Properties

Label 930.2.br.a.11.10
Level $930$
Weight $2$
Character 930.11
Analytic conductor $7.426$
Analytic rank $0$
Dimension $176$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.br (of order \(30\), degree \(8\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.42608738798\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 11.10
Character \(\chi\) \(=\) 930.11
Dual form 930.2.br.a.761.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{2} +(1.48579 + 0.890187i) q^{3} +(0.809017 - 0.587785i) q^{4} +(0.866025 - 0.500000i) q^{5} +(-1.68815 - 0.387484i) q^{6} +(0.0245947 + 0.234003i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(1.41514 + 2.64526i) q^{9} +O(q^{10})\) \(q+(-0.951057 + 0.309017i) q^{2} +(1.48579 + 0.890187i) q^{3} +(0.809017 - 0.587785i) q^{4} +(0.866025 - 0.500000i) q^{5} +(-1.68815 - 0.387484i) q^{6} +(0.0245947 + 0.234003i) q^{7} +(-0.587785 + 0.809017i) q^{8} +(1.41514 + 2.64526i) q^{9} +(-0.669131 + 0.743145i) q^{10} +(1.45178 + 0.646376i) q^{11} +(1.72527 - 0.153149i) q^{12} +(-1.21131 - 5.69874i) q^{13} +(-0.0957017 - 0.214950i) q^{14} +(1.73182 + 0.0280299i) q^{15} +(0.309017 - 0.951057i) q^{16} +(3.90661 - 1.73934i) q^{17} +(-2.16330 - 2.07849i) q^{18} +(0.572761 + 0.121744i) q^{19} +(0.406737 - 0.913545i) q^{20} +(-0.171764 + 0.369572i) q^{21} +(-1.58047 - 0.166114i) q^{22} +(7.46724 + 5.42527i) q^{23} +(-1.59350 + 0.678790i) q^{24} +(0.500000 - 0.866025i) q^{25} +(2.91303 + 5.04551i) q^{26} +(-0.252181 + 5.19003i) q^{27} +(0.157441 + 0.174856i) q^{28} +(0.549440 + 1.69100i) q^{29} +(-1.65572 + 0.508505i) q^{30} +(-5.48177 + 0.974763i) q^{31} +1.00000i q^{32} +(1.58165 + 2.25274i) q^{33} +(-3.17793 + 2.86142i) q^{34} +(0.138301 + 0.190355i) q^{35} +(2.69971 + 1.30826i) q^{36} +(0.834092 + 0.481563i) q^{37} +(-0.582349 + 0.0612073i) q^{38} +(3.27320 - 9.54542i) q^{39} +(-0.104528 + 0.994522i) q^{40} +(-5.53676 - 4.98532i) q^{41} +(0.0491527 - 0.404562i) q^{42} +(0.201044 - 0.945836i) q^{43} +(1.55445 - 0.330408i) q^{44} +(2.54817 + 1.58329i) q^{45} +(-8.77827 - 2.85223i) q^{46} +(7.81614 + 2.53962i) q^{47} +(1.30575 - 1.13799i) q^{48} +(6.79288 - 1.44387i) q^{49} +(-0.207912 + 0.978148i) q^{50} +(7.35274 + 0.893329i) q^{51} +(-4.32960 - 3.89839i) q^{52} +(-0.193679 + 1.84273i) q^{53} +(-1.36397 - 5.01394i) q^{54} +(1.58047 - 0.166114i) q^{55} +(-0.203769 - 0.117646i) q^{56} +(0.742627 + 0.690750i) q^{57} +(-1.04510 - 1.43845i) q^{58} +(2.88510 - 2.59776i) q^{59} +(1.41755 - 0.995264i) q^{60} -5.54239i q^{61} +(4.91226 - 2.62102i) q^{62} +(-0.584193 + 0.396205i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-3.89839 - 4.32960i) q^{65} +(-2.20037 - 1.65372i) q^{66} +(2.84513 + 4.92790i) q^{67} +(2.13816 - 3.70340i) q^{68} +(6.26524 + 14.7080i) q^{69} +(-0.190355 - 0.138301i) q^{70} +(-13.9140 - 1.46242i) q^{71} +(-2.97185 - 0.409975i) q^{72} +(-6.83385 + 15.3491i) q^{73} +(-0.942080 - 0.200245i) q^{74} +(1.51382 - 0.841637i) q^{75} +(0.534933 - 0.238167i) q^{76} +(-0.115548 + 0.355619i) q^{77} +(-0.163304 + 10.0897i) q^{78} +(-5.16130 - 11.5925i) q^{79} +(-0.207912 - 0.978148i) q^{80} +(-4.99478 + 7.48680i) q^{81} +(6.80632 + 3.03037i) q^{82} +(-10.2545 + 11.3888i) q^{83} +(0.0782695 + 0.399950i) q^{84} +(2.51356 - 3.45962i) q^{85} +(0.101076 + 0.961670i) q^{86} +(-0.688956 + 3.00158i) q^{87} +(-1.37627 + 0.794588i) q^{88} +(14.8213 - 10.7683i) q^{89} +(-2.91272 - 0.718372i) q^{90} +(1.30373 - 0.423607i) q^{91} +9.23002 q^{92} +(-9.01248 - 3.43151i) q^{93} -8.21838 q^{94} +(0.556897 - 0.180947i) q^{95} +(-0.890187 + 1.48579i) q^{96} +(5.67058 - 4.11992i) q^{97} +(-6.01423 + 3.47232i) q^{98} +(0.344640 + 4.75505i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176q + 44q^{4} + 4q^{7} - 4q^{9} + O(q^{10}) \) \( 176q + 44q^{4} + 4q^{7} - 4q^{9} - 22q^{10} - 38q^{13} - 44q^{16} + 12q^{18} + 8q^{19} - 18q^{21} - 4q^{22} + 88q^{25} - 90q^{27} + 36q^{28} + 24q^{31} + 18q^{33} + 14q^{34} + 4q^{36} - 42q^{37} - 42q^{39} + 22q^{40} - 12q^{42} - 34q^{43} - 8q^{45} + 10q^{46} + 22q^{49} + 26q^{51} - 2q^{52} + 4q^{55} + 114q^{57} + 32q^{63} + 44q^{64} - 42q^{66} + 20q^{67} + 16q^{69} + 8q^{70} - 12q^{72} - 28q^{73} + 12q^{76} - 92q^{78} - 56q^{79} - 124q^{81} - 32q^{82} - 12q^{84} - 36q^{87} - 6q^{88} + 24q^{90} - 140q^{91} - 104q^{93} - 36q^{94} + 88q^{97} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/930\mathbb{Z}\right)^\times\).

