(208\) −4.59227 0.482667i −0.318416 0.0334669i
\(209\) −0.482220 0.350353i −0.0333559 0.0242344i
\(210\) −4.75148 1.93545i −0.327883 0.133559i
\(211\) 3.15415 5.46315i 0.217141 0.376099i −0.736792 0.676120i \(-0.763660\pi\)
0.953933 + 0.300021i \(0.0969936\pi\)
\(212\) −2.22802 3.85905i −0.153021 0.265040i
\(213\) −3.27555 + 0.450857i −0.224437 + 0.0308922i
\(214\) 7.73434 + 8.58985i 0.528708 + 0.587190i
\(215\) 0.728314 + 2.24152i 0.0496706 + 0.152870i
\(216\) −0.499059 5.17213i −0.0339567 0.351919i
\(217\) −4.49358 + 15.8684i −0.305044 + 1.07722i
\(218\) 20.0749i 1.35964i
\(219\) 0.182433 1.01770i 0.0123277 0.0687700i
\(220\) 0.513085 0.461984i 0.0345922 0.0311469i
\(221\) 6.32712 + 8.70853i 0.425608 + 0.585799i
\(222\) 1.75257 0.0562137i 0.117624 0.00377282i
\(223\) 21.4152 + 12.3641i 1.43407 + 0.827960i 0.997428 0.0716761i \(-0.0228348\pi\)
0.436641 + 0.899636i \(0.356168\pi\)
\(224\) 2.94590 0.309626i 0.196831 0.0206878i
\(225\) 0.121741 2.99753i 0.00811608 0.199835i
\(226\) −0.806515 + 7.67348i −0.0536486 + 0.510432i
\(227\) −9.71196 8.74469i −0.644606 0.580406i 0.280622 0.959818i \(-0.409459\pi\)
−0.925227 + 0.379413i \(0.876126\pi\)
\(228\) 1.18094 0.917254i 0.0782094 0.0607466i
\(229\) 3.52908 16.6030i 0.233208 1.09716i −0.693232 0.720715i \(-0.743814\pi\)
0.926440 0.376443i \(-0.122853\pi\)
\(230\) −0.00303947 0.000646059i −0.000200417 4.25999e-5i
\(231\) −0.257139 + 3.53291i −0.0169185 + 0.232448i
\(232\) −7.72566 2.51022i −0.507215 0.164804i
\(233\) −12.8828 4.18586i −0.843977 0.274225i −0.145056 0.989423i \(-0.546336\pi\)
−0.698921 + 0.715199i \(0.746336\pi\)
\(234\) 11.7058 + 7.40747i 0.765233 + 0.484241i
\(235\) −10.6918 + 2.27260i −0.697454 + 0.148248i
\(236\) −1.93321 + 9.09503i −0.125841 + 0.592036i
\(237\) 8.40711 + 10.8239i 0.546100 + 0.703087i
\(238\) −5.13159 4.62050i −0.332631 0.299503i
\(239\) 0.978883 9.31345i 0.0633187 0.602437i −0.916149 0.400837i \(-0.868719\pi\)
0.979468 0.201600i \(-0.0646140\pi\)
\(240\) 0.754853 + 1.55891i 0.0487255 + 0.100627i
\(241\) −0.486597 + 0.0511435i −0.0313445 + 0.00329444i −0.120188 0.992751i \(-0.538350\pi\)
0.0888432 + 0.996046i \(0.471683\pi\)
\(242\) 9.11346 + 5.26166i 0.585835 + 0.338232i
\(243\) −5.53921 + 14.5711i −0.355340 + 0.934737i
\(244\) −2.63146 3.62189i −0.168462 0.231868i
\(245\) −1.31848 + 1.18716i −0.0842345 + 0.0758451i
\(246\) −6.78662 1.21656i −0.432699 0.0775653i
\(247\) 3.98643i 0.253651i
\(248\) 4.71197 2.96603i 0.299210 0.188343i
\(249\) −8.42196 + 15.7314i −0.533720 + 0.996935i
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) −6.51060 7.23076i −0.410946 0.456401i 0.501767 0.865003i \(-0.332683\pi\)
−0.912713 + 0.408601i \(0.866017\pi\)
\(252\) −8.33305 3.08674i −0.524933 0.194447i
\(253\) 0.00107270 + 0.00185797i 6.74402e−5 + 0.000116810i
\(254\) 10.3090 17.8557i 0.646844 1.12037i
\(255\) 1.52319 3.73939i 0.0953858 0.234170i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −7.06007 0.742044i −0.440395 0.0462874i −0.118263 0.992982i \(-0.537733\pi\)
−0.322132 + 0.946695i \(0.604399\pi\)
\(258\) 1.38529 + 3.83999i 0.0862446 + 0.239067i
\(259\) 1.21970 2.73950i 0.0757886 0.170224i
\(260\) −4.51666 0.960045i −0.280111 0.0595395i
\(261\) 17.4336 + 17.0280i 1.07911 + 1.05401i
\(262\) 13.2927 5.91830i 0.821227 0.365634i
\(263\) −2.54768 + 7.84095i −0.157097 + 0.483494i −0.998367 0.0571205i \(-0.981808\pi\)
0.841271 + 0.540614i \(0.181808\pi\)
\(264\) 0.862580 0.828258i 0.0530881 0.0509758i
\(265\) −1.81244 4.07080i −0.111337 0.250067i
\(266\) −0.531685 2.50138i −0.0325997 0.153369i
\(267\) −3.89951 + 4.62052i −0.238646 + 0.282771i
\(268\) −11.2808 5.02252i −0.689082 0.306799i
\(269\) −7.41593 + 8.23622i −0.452157 + 0.502171i −0.925521 0.378695i \(-0.876373\pi\)
0.473364 + 0.880867i \(0.343039\pi\)
\(270\) 0.0443095 5.19596i 0.00269659 0.316216i
\(271\) 4.95813 6.82429i 0.301185 0.414546i −0.631422 0.775440i \(-0.717528\pi\)
0.932607 + 0.360894i \(0.117528\pi\)
\(272\) 0.243674 + 2.31840i 0.0147749 + 0.140574i
\(273\) 20.1264 12.4970i 1.21811 0.756351i
\(274\) −4.42292 + 2.55358i −0.267199 + 0.154267i
\(275\) 0.558565 0.405821i 0.0336827 0.0244719i
\(276\) −0.00522593 + 0.00128720i −0.000314564 + 7.74806e-5i