\(n\) \(187\) \(311\) \(871\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{23}{30}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 0.309017i −0.672499 + 0.218508i
\(3\) 1.48579 + 0.890187i 0.857820 + 0.513949i
\(4\) 0.809017 0.587785i 0.404508 0.293893i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) −1.68815 0.387484i −0.689185 0.158190i
\(7\) 0.0245947 + 0.234003i 0.00929591 + 0.0884447i 0.998186 0.0602027i \(-0.0191747\pi\)
−0.988890 + 0.148647i \(0.952508\pi\)
\(8\) −0.587785 + 0.809017i −0.207813 + 0.286031i
\(9\) 1.41514 + 2.64526i 0.471712 + 0.881753i
\(10\) −0.669131 + 0.743145i −0.211598 + 0.235003i
\(11\) 1.45178 + 0.646376i 0.437729 + 0.194890i 0.613756 0.789496i \(-0.289658\pi\)
−0.176027 + 0.984385i \(0.556325\pi\)
\(12\) 1.72527 0.153149i 0.498042 0.0442102i
\(13\) −1.21131 5.69874i −0.335956 1.58055i −0.744381 0.667755i \(-0.767255\pi\)
0.408425 0.912792i \(-0.366078\pi\)
\(14\) −0.0957017 0.214950i −0.0255774 0.0574477i
\(15\) 1.73182 + 0.0280299i 0.447155 + 0.00723728i
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 3.90661 1.73934i 0.947493 0.421851i 0.125975 0.992033i \(-0.459794\pi\)
0.821518 + 0.570182i \(0.193127\pi\)
\(18\) −2.16330 2.07849i −0.509896 0.489905i
\(19\) 0.572761 + 0.121744i 0.131400 + 0.0279300i 0.273142 0.961974i \(-0.411937\pi\)
−0.141742 + 0.989904i \(0.545270\pi\)
\(20\) 0.406737 0.913545i 0.0909491 0.204275i
\(21\) −0.171764 + 0.369572i −0.0374819 + 0.0806473i
\(22\) −1.58047 0.166114i −0.336957 0.0354156i
\(23\) 7.46724 + 5.42527i 1.55703 + 1.13125i 0.938394 + 0.345568i \(0.112314\pi\)
0.618635 + 0.785679i \(0.287686\pi\)
\(24\) −1.59350 + 0.678790i −0.325272 + 0.138557i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.91303 + 5.04551i 0.571292 + 0.989507i
\(27\) −0.252181 + 5.19003i −0.0485322 + 0.998822i
\(28\) 0.157441 + 0.174856i 0.0297535 + 0.0330446i
\(29\) 0.549440 + 1.69100i 0.102028 + 0.314011i 0.989022 0.147771i \(-0.0472100\pi\)
−0.886993 + 0.461783i \(0.847210\pi\)
\(30\) −1.65572 + 0.508505i −0.302292 + 0.0928399i
\(31\) −5.48177 + 0.974763i −0.984556 + 0.175073i
\(32\) 1.00000i 0.176777i
\(33\) 1.58165 + 2.25274i 0.275330 + 0.392151i
\(34\) −3.17793 + 2.86142i −0.545010 + 0.490729i
\(35\) 0.138301 + 0.190355i 0.0233771 + 0.0321759i
\(36\) 2.69971 + 1.30826i 0.449952 + 0.218044i
\(37\) 0.834092 + 0.481563i 0.137124 + 0.0791685i 0.566993 0.823723i \(-0.308107\pi\)
−0.429869 + 0.902891i \(0.641440\pi\)
\(38\) −0.582349 + 0.0612073i −0.0944695 + 0.00992914i
\(39\) 3.27320 9.54542i 0.524132 1.52849i
\(40\) −0.104528 + 0.994522i −0.0165274 + 0.157248i
\(41\) −5.53676 4.98532i −0.864697 0.778576i 0.111886 0.993721i \(-0.464311\pi\)
−0.976582 + 0.215145i \(0.930978\pi\)
\(42\) 0.0491527 0.404562i 0.00758443 0.0624253i
\(43\) 0.201044 0.945836i 0.0306589 0.144239i −0.960156 0.279465i \(-0.909843\pi\)
0.990815 + 0.135226i \(0.0431762\pi\)
\(44\) 1.55445 0.330408i 0.234342 0.0498109i
\(45\) 2.54817 + 1.58329i 0.379859 + 0.236023i
\(46\) −8.77827 2.85223i −1.29429 0.420539i
\(47\) 7.81614 + 2.53962i 1.14010 + 0.370442i 0.817406 0.576061i \(-0.195411\pi\)
0.322695 + 0.946503i \(0.395411\pi\)
\(48\) 1.30575 1.13799i 0.188469 0.164254i
\(49\) 6.79288 1.44387i 0.970412 0.206267i
\(50\) −0.207912 + 0.978148i −0.0294032 + 0.138331i
\(51\) 7.35274 + 0.893329i 1.02959 + 0.125091i
\(52\) −4.32960 3.89839i −0.600408 0.540610i
\(53\) −0.193679 + 1.84273i −0.0266038 + 0.253119i 0.973134 + 0.230238i \(0.0739505\pi\)
−0.999738 + 0.0228807i \(0.992716\pi\)