\(277\) −13.0266 + 4.23261i −0.782694 + 0.254313i −0.672990 0.739652i \(-0.734990\pi\)
−0.109704 + 0.993964i \(0.534990\pi\)
\(278\) 4.61138 0.276572
\(279\) −16.6159 + 1.70635i −0.994768 + 0.102156i
\(280\) 2.96213 0.177021
\(281\) −5.29506 + 1.72047i −0.315877 + 0.102635i −0.462664 0.886533i \(-0.653107\pi\)
0.146788 + 0.989168i \(0.453107\pi\)
\(282\) −18.3830 + 4.52792i −1.09469 + 0.269634i
\(283\) 22.1074 16.0620i 1.31415 0.954785i 0.314164 0.949369i \(-0.398276\pi\)
0.999985 0.00541616i \(-0.00172403\pi\)
\(284\) 1.65322 0.954484i 0.0981003 0.0566382i
\(285\) 1.27035 0.788788i 0.0752488 0.0467238i
\(286\) 0.333244 + 3.17061i 0.0197052 + 0.187482i
\(287\) −6.93079 + 9.53942i −0.409112 + 0.563094i
\(288\) 1.39333 + 2.65681i 0.0821030 + 0.156554i
\(289\) −7.73891 + 8.59493i −0.455230 + 0.505584i
\(290\) −7.42095 3.30402i −0.435773 0.194019i
\(291\) 11.4861 13.6098i 0.673324 0.797820i
\(292\) 0.124110 + 0.583892i 0.00726300 + 0.0341697i
\(293\) 4.72697 + 10.6170i 0.276153 + 0.620249i 0.997371 0.0724583i \(-0.0230844\pi\)
−0.721219 + 0.692707i \(0.756418\pi\)
\(294\) −2.21658 + 2.12838i −0.129273 + 0.124130i
\(295\) −2.87331 + 8.84313i −0.167290 + 0.514867i
\(296\) −0.924841 + 0.411766i −0.0537553 + 0.0239334i
\(297\) −3.42129 + 1.07948i −0.198523 + 0.0626377i
\(298\) −8.48928 1.80445i −0.491771 0.104529i
\(299\) 0.00583605 0.0131080i 0.000337508 0.000758055i
\(300\) 0.587767 + 1.62927i 0.0339348 + 0.0940661i
\(301\) 6.94311 + 0.729751i 0.400194 + 0.0420621i
\(302\) −19.0007 13.8048i −1.09337 0.794376i
\(303\) 5.71146 14.0215i 0.328115 0.805513i
\(304\) −0.431660 + 0.747657i −0.0247574 + 0.0428811i
\(305\) −2.23845 3.87711i −0.128173 0.222003i
\(306\) 2.42925 6.55806i 0.138871 0.374899i
\(307\) −0.332892 0.369714i −0.0189992 0.0211007i 0.733570 0.679614i \(-0.237852\pi\)
−0.752570 + 0.658513i \(0.771186\pi\)
\(308\) −0.631977 1.94503i −0.0360103 0.110828i
\(309\) 9.19751 17.1800i 0.523228 0.977337i
\(310\) 4.99619 2.45725i 0.283765 0.139562i
\(311\) 27.1482i 1.53943i −0.638386 0.769717i \(-0.720397\pi\)
0.638386 0.769717i \(-0.279603\pi\)
\(312\) −7.87236 1.41119i −0.445685 0.0798932i
\(313\) 18.4004 16.5678i 1.04005 0.936468i 0.0420175 0.999117i \(-0.486621\pi\)
0.998036 + 0.0626488i \(0.0199548\pi\)
\(314\) 1.96431 + 2.70365i 0.110853 + 0.152576i
\(315\) −7.96475 3.94087i −0.448763 0.222043i
\(316\) −6.85266 3.95639i −0.385492 0.222564i
\(317\) −24.6269 + 2.58839i −1.38319 + 0.145379i −0.766709 0.641994i \(-0.778107\pi\)
−0.616477 + 0.787373i \(0.711441\pi\)
\(318\) −3.36366 6.94656i −0.188624 0.389544i
\(319\) −0.586246 + 5.57776i −0.0328235 + 0.312294i
\(320\) −0.743145 0.669131i −0.0415431 0.0374055i
\(321\) 12.2809 + 15.8113i 0.685453 + 0.882499i
\(322\) −0.00191371 + 0.00900329i −0.000106647 + 0.000501734i
\(323\) 1.96857 0.418433i 0.109534 0.0232822i
\(324\) −0.211810 8.99751i −0.0117672 0.499862i
\(325\) −4.39156 1.42690i −0.243600 0.0791504i
\(326\) −19.3907 6.30042i −1.07395 0.348948i
\(327\) −2.52406 + 34.6789i −0.139581 + 1.91775i
\(328\) 3.89372 0.827637i 0.214995 0.0456986i
\(329\) −6.73174 + 31.6703i −0.371133 + 1.74604i
\(330\) 0.944431 0.733557i 0.0519892 0.0403810i
\(331\) −13.3948 12.0607i −0.736245 0.662918i 0.213144 0.977021i \(-0.431630\pi\)
−0.949389 + 0.314103i \(0.898296\pi\)
\(332\) 1.07687 10.2458i 0.0591010 0.562309i
\(333\) 3.03459 + 0.123247i 0.166295 + 0.00675387i
\(334\) 10.2850 1.08099i 0.562768 0.0591493i
\(335\) −10.6940 6.17417i −0.584274 0.337331i
\(336\) 5.12791 0.164478i 0.279751 0.00897303i
\(337\) 14.2575 + 19.6238i 0.776657 + 1.06898i 0.995643 + 0.0932487i \(0.0297252\pi\)
−0.218986 + 0.975728i \(0.570275\pi\)
\(338\) 6.18435 5.56842i 0.336384 0.302882i
\(339\) −2.35805 + 13.1544i −0.128071 + 0.714448i
\(340\) 2.33117i 0.126426i
\(341\) −2.67946 2.75640i −0.145101 0.149267i
\(342\) 2.15537 1.43606i 0.116549 0.0776531i
\(343\) −4.78343 14.7219i −0.258281 0.794907i
\(344\) −1.57706 1.75150i −0.0850292 0.0944345i
\(345\) −0.00533186 0.000733895i −0.000287057 3.95116e-5i
\(346\) −10.2424 17.7404i −0.550635 0.953728i
\(347\) 4.77021 8.26224i 0.256078 0.443540i −0.709110 0.705098i \(-0.750903\pi\)
0.965188 + 0.261558i \(0.0842362\pi\)
\(348\) −13.0303 5.30773i −0.698499 0.284524i
\(349\) 8.43526 + 6.12857i 0.451529 + 0.328055i 0.790199 0.612850i \(-0.209977\pi\)
−0.338670 + 0.940905i \(0.609977\pi\)
\(350\) 2.94590 + 0.309626i 0.157465 + 0.0165502i
\(351\) 19.2902 + 14.2681i 1.02964 + 0.761573i
\(352\) −0.280821 + 0.630734i −0.0149678 + 0.0336182i
\(353\) −29.9071 6.35694i −1.59179 0.338346i −0.675033 0.737787i \(-0.735871\pi\)
−0.916759 + 0.399442i \(0.869204\pi\)
\(354\) −4.48312 + 15.4684i −0.238275 + 0.822138i
\(355\) 1.74393 0.776448i 0.0925582 0.0412096i
\(356\) 1.07869 3.31987i 0.0571705 0.175953i
\(357\) −8.28377 8.62704i −0.438424 0.456591i
\(358\) 5.48543 + 12.3205i 0.289914 + 0.651157i
\(359\) −1.58337 7.44917i −0.0835671 0.393152i 0.916408 0.400246i \(-0.131075\pi\)
−0.999975 + 0.00709367i \(0.997742\pi\)
\(360\) 1.10799 + 2.78790i 0.0583961 + 0.146935i
\(361\) −16.6765 7.42485i −0.877709 0.390781i
\(362\) −6.42767 + 7.13865i −0.337831 + 0.375199i
\(363\) 15.0818 + 10.2353i 0.791587 + 0.537213i
\(364\) −8.03961 + 11.0656i −0.421390 + 0.579993i
\(365\) 0.0623969 + 0.593667i 0.00326600 + 0.0310739i
\(366\) −4.09040 6.58760i −0.213809 0.344340i
\(367\) 5.41712 3.12757i 0.282771 0.163258i −0.351906 0.936035i \(-0.614466\pi\)
0.634677 + 0.772777i \(0.281133\pi\)
\(368\) 0.00251392 0.00182647i 0.000131047 9.52112e-5i
\(369\) −11.5708 2.95489i −0.602351 0.153826i
\(370\) −0.962816 + 0.312838i −0.0500544 + 0.0162637i
\(371\) −13.1994 −0.685276
\(372\) 8.51277 4.53132i 0.441366 0.234938i
\(373\) 33.0274 1.71009 0.855047 0.518551i \(-0.173528\pi\)
0.855047 + 0.518551i \(0.173528\pi\)
\(374\) 1.53072 0.497362i 0.0791518 0.0257180i
\(375\) 0.414242 + 1.68179i 0.0213914 + 0.0868470i
\(376\) 8.84306 6.42486i 0.456046 0.331337i
\(377\) 32.4842 18.7548i 1.67302 0.965921i
\(378\) −14.0071 6.38003i −0.720447 0.328153i
\(379\) −1.17734 11.2016i −0.0604758 0.575389i −0.982239 0.187635i \(-0.939918\pi\)
0.921763 0.387754i \(-0.126749\pi\)
\(380\) −0.507447 + 0.698441i −0.0260315 + 0.0358292i
\(381\) 20.0536 29.5492i 1.02738 1.51385i
\(382\) 2.06592 2.29444i 0.105702 0.117394i
\(383\) 16.3350 + 7.27281i 0.834679 + 0.371623i 0.779153 0.626834i \(-0.215650\pi\)
0.0555264 + 0.998457i \(0.482316\pi\)
\(384\) −1.32366 1.11711i −0.0675476 0.0570072i
\(385\) −0.425205 2.00043i −0.0216704 0.101951i
\(386\) 0.913739 + 2.05229i 0.0465081 + 0.104459i
\(387\) 1.91026 + 6.80769i 0.0971038 + 0.346054i
\(388\) −3.17730 + 9.77872i −0.161303 + 0.496439i
\(389\) 15.7275 7.00233i 0.797415 0.355032i 0.0327529 0.999463i \(-0.489573\pi\)
0.764662 + 0.644431i \(0.222906\pi\)
\(390\) −7.68173 2.22635i −0.388979 0.112736i
\(391\) −0.00708553 0.00150608i −0.000358331 7.61656e-5i
\(392\) 0.721627 1.62080i 0.0364477 0.0818628i
\(393\) 23.7070 8.55242i 1.19586 0.431413i
\(394\) −17.7881 1.86960i −0.896149 0.0941891i
\(395\) −6.40157 4.65101i −0.322098 0.234018i
\(396\) 1.59423 1.32235i 0.0801130 0.0664504i
\(397\) 13.1922 22.8495i 0.662097 1.14678i −0.317967 0.948102i \(-0.603000\pi\)
0.980064 0.198683i \(-0.0636665\pi\)
\(398\) −1.44974 2.51102i −0.0726688 0.125866i
\(399\) −0.603970 4.38794i −0.0302363 0.219672i
\(400\) −0.669131 0.743145i −0.0334565 0.0371572i
\(401\) −1.48810 4.57991i −0.0743123 0.228710i 0.907000 0.421130i \(-0.138366\pi\)
−0.981313 + 0.192420i \(0.938366\pi\)
\(402\) −18.8558 10.0947i −0.940443 0.503476i
\(403\) −4.38083 + 25.3335i −0.218225 + 1.26195i
\(404\) 8.74114i 0.434888i
\(405\) 0.729846 8.97036i 0.0362663 0.445741i
\(406\) −17.8816 + 16.1007i −0.887449 + 0.799063i
\(407\) 0.410839 + 0.565471i 0.0203645 + 0.0280294i
\(408\) 0.129443 + 4.03564i 0.00640840 + 0.199794i
\(409\) 3.75856 + 2.17001i 0.185849 + 0.107300i 0.590038 0.807376i \(-0.299113\pi\)
−0.404189 + 0.914676i \(0.632446\pi\)
\(410\) 3.95891 0.416098i 0.195516 0.0205496i
\(411\) −7.96159 + 3.85515i −0.392716 + 0.190161i
\(412\) −1.17604 + 11.1892i −0.0579392 + 0.551255i
\(413\) 20.4681 + 18.4295i 1.00717 + 0.906858i
\(414\) −0.00918955 + 0.00156655i −0.000451642 + 7.69918e-5i
\(415\) 2.14195 10.0771i 0.105144 0.494664i
\(416\) 4.51666 0.960045i 0.221447 0.0470701i
\(417\) 7.96607 + 0.579801i 0.390100 + 0.0283930i
\(418\) 0.566884 + 0.184192i 0.0277272 + 0.00900911i
\(419\) 15.7408 + 5.11451i 0.768991 + 0.249860i 0.667133 0.744939i \(-0.267521\pi\)