\(54\) −1.36397 5.01394i −0.185613 0.682311i
\(55\) 1.58047 0.166114i 0.213110 0.0223988i
\(56\) −0.203769 0.117646i −0.0272297 0.0157211i
\(57\) 0.742627 + 0.690750i 0.0983633 + 0.0914921i
\(58\) −1.04510 1.43845i −0.137228 0.188878i
\(59\) 2.88510 2.59776i 0.375608 0.338199i −0.459607 0.888122i \(-0.652010\pi\)
0.835215 + 0.549923i \(0.185343\pi\)
\(60\) 1.41755 0.995264i 0.183005 0.128488i
\(61\) 5.54239i 0.709630i −0.934937 0.354815i \(-0.884544\pi\)
0.934937 0.354815i \(-0.115456\pi\)
\(62\) 4.91226 2.62102i 0.623857 0.332869i
\(63\) −0.584193 + 0.396205i −0.0736014 + 0.0499171i
\(64\) −0.309017 0.951057i −0.0386271 0.118882i
\(65\) −3.89839 4.32960i −0.483536 0.537021i
\(66\) −2.20037 1.65372i −0.270847 0.203559i
\(67\) 2.84513 + 4.92790i 0.347588 + 0.602039i 0.985820 0.167804i \(-0.0536676\pi\)
−0.638233 + 0.769843i \(0.720334\pi\)
\(68\) 2.13816 3.70340i 0.259290 0.449104i
\(69\) 6.26524 + 14.7080i 0.754247 + 1.77064i
\(70\) −0.190355 0.138301i −0.0227518 0.0165301i
\(71\) −13.9140 1.46242i −1.65129 0.173558i −0.767374 0.641199i \(-0.778437\pi\)
−0.883918 + 0.467642i \(0.845104\pi\)
\(72\) −2.97185 0.409975i −0.350236 0.0483160i
\(73\) −6.83385 + 15.3491i −0.799842 + 1.79647i −0.233380 + 0.972386i \(0.574978\pi\)
−0.566462 + 0.824088i \(0.691688\pi\)
\(74\) −0.942080 0.200245i −0.109515 0.0232780i
\(75\) 1.51382 0.841637i 0.174801 0.0971839i
\(76\) 0.534933 0.238167i 0.0613610 0.0273197i
\(77\) −0.115548 + 0.355619i −0.0131679 + 0.0405265i
\(78\) −0.163304 + 10.0897i −0.0184905 + 1.14243i
\(79\) −5.16130 11.5925i −0.580691 1.30425i −0.930108 0.367286i \(-0.880287\pi\)
0.349417 0.936967i \(-0.386380\pi\)
\(80\) −0.207912 0.978148i −0.0232452 0.109360i
\(81\) −4.99478 + 7.48680i −0.554976 + 0.831867i
\(82\) 6.80632 + 3.03037i 0.751632 + 0.334648i
\(83\) −10.2545 + 11.3888i −1.12558 + 1.25008i −0.160806 + 0.986986i \(0.551409\pi\)
−0.964770 + 0.263093i \(0.915257\pi\)
\(84\) 0.0782695 + 0.399950i 0.00853991 + 0.0436382i
\(85\) 2.51356 3.45962i 0.272634 0.375248i
\(86\) 0.101076 + 0.961670i 0.0108993 + 0.103699i
\(87\) −0.688956 + 3.00158i −0.0738638 + 0.321803i
\(88\) −1.37627 + 0.794588i −0.146710 + 0.0847033i
\(89\) 14.8213 10.7683i 1.57105 1.14144i 0.644915 0.764255i \(-0.276893\pi\)
0.926139 0.377182i \(-0.123107\pi\)
\(90\) −2.91272 0.718372i −0.307028 0.0757231i
\(91\) 1.30373 0.423607i 0.136668 0.0444061i
\(92\) 9.23002 0.962296
\(93\) −9.01248 3.43151i −0.934550 0.355831i
\(94\) −8.21838 −0.847661
\(95\) 0.556897 0.180947i 0.0571365 0.0185648i
\(96\) −0.890187 + 1.48579i −0.0908543 + 0.151643i
\(97\) 5.67058 4.11992i 0.575760 0.418314i −0.261433 0.965222i \(-0.584195\pi\)
0.837193 + 0.546907i \(0.184195\pi\)
\(98\) −6.01423 + 3.47232i −0.607529 + 0.350757i
\(99\) 0.344640 + 4.75505i 0.0346377 + 0.477901i
\(100\) −0.104528 0.994522i −0.0104528 0.0994522i
\(101\) −5.98156 + 8.23291i −0.595187 + 0.819205i −0.995257 0.0972795i \(-0.968986\pi\)
0.400070 + 0.916485i \(0.368986\pi\)
\(102\) −7.26892 + 1.42251i −0.719731 + 0.140850i
\(103\) 6.82296 7.57767i 0.672287 0.746650i −0.306424 0.951895i \(-0.599133\pi\)
0.978711 + 0.205245i \(0.0657992\pi\)
\(104\) 5.32237 + 2.36967i 0.521901 + 0.232365i
\(105\) 0.0360346 + 0.405941i 0.00351661 + 0.0396158i
\(106\) −0.385236 1.81239i −0.0374174 0.176035i
\(107\) 7.56288 + 16.9865i 0.731131 + 1.64215i 0.766070 + 0.642757i \(0.222210\pi\)
−0.0349393 + 0.999389i \(0.511124\pi\)
\(108\) 2.84660 + 4.34705i 0.273915 + 0.418295i