0.101858 + 0.994799i \(0.467521\pi\)
\(420\) 5.11702 + 0.372436i 0.249685 + 0.0181730i
\(421\) −10.3319 + 2.19612i −0.503548 + 0.107032i −0.452680 0.891673i \(-0.649532\pi\)
−0.0508676 + 0.998705i \(0.516199\pi\)
\(422\) −1.31157 + 6.17045i −0.0638462 + 0.300373i
\(423\) −32.3255 + 5.51057i −1.57172 + 0.267933i
\(424\) 3.31148 + 2.98167i 0.160820 + 0.144803i
\(425\) −0.243674 + 2.31840i −0.0118199 + 0.112459i
\(426\) 2.97591 1.44099i 0.144183 0.0698162i
\(427\) −13.1885 + 1.38617i −0.638236 + 0.0670813i
\(428\) −10.0102 5.77939i −0.483861 0.279358i
\(429\) 0.177025 + 5.51907i 0.00854683 + 0.266463i
\(430\) −1.38534 1.90675i −0.0668068 0.0919517i
\(431\) −5.86646 + 5.28219i −0.282578 + 0.254434i −0.798215 0.602373i \(-0.794222\pi\)
0.515637 + 0.856807i \(0.327555\pi\)
\(432\) 2.07291 + 4.76477i 0.0997329 + 0.229245i
\(433\) 3.18600i 0.153109i 0.997065 + 0.0765546i \(0.0243920\pi\)
−0.997065 + 0.0765546i \(0.975608\pi\)
\(434\) −0.629967 16.4804i −0.0302394 0.791084i
\(435\) −12.4041 6.64069i −0.594733 0.318397i
\(436\) −6.20347 19.0923i −0.297092 0.914356i
\(437\) −0.00179505 0.00199360i −8.58688e−5 9.53669e-5i
\(438\) 0.140984 + 1.02427i 0.00673646 + 0.0489414i
\(439\) −1.49420 2.58803i −0.0713142 0.123520i 0.828163 0.560487i \(-0.189386\pi\)
−0.899478 + 0.436967i \(0.856053\pi\)
\(440\) −0.345212 + 0.597925i −0.0164573 + 0.0285049i
\(441\) −4.09670 + 3.39804i −0.195081 + 0.161812i
\(442\) −8.70853 6.32712i −0.414223 0.300950i
\(443\) 9.46017 + 0.994304i 0.449466 + 0.0472408i 0.326558 0.945177i \(-0.394111\pi\)
0.122908 + 0.992418i \(0.460778\pi\)
\(444\) −1.64942 + 0.595035i −0.0782779 + 0.0282391i
\(445\) 1.41980 3.18893i 0.0673051 0.151170i
\(446\) −24.1878 5.14127i −1.14532 0.243446i
\(447\) −14.4382 4.18454i −0.682903 0.197922i
\(448\) −2.70604 + 1.20480i −0.127848 + 0.0569217i
\(449\) 2.05547 6.32608i 0.0970035 0.298546i −0.890767 0.454460i \(-0.849832\pi\)
0.987771 + 0.155914i \(0.0498323\pi\)
\(450\) 0.810505 + 2.88844i 0.0382075 + 0.136162i
\(451\) −1.11787 2.51077i −0.0526383 0.118227i
\(452\) −1.60419 7.54714i −0.0754549 0.354987i
\(453\) −31.0876 26.2365i −1.46062 1.23270i
\(454\) 11.9389 + 5.31553i 0.560320 + 0.249470i
\(455\) −9.15223 + 10.1646i −0.429063 + 0.476523i
\(456\) −0.839689 + 1.23729i −0.0393221 + 0.0579414i
\(457\) −5.97055 + 8.21775i −0.279290 + 0.384410i −0.925499 0.378751i \(-0.876354\pi\)
0.646208 + 0.763161i \(0.276354\pi\)
\(458\) 1.77426 + 16.8809i 0.0829056 + 0.788794i
\(459\) 5.02104 11.0235i 0.234362 0.514532i
\(460\) 0.00269106 0.00155369i 0.000125471 7.24410e-5i
\(461\) −8.03554 + 5.83816i −0.374253 + 0.271910i −0.758972 0.651123i \(-0.774298\pi\)
0.384720 + 0.923034i \(0.374298\pi\)
\(462\) −0.847176 3.43946i −0.0394142 0.160018i
\(463\) 22.4908 7.30772i 1.04524 0.339618i 0.264440 0.964402i \(-0.414813\pi\)
0.780798 + 0.624784i \(0.214813\pi\)
\(464\) 8.12324 0.377112
\(465\) 8.93978 3.61667i 0.414573 0.167719i
\(466\) 13.5457 0.627494
\(467\) 25.4368 8.26490i 1.17707 0.382454i 0.345794 0.938310i \(-0.387609\pi\)
0.831278 + 0.555856i \(0.187609\pi\)
\(468\) −13.4219 3.42763i −0.620429 0.158442i
\(469\) −29.5917 + 21.4996i −1.36642 + 0.992760i
\(470\) 9.46619 5.46531i 0.436643 0.252096i
\(471\) 3.05338 + 4.91748i 0.140692 + 0.226585i
\(472\) −0.971929 9.24728i −0.0447366 0.425641i
\(473\) −0.956469 + 1.31647i −0.0439785 + 0.0605312i
\(474\) −11.3404 7.69619i −0.520882 0.353498i
\(475\) −0.577674 + 0.641572i −0.0265055 + 0.0294373i
\(476\) 6.30824 + 2.80861i 0.289138 + 0.128732i
\(477\) −4.93724 12.4230i −0.226061 0.568809i
\(478\) 1.94704 + 9.16011i 0.0890556 + 0.418974i
\(479\) 2.54632 + 5.71914i 0.116344 + 0.261314i 0.962326 0.271898i \(-0.0876514\pi\)
−0.845982 + 0.533212i \(0.820985\pi\)
\(480\) −1.19964 1.24935i −0.0547557 0.0570247i
\(481\) 1.44455 4.44586i 0.0658657 0.202714i
\(482\) 0.446977 0.199007i 0.0203593 0.00906453i
\(483\) −0.00443790 + 0.0153124i −0.000201932 + 0.000696738i
\(484\) −10.2934 2.18792i −0.467880 0.0994509i
\(485\) −4.18205 + 9.39304i −0.189897 + 0.426516i
\(486\) 0.765382 15.5697i 0.0347184 0.706254i
\(487\) −26.6615 2.80224i −1.20815 0.126982i −0.521038 0.853534i \(-0.674455\pi\)
−0.687111 + 0.726552i \(0.741122\pi\)