\(109\) −3.61225 + 11.1174i −0.345990 + 1.06485i 0.615061 + 0.788480i \(0.289131\pi\)
−0.961051 + 0.276370i \(0.910869\pi\)
\(110\) −1.45178 + 0.646376i −0.138422 + 0.0616295i
\(111\) 0.810603 + 1.45800i 0.0769390 + 0.138387i
\(112\) 0.230150 + 0.0489199i 0.0217471 + 0.00462249i
\(113\) −3.90181 + 8.76362i −0.367052 + 0.824412i 0.631736 + 0.775184i \(0.282343\pi\)
−0.998788 + 0.0492280i \(0.984324\pi\)
\(114\) −0.919733 0.427458i −0.0861409 0.0400351i
\(115\) 9.17946 + 0.964800i 0.855989 + 0.0899681i
\(116\) 1.43845 + 1.04510i 0.133557 + 0.0970348i
\(117\) 13.3605 11.2687i 1.23518 1.04179i
\(118\) −1.94114 + 3.36216i −0.178697 + 0.309512i
\(119\) 0.503091 + 0.871380i 0.0461183 + 0.0798792i
\(120\) −1.04062 + 1.38460i −0.0949949 + 0.126396i
\(121\) −5.67056 6.29780i −0.515506 0.572527i
\(122\) 1.71269 + 5.27112i 0.155060 + 0.477225i
\(123\) −3.78859 12.3359i −0.341606 1.11229i
\(124\) −3.86190 + 4.01071i −0.346809 + 0.360172i
\(125\) 1.00000i 0.0894427i
\(126\) 0.433166 0.557339i 0.0385895 0.0496517i
\(127\) 10.1245 9.11616i 0.898406 0.808928i −0.0838490 0.996478i \(-0.526721\pi\)
0.982255 + 0.187550i \(0.0600547\pi\)
\(128\) 0.587785 + 0.809017i 0.0519534 + 0.0715077i
\(129\) 1.14068 1.22635i 0.100431 0.107974i
\(130\) 5.04551 + 2.91303i 0.442521 + 0.255490i
\(131\) 2.96849 0.312000i 0.259358 0.0272596i 0.0260429 0.999661i \(-0.491709\pi\)
0.233315 + 0.972401i \(0.425043\pi\)
\(132\) 2.60371 + 0.892832i 0.226624 + 0.0777111i
\(133\) −0.0144016 + 0.137022i −0.00124877 + 0.0118813i
\(134\) −4.22868 3.80752i −0.365303 0.328920i
\(135\) 2.37662 + 4.62079i 0.204547 + 0.397694i
\(136\) −0.889097 + 4.18287i −0.0762395 + 0.358678i
\(137\) −9.57679 + 2.03561i −0.818201 + 0.173914i −0.597954 0.801530i \(-0.704019\pi\)
−0.220246 + 0.975444i \(0.570686\pi\)
\(138\) −10.5036 12.0521i −0.894129 1.02594i
\(139\) 1.51445 + 0.492075i 0.128454 + 0.0417373i 0.372539 0.928017i \(-0.378487\pi\)
−0.244084 + 0.969754i \(0.578487\pi\)
\(140\) 0.223776 + 0.0727091i 0.0189125 + 0.00614504i
\(141\) 9.35240 + 10.7312i 0.787614 + 0.903727i
\(142\) 13.6850 2.90883i 1.14842 0.244103i
\(143\) 1.92498 9.05630i 0.160975 0.757326i
\(144\) 2.95309 0.528444i 0.246091 0.0440370i
\(145\) 1.32133 + 1.18973i 0.109731 + 0.0988018i
\(146\) 1.75625 16.7096i 0.145348 1.38290i
\(147\) 11.3781 + 3.90164i 0.938450 + 0.321802i
\(148\) 0.957850 0.100674i 0.0787348 0.00827536i
\(149\) −14.5438 8.39688i −1.19148 0.687899i −0.232835 0.972516i \(-0.574800\pi\)
−0.958641 + 0.284617i \(0.908133\pi\)
\(150\) −1.17965 + 1.26824i −0.0963177 + 0.103551i
\(151\) −4.30219 5.92146i −0.350107 0.481881i 0.597252 0.802054i \(-0.296259\pi\)
−0.947359 + 0.320172i \(0.896259\pi\)
\(152\) −0.435153 + 0.391814i −0.0352956 + 0.0317803i
\(153\) 10.1294 + 7.87261i 0.818912 + 0.636462i
\(154\) 0.373920i 0.0301313i
\(155\) −4.25997 + 3.58506i −0.342169 + 0.287959i
\(156\) −2.96258 9.64634i −0.237196 0.772326i
\(157\) −3.66155 11.2691i −0.292224 0.899372i −0.984140 0.177394i \(-0.943233\pi\)
0.691916 0.721978i \(-0.256767\pi\)
\(158\) 8.49095 + 9.43016i 0.675504 + 0.750223i
\(159\) −1.92814 + 2.56550i −0.152912 + 0.203457i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −1.08587 + 1.88079i −0.0855788 + 0.148227i
\(162\) 2.43677 8.66384i 0.191451 0.680696i
\(163\) 1.36435 + 0.991259i 0.106864 + 0.0776414i 0.639934 0.768430i \(-0.278962\pi\)
−0.533070 + 0.846071i \(0.678962\pi\)
\(164\) −7.40963 0.778784i −0.578595 0.0608128i
\(165\) 2.49612 + 1.16010i 0.194322 + 0.0903138i