\(488\) 3.62189 + 2.63146i 0.163955 + 0.119120i
\(489\) −32.7049 13.3219i −1.47897 0.602437i
\(490\) 0.887094 1.53649i 0.0400748 0.0694116i
\(491\) 3.45616 + 5.98624i 0.155974 + 0.270155i 0.933413 0.358803i \(-0.116815\pi\)
−0.777439 + 0.628958i \(0.783482\pi\)
\(492\) 6.83040 0.940159i 0.307938 0.0423856i
\(493\) −12.6711 14.0727i −0.570679 0.633803i
\(494\) −1.23188 3.79132i −0.0554247 0.170580i
\(495\) 1.72372 1.14846i 0.0774754 0.0516194i
\(496\) −3.56480 + 4.27694i −0.160064 + 0.192040i
\(497\) 5.65461i 0.253644i
\(498\) 3.14850 17.5640i 0.141088 0.787060i
\(499\) 2.04425 1.84065i 0.0915132 0.0823989i −0.622104 0.782934i \(-0.713722\pi\)
0.713618 + 0.700535i \(0.247055\pi\)
\(500\) −0.587785 0.809017i −0.0262866 0.0361803i
\(501\) 17.9030 0.574240i 0.799847 0.0256552i
\(502\) 8.42638 + 4.86497i 0.376088 + 0.217134i
\(503\) −33.3446 + 3.50466i −1.48676 + 0.156265i −0.812818 0.582518i \(-0.802068\pi\)
−0.673944 + 0.738783i \(0.735401\pi\)
\(504\) 8.87906 + 0.360613i 0.395505 + 0.0160630i
\(505\) −0.913698 + 8.69326i −0.0406590 + 0.386845i
\(506\) −0.00159435 0.00143556i −7.08773e−5 6.38182e-5i
\(507\) 11.3835 8.84176i 0.505558 0.392676i
\(508\) −4.28672 + 20.1674i −0.190192 + 0.894785i
\(509\) 10.0502 2.13623i 0.445465 0.0946865i 0.0202829 0.999794i \(-0.493543\pi\)
0.425182 + 0.905108i \(0.360210\pi\)
\(510\) −0.293105 + 4.02706i −0.0129789 + 0.178321i
\(511\) 1.68166 + 0.546405i 0.0743923 + 0.0241715i
\(512\) 0.951057 + 0.309017i 0.0420312 + 0.0136568i
\(513\) 3.90393 2.20976i 0.172363 0.0975633i
\(514\) 6.94383 1.47596i 0.306279 0.0651017i
\(515\) −2.33919 + 11.0050i −0.103077 + 0.484939i
\(516\) −2.50412 3.22397i −0.110238 0.141927i
\(517\) −5.60834 5.04977i −0.246654 0.222089i
\(518\) −0.313455 + 2.98232i −0.0137724 + 0.131036i
\(519\) −15.4630 31.9340i −0.678752 1.40175i
\(520\) 4.59227 0.482667i 0.201384 0.0211663i
\(521\) −25.6621 14.8160i −1.12428 0.649102i −0.181788 0.983338i \(-0.558188\pi\)
−0.942489 + 0.334236i \(0.891522\pi\)
\(522\) −21.8423 10.8073i −0.956011 0.473024i
\(523\) 22.6437 + 31.1664i 0.990141 + 1.36281i 0.931183 + 0.364552i \(0.118778\pi\)
0.0589586 + 0.998260i \(0.481222\pi\)
\(524\) −10.8133 + 9.73631i −0.472380 + 0.425333i
\(525\) 5.05005 + 0.905269i 0.220402 + 0.0395092i
\(526\) 8.24446i 0.359476i
\(527\) 12.9700 0.495780i 0.564980 0.0215965i
\(528\) −0.564416 + 1.05427i −0.0245631 + 0.0458813i
\(529\) −7.10739 21.8743i −0.309017 0.951056i
\(530\) 2.98167 + 3.31148i 0.129516 + 0.143842i
\(531\) −9.68940 + 26.1577i −0.420484 + 1.13515i
\(532\) 1.27863 + 2.21465i 0.0554357 + 0.0960174i
\(533\) −9.19059 + 15.9186i −0.398089 + 0.689510i
\(534\) 2.28084 5.59939i 0.0987014 0.242309i
\(535\) −9.35126 6.79408i −0.404290 0.293734i
\(536\) 12.2807 + 1.29075i 0.530445 + 0.0557520i
\(537\) 7.92689 + 21.9731i 0.342071 + 0.948209i
\(538\) 4.50783 10.1248i 0.194347 0.436509i
\(539\) −1.19817 0.254680i −0.0516090 0.0109698i
\(540\) 1.56350 + 4.95535i 0.0672823 + 0.213244i
\(541\) 37.4082 16.6552i 1.60830 0.716063i 0.611155 0.791511i \(-0.290705\pi\)
0.997150 + 0.0754481i \(0.0240387\pi\)
\(542\) −2.60665 + 8.02243i −0.111965 + 0.344593i
\(543\) −12.0012 + 11.5237i −0.515022 + 0.494530i
\(544\) −0.948174 2.12963i −0.0406526 0.0913073i
\(545\) −4.17380 19.6362i −0.178786 0.841121i
\(546\) −15.2796 + 18.1047i −0.653905 + 0.774810i
\(547\) 22.6089 + 10.0661i 0.966687 + 0.430397i 0.828488 0.560007i \(-0.189202\pi\)
0.138200 + 0.990404i \(0.455868\pi\)
\(548\) 3.41735 3.79535i 0.145982 0.162130i
\(549\) −6.23781 11.8943i −0.266223 0.507635i
\(550\) −0.405821 + 0.558565i −0.0173043 + 0.0238173i
\(551\) −0.733054 6.97454i −0.0312291 0.297125i
\(552\) 0.00457239 0.00283911i 0.000194614 0.000120840i
\(553\) −20.2985 + 11.7193i −0.863178 + 0.498356i
\(554\) 11.0811 8.05090i 0.470791 0.342050i
\(555\) −1.70258 + 0.419364i −0.0722705 + 0.0178010i
\(556\) −4.38568 + 1.42499i −0.185994 + 0.0604332i
\(557\) 36.3511 1.54024 0.770122 0.637896i \(-0.220195\pi\)
0.770122 + 0.637896i \(0.220195\pi\)
\(558\) 15.2754 6.75743i 0.646658 0.286065i
\(559\) 10.8830 0.460302
\(560\) −2.81715 + 0.915347i −0.119046 + 0.0386805i
\(561\) 2.70683 0.666722i 0.114283 0.0281490i
\(562\) 4.50424 3.27252i 0.190000 0.138043i