\(166\) 6.23328 14.0002i 0.483796 1.08662i
\(167\) −8.24880 1.75334i −0.638311 0.135677i −0.122623 0.992453i \(-0.539131\pi\)
−0.515689 + 0.856776i \(0.672464\pi\)
\(168\) −0.198030 0.356189i −0.0152784 0.0274806i
\(169\) −19.1323 + 8.51826i −1.47172 + 0.655251i
\(170\) −1.32146 + 4.06702i −0.101351 + 0.311926i
\(171\) 0.488490 + 1.68738i 0.0373558 + 0.129038i
\(172\) −0.393301 0.883368i −0.0299889 0.0673562i
\(173\) −4.41054 20.7500i −0.335327 1.57759i −0.746088 0.665847i \(-0.768070\pi\)
0.410761 0.911743i \(-0.365263\pi\)
\(174\) −0.272302 3.06757i −0.0206432 0.232552i
\(175\) 0.214950 + 0.0957017i 0.0162487 + 0.00723437i
\(176\) 1.06337 1.18099i 0.0801542 0.0890203i
\(177\) 6.59914 1.29144i 0.496022 0.0970706i
\(178\) −10.7683 + 14.8213i −0.807118 + 1.11090i
\(179\) 0.299958 + 2.85391i 0.0224199 + 0.213312i 0.999996 + 0.00273012i \(0.000869026\pi\)
−0.977576 + 0.210581i \(0.932464\pi\)
\(180\) 2.99215 0.216867i 0.223022 0.0161643i
\(181\) 7.52031 4.34186i 0.558981 0.322728i −0.193756 0.981050i \(-0.562067\pi\)
0.752736 + 0.658322i \(0.228734\pi\)
\(182\) −1.10902 + 0.805749i −0.0822059 + 0.0597261i
\(183\) 4.93376 8.23482i 0.364714 0.608735i
\(184\) −8.77827 + 2.85223i −0.647143 + 0.210269i
\(185\) 0.963126 0.0708105
\(186\) 9.63177 + 0.478551i 0.706236 + 0.0350890i
\(187\) 6.79582 0.496960
\(188\) 7.81614 2.53962i 0.570051 0.185221i
\(189\) −1.22068 + 0.0686361i −0.0887916 + 0.00499254i
\(190\) −0.473725 + 0.344182i −0.0343676 + 0.0249696i
\(191\) −12.6416 + 7.29863i −0.914713 + 0.528110i −0.881945 0.471353i \(-0.843766\pi\)
−0.0327687 + 0.999463i \(0.510432\pi\)
\(192\) 0.387484 1.68815i 0.0279642 0.121832i
\(193\) −2.15689 20.5214i −0.155256 1.47716i −0.743640 0.668581i \(-0.766902\pi\)
0.588384 0.808582i \(-0.299764\pi\)
\(194\) −4.11992 + 5.67058i −0.295793 + 0.407124i
\(195\) −1.93803 9.90318i −0.138785 0.709181i
\(196\) 4.64687 5.16087i 0.331919 0.368634i
\(197\) 2.14512 + 0.955070i 0.152834 + 0.0680460i 0.481728 0.876321i \(-0.340009\pi\)
−0.328894 + 0.944367i \(0.606676\pi\)
\(198\) −1.79716 4.41582i −0.127719 0.313819i
\(199\) −3.17450 14.9348i −0.225034 1.05870i −0.935050 0.354516i \(-0.884646\pi\)
0.710016 0.704186i \(-0.248688\pi\)
\(200\) 0.406737 + 0.913545i 0.0287606 + 0.0645974i
\(201\) −0.159497 + 9.85452i −0.0112501 + 0.695084i
\(202\) 3.14469 9.67837i 0.221260 0.680968i
\(203\) −0.382186 + 0.170160i −0.0268242 + 0.0119429i
\(204\) 6.47357 3.59911i 0.453241 0.251988i
\(205\) −7.28764 1.54903i −0.508991 0.108189i
\(206\) −4.14740 + 9.31520i −0.288963 + 0.649021i
\(207\) −3.78408 + 27.4303i −0.263012 + 1.90654i
\(208\) −5.79414 0.608989i −0.401751 0.0422258i
\(209\) 0.752832 + 0.546965i 0.0520745 + 0.0378343i
\(210\) −0.159714 0.374937i −0.0110213 0.0258731i
\(211\) −8.45337 + 14.6417i −0.581954 + 1.00797i 0.413294 + 0.910598i \(0.364378\pi\)
−0.995248 + 0.0973762i \(0.968955\pi\)
\(212\) 0.926441 + 1.60464i 0.0636282 + 0.110207i
\(213\) −19.3715 14.5589i −1.32731 0.997562i
\(214\) −12.4418 13.8181i −0.850507 0.944583i
\(215\) −0.298809 0.919640i −0.0203786 0.0627189i
\(216\) −4.05059 3.25464i −0.275608 0.221450i
\(217\) −0.362920 1.25878i −0.0246366 0.0854513i
\(218\) 11.6895i 0.791711i
\(219\) −23.8172 + 16.7221i −1.60942 + 1.12997i
\(220\) 1.18099 1.06337i 0.0796221 0.0716921i
\(221\) −14.6441 20.1559i −0.985071 1.35583i
\(222\) −1.22148 1.13615i −0.0819801 0.0762533i
\(223\) −11.1904 6.46079i −0.749366 0.432647i 0.0760988 0.997100i \(-0.475754\pi\)
−0.825465 + 0.564454i \(0.809087\pi\)
\(224\) −0.234003 + 0.0245947i −0.0156350 + 0.00164330i
\(225\) 2.99843 + 0.0970856i 0.199895 + 0.00647237i
\(226\) 1.00274 9.54042i 0.0667012 0.634619i
\(227\) 1.41382 + 1.27301i 0.0938386 + 0.0844926i 0.714715 0.699416i \(-0.246556\pi\)
−0.620876 + 0.783909i \(0.713223\pi\)
\(228\) 1.00681 + 0.122323i 0.0666776 + 0.00810107i
\(229\) −4.34732 + 20.4526i −0.287279 + 1.35154i 0.563542 + 0.826087i \(0.309438\pi\)
−0.850821 + 0.525455i \(0.823895\pi\)
\(230\) −9.02832 + 1.91903i −0.595310 + 0.126537i
\(231\) −0.488246 + 0.425515i −0.0321242 + 0.0279969i
\(232\) −1.69100 0.549440i −0.111020 0.0360725i
\(233\) −9.30190 3.02237i −0.609388 0.198002i −0.0119648 0.999928i \(-0.503809\pi\)
−0.597423 + 0.801926i \(0.703809\pi\)
\(234\) −9.22436 + 14.8458i −0.603015 + 0.970500i
\(235\) 8.03879 1.70870i 0.524393 0.111463i
\(236\) 0.807173 3.79745i 0.0525425 0.247193i
\(237\) 2.65086 21.8185i 0.172192 1.41726i
\(238\) −0.747739 0.673268i −0.0484687 0.0436415i
\(239\) 1.09867 10.4532i 0.0710672 0.676159i −0.899761 0.436383i \(-0.856259\pi\)
0.970828 0.239776i \(-0.0770741\pi\)
\(240\) 0.561821 1.63840i 0.0362654 0.105758i
\(241\) −15.5369 + 1.63300i −1.00082 + 0.105190i −0.590743 0.806860i \(-0.701165\pi\)
−0.410078 + 0.912051i \(0.634498\pi\)
\(242\) 7.33915 + 4.23726i 0.471779 + 0.272381i
\(243\) −14.0858 + 6.67751i −0.903607 + 0.428363i
\(244\) −3.25773 4.48389i −0.208555 0.287051i
\(245\) 5.16087 4.64687i 0.329716 0.296878i
\(246\) 7.41516 + 10.5614i 0.472773 + 0.673369i
\(247\) 3.41149i 0.217068i
\(248\) 2.43351 5.00780i 0.154528 0.317996i
\(249\) −25.3741 + 7.79289i −1.60802 + 0.493854i
\(250\) 0.309017 + 0.951057i 0.0195440 + 0.0601501i
\(251\) −8.07287 8.96583i −0.509555 0.565918i 0.432389 0.901687i \(-0.357671\pi\)
−0.941944 + 0.335769i \(0.891004\pi\)
\(252\) −0.239738 + 0.663916i −0.0151021 + 0.0418228i
\(253\) 7.33406 + 12.7030i 0.461088 + 0.798629i
\(254\) −6.81194 + 11.7986i −0.427419 + 0.740312i
\(255\) 6.81432 2.90272i 0.426729 0.181776i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 1.91475 + 0.201248i 0.119439 + 0.0125535i 0.164059 0.986450i \(-0.447541\pi\)
−0.0446205 + 0.999004i \(0.514208\pi\)
\(258\) −0.705888 + 1.51881i −0.0439467 + 0.0945572i
\(259\) −0.0921729 + 0.207024i −0.00572734 + 0.0128638i
\(260\) −5.69874 1.21131i −0.353421 0.0751220i
\(261\) −3.69561 + 3.84641i −0.228752 + 0.238087i
\(262\) −2.72678 + 1.21404i −0.168461 + 0.0750038i
\(263\) 0.545687 1.67945i 0.0336485 0.103559i −0.932822 0.360338i \(-0.882661\pi\)
0.966470 + 0.256779i \(0.0826612\pi\)
\(264\) −2.75217 0.0445444i −0.169384 0.00274152i
\(265\) 0.753635 + 1.69269i 0.0462954 + 0.103981i
\(266\) −0.0286454 0.134766i −0.00175636 0.00826302i
\(267\) 31.6071 2.80570i 1.93432 0.171706i
\(268\) 5.19831 + 2.31443i 0.317537 + 0.141377i
\(269\) 9.65595 10.7240i 0.588734 0.653855i −0.373003 0.927830i \(-0.621672\pi\)
0.961737 + 0.273975i \(0.0883386\pi\)
\(270\) −3.68820 3.66021i −0.224457 0.222754i
\(271\) 2.62225 3.60922i 0.159290 0.219245i −0.721910 0.691987i \(-0.756736\pi\)
0.881201 + 0.472742i \(0.156736\pi\)
\(272\) −0.446997 4.25290i −0.0271032 0.257870i
\(273\) 2.31416 + 0.531172i 0.140059 + 0.0321480i
\(274\) 8.47903 4.89537i 0.512237 0.295740i
\(275\) 1.28567 0.934094i 0.0775288 0.0563280i
\(276\) 13.7139 + 8.21644i 0.825477 + 0.494572i
\(277\) 10.1435 3.29584i 0.609466 0.198028i 0.0120084 0.999928i \(-0.496178\pi\)
0.597458 + 0.801900i \(0.296178\pi\)
\(278\) −1.59239 −0.0955051
\(279\) −10.3360 13.1213i −0.618797 0.785551i