\(563\) −9.44660 + 5.45400i −0.398127 + 0.229859i −0.685675 0.727907i \(-0.740493\pi\)
0.287549 + 0.957766i \(0.407160\pi\)
\(564\) 16.0840 9.98696i 0.677260 0.420527i
\(565\) −0.806515 7.67348i −0.0339303 0.322826i
\(566\) −16.0620 + 22.1074i −0.675135 + 0.929244i
\(567\) −23.3948 12.7825i −0.982489 0.536815i
\(568\) −1.27735 + 1.41864i −0.0535964 + 0.0595248i
\(569\) 14.7488 + 6.56659i 0.618302 + 0.275286i 0.691890 0.722003i \(-0.256778\pi\)
−0.0735883 + 0.997289i \(0.523445\pi\)
\(570\) −0.964422 + 1.14274i −0.0403952 + 0.0478641i
\(571\) −1.38761 6.52820i −0.0580697 0.273197i 0.939528 0.342473i \(-0.111264\pi\)
−0.997598 + 0.0692761i \(0.977931\pi\)
\(572\) −1.29671 2.91245i −0.0542180 0.121776i
\(573\) 3.85733 3.70385i 0.161142 0.154730i
\(574\) 3.64373 11.2143i 0.152087 0.468074i
\(575\) 0.00283873 0.00126388i 0.000118383 5.27075e-5i
\(576\) −2.14614 2.09621i −0.0894224 0.0873421i
\(577\) −27.2027 5.78211i −1.13246 0.240712i −0.396697 0.917949i \(-0.629844\pi\)
−0.735765 + 0.677237i \(0.763177\pi\)
\(578\) 4.70416 10.5657i 0.195667 0.439476i
\(579\) 1.32043 + 3.66018i 0.0548751 + 0.152112i
\(580\) 8.07874 + 0.849110i 0.335452 + 0.0352574i
\(581\) −24.6883 17.9371i −1.02424 0.744156i
\(582\) −6.71823 + 16.4931i −0.278480 + 0.683660i
\(583\) 1.53828 2.66438i 0.0637090 0.110347i
\(584\) −0.298468 0.516963i −0.0123507 0.0213921i
\(585\) −12.9901 4.81182i −0.537075 0.198944i
\(586\) −7.77644 8.63661i −0.321242 0.356775i
\(587\) 9.19053 + 28.2855i 0.379334 + 1.16747i 0.940508 + 0.339771i \(0.110350\pi\)
−0.561174 + 0.827698i \(0.689650\pi\)
\(588\) 1.45038 2.70917i 0.0598129 0.111724i
\(589\) 3.99384 + 2.67474i 0.164563 + 0.110211i
\(590\) 9.29822i 0.382802i
\(591\) −30.4935 5.46624i −1.25433 0.224851i
\(592\) 0.752333 0.677404i 0.0309207 0.0278411i
\(593\) 2.59570 + 3.57267i 0.106592 + 0.146712i 0.858981 0.512008i \(-0.171098\pi\)
−0.752388 + 0.658720i \(0.771098\pi\)
\(594\) 2.92026 2.08388i 0.119820 0.0855027i
\(595\) 5.98011 + 3.45262i 0.245160 + 0.141543i
\(596\) 8.63139 0.907196i 0.353556 0.0371602i
\(597\) −2.18868 4.52002i −0.0895767 0.184992i
\(598\) −0.00149982 + 0.0142699i −6.13324e−5 + 0.000583539i
\(599\) 9.38033 + 8.44609i 0.383270 + 0.345098i 0.838135 0.545462i \(-0.183646\pi\)
−0.454865 + 0.890560i \(0.650313\pi\)
\(600\) −1.06247 1.36790i −0.0433753 0.0558443i
\(601\) 2.95849 13.9186i 0.120679 0.567752i −0.875709 0.482839i \(-0.839606\pi\)
0.996388 0.0849126i \(-0.0270611\pi\)
\(602\) −6.82880 + 1.45151i −0.278321 + 0.0591590i
\(603\) −31.3038 19.8091i −1.27479 0.806691i
\(604\) 22.3366 + 7.25761i 0.908864 + 0.295308i
\(605\) −10.0083 3.25188i −0.406894 0.132208i
\(606\) −1.09905 + 15.1002i −0.0446457 + 0.613402i
\(607\) 43.7761 9.30490i 1.77682 0.377674i 0.801415 0.598108i \(-0.204081\pi\)
0.975402 + 0.220434i \(0.0707474\pi\)
\(608\) 0.179494 0.844454i 0.00727946 0.0342471i
\(609\) −32.9145 + 25.5653i −1.33376 + 1.03596i
\(610\) 3.32699 + 2.99563i 0.134706 + 0.121290i
\(611\) −5.27584 + 50.1963i −0.213438 + 2.03073i
\(612\) −0.283800 + 6.98776i −0.0114719 + 0.282464i
\(613\) 16.3736 1.72094i 0.661324 0.0695080i 0.232080 0.972697i \(-0.425447\pi\)
0.429244 + 0.903189i \(0.358780\pi\)
\(614\) 0.430847 + 0.248750i 0.0173876 + 0.0100387i
\(615\) 6.89125 0.221038i 0.277882 0.00891309i
\(616\) 1.20209 + 1.65454i 0.0484337 + 0.0666633i
\(617\) 15.6373 14.0799i 0.629536 0.566836i −0.291376 0.956609i \(-0.594113\pi\)
0.920911 + 0.389772i \(0.127446\pi\)
\(618\) −3.43844 + 19.1813i −0.138314 + 0.771587i
\(619\) 20.4583i 0.822290i −0.911570 0.411145i \(-0.865129\pi\)
0.911570 0.411145i \(-0.134871\pi\)
\(620\) −3.99233 + 3.88089i −0.160336 + 0.155860i
\(621\) −0.0160717 + 0.00155076i −0.000644937 + 6.22300e-5i
\(622\) 8.38926 + 25.8195i 0.336379 + 1.03527i
\(623\) −6.91878 7.68408i −0.277195 0.307856i
\(624\) 7.92315 1.09057i 0.317180 0.0436577i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −12.3801 + 21.4430i −0.494808 + 0.857033i
\(627\) 0.956122 + 0.389463i 0.0381838 + 0.0155537i
\(628\) −2.70365 1.96431i −0.107887 0.0783846i
\(629\) −2.34707 0.246687i −0.0935838 0.00983606i
\(630\) 8.79272 + 1.28675i 0.350310 + 0.0512654i
\(631\) −9.56508 + 21.4835i −0.380780 + 0.855246i 0.616892 + 0.787048i \(0.288392\pi\)