\(280\) −0.235292 −0.0140614
\(281\) −7.01729 + 2.28006i −0.418617 + 0.136017i −0.510749 0.859730i \(-0.670632\pi\)
0.0921322 + 0.995747i \(0.470632\pi\)
\(282\) −12.2108 7.31589i −0.727141 0.435655i
\(283\) 4.17492 3.03325i 0.248173 0.180308i −0.456744 0.889598i \(-0.650984\pi\)
0.704917 + 0.709290i \(0.250984\pi\)
\(284\) −12.1163 + 6.99534i −0.718969 + 0.415097i
\(285\) 0.988508 + 0.226894i 0.0585542 + 0.0134400i
\(286\) 0.967790 + 9.20791i 0.0572266 + 0.544475i
\(287\) 1.03040 1.41823i 0.0608228 0.0837154i
\(288\) −2.64526 + 1.41514i −0.155873 + 0.0833877i
\(289\) 0.861122 0.956372i 0.0506542 0.0562572i
\(290\) −1.62431 0.723188i −0.0953826 0.0424671i
\(291\) 12.0928 1.07345i 0.708891 0.0629269i
\(292\) 3.49326 + 16.4345i 0.204428 + 0.961756i
\(293\) −1.81354 4.07328i −0.105948 0.237963i 0.852790 0.522254i \(-0.174909\pi\)
−0.958738 + 0.284290i \(0.908242\pi\)
\(294\) −12.0269 0.194657i −0.701422 0.0113526i
\(295\) 1.19969 3.69228i 0.0698488 0.214973i
\(296\) −0.879860 + 0.391739i −0.0511408 + 0.0227694i
\(297\) −3.72082 + 7.37180i −0.215904 + 0.427755i
\(298\) 16.4268 + 3.49162i 0.951577 + 0.202264i
\(299\) 21.8721 49.1256i 1.26490 2.84101i
\(300\) 0.730003 1.57070i 0.0421467 0.0906844i
\(301\) 0.226273 + 0.0237822i 0.0130421 + 0.00137078i
\(302\) 5.92146 + 4.30219i 0.340742 + 0.247563i
\(303\) −16.2162 + 6.90766i −0.931594 + 0.396835i
\(304\) 0.292778 0.507107i 0.0167920 0.0290846i
\(305\) −2.77119 4.79985i −0.158678 0.274839i
\(306\) −12.0664 4.35714i −0.689789 0.249081i
\(307\) −15.4805 17.1928i −0.883516 0.981244i 0.116412 0.993201i \(-0.462861\pi\)
−0.999929 + 0.0119566i \(0.996194\pi\)
\(308\) 0.115548 + 0.355619i 0.00658393 + 0.0202633i
\(309\) 16.8830 5.18510i 0.960442 0.294970i
\(310\) 2.94363 4.72600i 0.167187 0.268418i
\(311\) 10.7909i 0.611895i −0.952048 0.305947i \(-0.901027\pi\)
0.952048 0.305947i \(-0.0989731\pi\)
\(312\) 5.79847 + 8.25873i 0.328273 + 0.467559i
\(313\) −14.5839 + 13.1314i −0.824332 + 0.742232i −0.968950 0.247255i \(-0.920471\pi\)
0.144618 + 0.989488i \(0.453805\pi\)
\(314\) 6.96468 + 9.58606i 0.393040 + 0.540973i
\(315\) −0.307823 + 0.635220i −0.0173439 + 0.0357906i
\(316\) −10.9895 6.34476i −0.618205 0.356921i
\(317\) −17.0520 + 1.79223i −0.957734 + 0.100662i −0.570480 0.821311i \(-0.693243\pi\)
−0.387253 + 0.921973i \(0.626576\pi\)
\(318\) 1.04099 3.03576i 0.0583757 0.170237i
\(319\) −0.295355 + 2.81012i −0.0165367 + 0.157336i
\(320\) −0.743145 0.669131i −0.0415431 0.0374055i
\(321\) −3.88432 + 31.9707i −0.216801 + 1.78443i
\(322\) 0.451532 2.12429i 0.0251629 0.118382i
\(323\) 2.44931 0.520617i 0.136283 0.0289679i
\(324\) 0.359767 + 8.99281i 0.0199870 + 0.499600i
\(325\) −5.54091 1.80035i −0.307354 0.0998655i
\(326\) −1.60389 0.521136i −0.0888313 0.0288630i
\(327\) −15.2636 + 13.3025i −0.844076 + 0.735628i
\(328\) 7.28764 1.54903i 0.402392 0.0855311i
\(329\) −0.402042 + 1.89146i −0.0221653 + 0.104280i
\(330\) −2.73244 0.331981i −0.150416 0.0182749i
\(331\) 10.3314 + 9.30240i 0.567863 + 0.511306i 0.902298 0.431113i \(-0.141879\pi\)
−0.334435 + 0.942419i \(0.608546\pi\)
\(332\) −1.60191 + 15.2411i −0.0879161 + 0.836466i
\(333\) −0.0935057 + 2.88787i −0.00512408 + 0.158254i
\(334\) 8.38689 0.881497i 0.458910 0.0482334i
\(335\) 4.92790 + 2.84513i 0.269240 + 0.155446i
\(336\) 0.298406 + 0.277561i 0.0162794 + 0.0151422i
\(337\) 3.32897 + 4.58194i 0.181341 + 0.249594i 0.890004 0.455953i \(-0.150701\pi\)
−0.708663 + 0.705547i \(0.750701\pi\)