−0.997672 + 0.0681979i \(0.978275\pi\)
\(632\) 7.73986 + 1.64516i 0.307875 + 0.0654409i
\(633\) −3.04154 + 10.4944i −0.120890 + 0.417116i
\(634\) 22.6217 10.0718i 0.898424 0.400004i
\(635\) −6.37131 + 19.6089i −0.252838 + 0.778154i
\(636\) 5.34563 + 5.56715i 0.211968 + 0.220752i
\(637\) 3.33216 + 7.48415i 0.132025 + 0.296533i
\(638\) −1.16607 5.48592i −0.0461651 0.217190i
\(639\) 5.32201 2.11512i 0.210535 0.0836727i
\(640\) 0.913545 + 0.406737i 0.0361111 + 0.0160777i
\(641\) −32.5879 + 36.1925i −1.28715 + 1.42952i −0.440146 + 0.897926i \(0.645073\pi\)
−0.847000 + 0.531593i \(0.821593\pi\)
\(642\) −16.5658 11.2424i −0.653799 0.443702i
\(643\) 23.5502 32.4141i 0.928730 1.27829i −0.0316227 0.999500i \(-0.510068\pi\)
0.960353 0.278787i \(-0.0899325\pi\)
\(644\) −0.000962125 0.00915400i −3.79130e−5 0.000360718i
\(645\) −2.15340 3.46806i −0.0847901 0.136555i
\(646\) −1.74292 + 1.00627i −0.0685742 + 0.0395914i
\(647\) 3.05629 2.22053i 0.120155 0.0872979i −0.526085 0.850432i \(-0.676341\pi\)
0.646240 + 0.763134i \(0.276341\pi\)
\(648\) 2.98183 + 8.49169i 0.117137 + 0.333585i
\(649\) −6.10551 + 1.98380i −0.239662 + 0.0778710i
\(650\) 4.61756 0.181116
\(651\) 0.983865 28.5488i 0.0385607 1.11891i
\(652\) 20.3886 0.798479
\(653\) 18.9136 6.14541i 0.740148 0.240489i 0.0854113 0.996346i \(-0.472780\pi\)
0.654737 + 0.755857i \(0.272780\pi\)
\(654\) −8.31585 33.7616i −0.325176 1.32018i
\(655\) −11.7718 + 8.55268i −0.459960 + 0.334181i
\(656\) −3.44740 + 1.99036i −0.134598 + 0.0777104i
\(657\) 0.114763 + 1.78713i 0.00447732 + 0.0697226i
\(658\) −3.38441 32.2005i −0.131938 1.25531i
\(659\) −1.24535 + 1.71408i −0.0485121 + 0.0667712i −0.832584 0.553899i \(-0.813139\pi\)
0.784072 + 0.620670i \(0.213139\pi\)
\(660\) −0.671526 + 0.989499i −0.0261391 + 0.0385162i
\(661\) 13.0432 14.4859i 0.507320 0.563436i −0.434016 0.900905i \(-0.642904\pi\)
0.941337 + 0.337469i \(0.109571\pi\)
\(662\) 16.4662 + 7.33122i 0.639977 + 0.284936i
\(663\) −14.2483 12.0249i −0.553358 0.467009i
\(664\) 2.14195 + 10.0771i 0.0831236 + 0.391066i
\(665\) 1.04013 + 2.33618i 0.0403346 + 0.0905930i
\(666\) −2.92415 + 0.820526i −0.113309 + 0.0317947i
\(667\) −0.00780019 + 0.0240065i −0.000302025 + 0.000929536i
\(668\) −9.44754 + 4.20631i −0.365536 + 0.162747i
\(669\) −41.1375 11.9226i −1.59047 0.460956i
\(670\) 12.0785 + 2.56736i 0.466633 + 0.0991859i
\(671\) 1.25721 2.82373i 0.0485339 0.109009i
\(672\) −4.82611 + 1.74104i −0.186171 + 0.0671621i
\(673\) −27.4194 2.88190i −1.05694 0.111089i −0.439921 0.898037i \(-0.644993\pi\)
−0.617020 + 0.786948i \(0.711660\pi\)
\(674\) −19.6238 14.2575i −0.755881 0.549179i
\(675\) 1.03696 + 5.09163i 0.0399126 + 0.195977i
\(676\) −4.16093 + 7.20695i −0.160036 + 0.277190i
\(677\) −17.4259 30.1825i −0.669731 1.16001i −0.977979 0.208702i \(-0.933076\pi\)
0.308248 0.951306i \(-0.400257\pi\)
\(678\) −1.82229 13.2392i −0.0699847 0.508450i
\(679\) 20.3793 + 22.6336i 0.782087 + 0.868596i
\(680\) −0.720373 2.21708i −0.0276250 0.0850211i
\(681\) 19.9559 + 10.6836i 0.764710 + 0.409396i
\(682\) 3.40009 + 1.79349i 0.130196 + 0.0686764i
\(683\) 49.0063i 1.87517i −0.347752 0.937587i \(-0.613055\pi\)
0.347752 0.937587i \(-0.386945\pi\)
\(684\) −1.60612 + 2.03182i −0.0614114 + 0.0776885i
\(685\) 3.79535 3.41735i 0.145013 0.130570i
\(686\) 9.09863 + 12.5232i 0.347387 + 0.478138i
\(687\) 0.942513 + 29.3846i 0.0359591 + 1.12109i
\(688\) 2.04111 + 1.17844i 0.0778167 + 0.0449275i
\(689\) −20.4633 + 2.15078i −0.779591 + 0.0819383i
\(690\) 0.00484411 0.00234561i 0.000184412 8.92958e-5i
\(691\) −0.439855 + 4.18494i −0.0167329 + 0.159203i −0.999698 0.0245918i \(-0.992171\pi\)
0.982965 + 0.183794i \(0.0588381\pi\)
\(692\) 15.2232 + 13.7070i 0.578699 + 0.521063i
\(693\) −1.03103 6.04812i −0.0391655 0.229749i
\(694\) −1.98356 + 9.33193i −0.0752950 + 0.354235i
\(695\) −4.51061 + 0.958759i −0.171097 + 0.0363678i
\(696\) 14.0328 + 1.02136i 0.531910 + 0.0387144i
\(697\) 8.82555 + 2.86760i 0.334292 + 0.108618i
\(698\) −9.91624 3.22198i −0.375335 0.121954i
\(699\) 23.4000 + 1.70314i 0.885069 + 0.0644187i
\(700\) −2.89740 + 0.615861i −0.109511 + 0.0232773i
\(701\) 10.4177 49.0112i 0.393470 1.85113i −0.119657 0.992815i \(-0.538179\pi\)
0.513126 0.858313i \(-0.328487\pi\)
\(702\) −22.7552 7.60873i −0.858838 0.287173i
\(703\) −0.649505 0.584817i −0.0244965 0.0220568i
\(704\) 0.0721689 0.686642i 0.00271997 0.0258788i
\(705\) 17.0398 8.25101i 0.641758 0.310751i
\(706\) 30.4077 3.19598i 1.14441 0.120282i
\(707\) 22.4234 + 12.9462i 0.843320 + 0.486891i
\(708\) −0.516303 16.0967i −0.0194039 0.604952i
\(709\) 28.2250 + 38.8484i 1.06001 + 1.45898i 0.879794 + 0.475355i \(0.157680\pi\)
0.180218 + 0.983627i \(0.442320\pi\)
\(710\) −1.41864 + 1.27735i −0.0532406 + 0.0479381i
\(711\) −18.6227 14.7209i −0.698405 0.552076i
\(712\) 3.49072i 0.130820i
\(713\) −0.00921657 0.0146418i −0.000345163 0.000548341i
\(714\) 10.5442 + 5.64497i 0.394608 + 0.211258i
\(715\) −0.985169 3.03204i −0.0368432 0.113392i
\(716\) −9.02419 10.0224i −0.337250 0.374554i
\(717\) 2.21175 + 16.0687i 0.0825994 + 0.600097i
\(718\) 3.80780 + 6.59530i 0.142106 + 0.246134i
\(719\) −13.5965 + 23.5498i −0.507063 + 0.878259i 0.492903 + 0.870084i \(0.335936\pi\)
−0.999967 + 0.00817528i \(0.997398\pi\)
\(720\) −1.91527 2.30906i −0.0713778 0.0860535i
\(721\) 26.9617 + 19.5888i 1.00411 + 0.729526i
\(722\) 18.1547 + 1.90813i 0.675647 + 0.0710134i
\(723\) 0.797167 0.287582i 0.0296470 0.0106953i
\(724\) 3.90711 8.77552i 0.145207 0.326140i
\(725\) 7.94573 + 1.68892i 0.295097 + 0.0627248i
\(726\) −17.5065 5.07380i −0.649727 0.188306i
\(727\) 22.2633 9.91225i 0.825699 0.367625i 0.0500166 0.998748i \(-0.484073\pi\)
0.775682 + 0.631124i \(0.217406\pi\)
\(728\) 4.22667 13.0084i 0.156651 0.482122i
\(729\) 3.27980 26.8001i 0.121474 0.992595i
\(730\) −0.242796 0.545329i −0.00898629 0.0201835i
\(731\) −1.14233 5.37422i −0.0422505 0.198773i
\(732\) 5.92588 + 5.00118i 0.219027 + 0.184849i
\(733\) 7.60340 + 3.38525i 0.280838 + 0.125037i 0.542322 0.840171i \(-0.317545\pi\)
−0.261484 + 0.965208i \(0.584212\pi\)
\(734\) −4.18551 + 4.64848i −0.154490 + 0.171579i
\(735\) 1.72562 2.54272i 0.0636506 0.0937898i
\(736\) −0.00182647 + 0.00251392i −6.73245e−5 + 9.26642e-5i
\(737\) −0.891166 8.47888i −0.0328265 0.312324i
\(738\) 11.9176 0.765303i 0.438693 0.0281712i
\(739\) −1.97748 + 1.14170i −0.0727426 + 0.0419980i −0.535930 0.844262i \(-0.680039\pi\)
0.463188 + 0.886260i \(0.346706\pi\)
\(740\) 0.819020 0.595053i 0.0301078 0.0218746i
\(741\) −1.65135 6.70433i −0.0606638 0.246290i
\(742\) 12.5533 4.07882i 0.460847 0.149738i
\(743\) −4.02889 −0.147805 −0.0739027 0.997265i \(-0.523545\pi\)
−0.0739027 + 0.997265i \(0.523545\pi\)
\(744\) −6.69587 + 6.94013i −0.245482 + 0.254437i
\(745\) 8.67894 0.317972
\(746\) −31.4109 + 10.2060i −1.15004 + 0.373669i
\(747\) 7.64734 29.9455i 0.279802 1.09565i
\(748\) −1.30211 + 0.946039i −0.0476099 + 0.0345906i
\(749\) −29.6515 + 17.1193i −1.08344 + 0.625525i
\(750\) −0.913668 1.47147i −0.0333624 0.0537303i
\(751\) 2.49700 + 23.7573i 0.0911167 + 0.866918i 0.940649 + 0.339381i \(0.110218\pi\)
−0.849532 + 0.527537i \(0.823116\pi\)
\(752\) −6.42486 + 8.84306i −0.234290 + 0.322473i
\(753\) 13.9447 + 9.46362i 0.508174 + 0.344873i
\(754\) −25.0988 + 27.8750i −0.914044 + 1.01515i
\(755\) 21.4556 + 9.55266i 0.780850 + 0.347657i
\(756\) 15.2931 + 1.73934i 0.556203 + 0.0632591i
\(757\) −1.46112 6.87405i −0.0531055 0.249842i 0.943585 0.331130i \(-0.107430\pi\)
−0.996691 + 0.0812884i \(0.974097\pi\)
\(758\) 4.58121 + 10.2896i 0.166397 + 0.373734i
\(759\) −0.00257371 0.00268036i −9.34196e−5 9.72908e-5i
\(760\) 0.266781 0.821066i 0.00967715 0.0297832i
\(761\) 39.7347 17.6911i 1.44038 0.641300i 0.469955 0.882690i \(-0.344270\pi\)
0.970428 + 0.241390i \(0.0776033\pi\)
\(762\) −9.94093 + 34.2999i −0.360122 + 1.24255i
\(763\) −58.1648 12.3633i −2.10571 0.447582i
\(764\) −1.25579 + 2.82055i −0.0454328 + 0.102044i
\(765\) −1.01267 + 6.91982i −0.0366130 + 0.250187i
\(766\) −17.7829 1.86906i −0.642523 0.0675319i
\(767\) 34.7352 + 25.2366i 1.25422 + 0.911242i
\(768\) 1.60408 + 0.653400i 0.0578822 + 0.0235775i
\(769\) 11.0942 19.2157i 0.400066 0.692934i −0.593668 0.804710i \(-0.702321\pi\)
0.993733 + 0.111776i \(0.0356539\pi\)
\(770\) 1.02256 + 1.77113i 0.0368505 + 0.0638270i
\(771\) 12.1809 1.67662i 0.438685 0.0603821i
\(772\) −1.50321 1.66948i −0.0541017 0.0600861i
\(773\) −7.45336 22.9391i −0.268079