\(338\) 15.5636 14.0136i 0.846551 0.762238i
\(339\) −13.5985 + 9.54754i −0.738570 + 0.518551i
\(340\) 4.27632i 0.231916i
\(341\) −8.58841 2.12814i −0.465089 0.115245i
\(342\) −0.986012 1.45385i −0.0533174 0.0786150i
\(343\) 1.01390 + 3.12047i 0.0547456 + 0.168490i
\(344\) 0.647027 + 0.718596i 0.0348854 + 0.0387441i
\(345\) 12.7799 + 9.60492i 0.688046 + 0.517112i
\(346\) 10.6068 + 18.3715i 0.570223 + 0.987656i
\(347\) 2.00119 3.46616i 0.107429 0.186073i −0.807299 0.590143i \(-0.799071\pi\)
0.914728 + 0.404070i \(0.132405\pi\)
\(348\) 1.20691 + 2.83328i 0.0646969 + 0.151880i
\(349\) −13.8018 10.0276i −0.738791 0.536763i 0.153541 0.988142i \(-0.450932\pi\)
−0.892332 + 0.451379i \(0.850932\pi\)
\(350\) −0.234003 0.0245947i −0.0125080 0.00131464i
\(351\) 29.8821 4.84960i 1.59499 0.258852i
\(352\) −0.646376 + 1.45178i −0.0344519 + 0.0773803i
\(353\) 12.8098 + 2.72281i 0.681798 + 0.144921i 0.535775 0.844361i \(-0.320019\pi\)
0.146023 + 0.989281i \(0.453353\pi\)
\(354\) −5.87708 + 3.26748i −0.312363 + 0.173665i
\(355\) −12.7811 + 5.69052i −0.678352 + 0.302022i
\(356\) 5.66123 17.4235i 0.300045 0.923442i
\(357\) −0.0282032 + 1.74253i −0.00149267 + 0.0922245i
\(358\) −1.16719 2.62154i −0.0616877 0.138553i
\(359\) 4.89049 + 23.0079i 0.258110 + 1.21431i 0.895954 + 0.444147i \(0.146493\pi\)
−0.637844 + 0.770166i \(0.720173\pi\)
\(360\) −2.77869 + 1.13088i −0.146450 + 0.0596025i
\(361\) −17.0441 7.58854i −0.897059 0.399397i
\(362\) −5.81054 + 6.45325i −0.305395 + 0.339176i
\(363\) −2.81904 14.4051i −0.147961 0.756069i
\(364\) 0.805749 1.10902i 0.0422327 0.0581284i
\(365\) 1.75625 + 16.7096i 0.0919264 + 0.874621i
\(366\) −2.14759 + 9.35639i −0.112256 + 0.489066i
\(367\) 16.0420 9.26187i 0.837387 0.483466i −0.0189881 0.999820i \(-0.506044\pi\)
0.856375 + 0.516354i \(0.172711\pi\)
\(368\) 7.46724 5.42527i 0.389257 0.282812i
\(369\) 5.35219 21.7011i 0.278624 1.12971i
\(370\) −0.915988 + 0.297622i −0.0476199 + 0.0154727i
\(371\) −0.435968 −0.0226343
\(372\) −9.30824 + 2.52125i −0.482610 + 0.130721i
\(373\) −3.74454 −0.193885 −0.0969424 0.995290i \(-0.530906\pi\)
−0.0969424 + 0.995290i \(0.530906\pi\)
\(374\) −6.46321 + 2.10003i −0.334205 + 0.108590i
\(375\) 0.890187 1.48579i 0.0459690 0.0767258i
\(376\) −6.64881 + 4.83064i −0.342886 + 0.249121i
\(377\) 8.97105 5.17944i 0.462033 0.266755i
\(378\) 1.13973 0.442489i 0.0586213 0.0227592i
\(379\) −0.262801 2.50039i −0.0134992 0.128436i 0.985697 0.168528i \(-0.0539015\pi\)
−0.999196 + 0.0400922i \(0.987235\pi\)
\(380\) 0.344182 0.473725i 0.0176561 0.0243016i
\(381\) 23.1580 4.53197i 1.18642 0.232180i
\(382\) 9.76747 10.8479i 0.499747 0.555025i
\(383\) 4.62812 + 2.06057i 0.236486 + 0.105290i 0.521558 0.853216i \(-0.325351\pi\)
−0.285072 + 0.958506i \(0.592018\pi\)
\(384\) 0.153149 + 1.72527i 0.00781533 + 0.0880422i
\(385\) 0.0777423 + 0.365749i 0.00396211 + 0.0186403i
\(386\) 8.39278 + 18.8505i 0.427181 + 0.959465i
\(387\) 2.78648 0.806674i 0.141645 0.0410055i
\(388\) 2.16597 6.66616i 0.109960 0.338423i
\(389\) −31.3934 + 13.9772i −1.59171 + 0.708675i −0.995554 0.0941947i \(-0.969972\pi\)
−0.596155 + 0.802869i \(0.703306\pi\)
\(390\) 4.90343 + 8.81959i 0.248295 + 0.446598i
\(391\) 38.6080 + 8.20639i 1.95249 + 0.415015i
\(392\) −2.82464 + 6.34424i −0.142666 + 0.320433i
\(393\) 4.68828 + 2.17894i 0.236493 + 0.109913i
\(394\) −2.33527 0.245446i −0.117649 0.0123654i
\(395\) −10.2660 7.45872i −0.516541 0.375289i
\(396\) 3.07377 + 3.64434i 0.154463 + 0.183135i
\(397\) −13.6799 + 23.6942i −0.686573 + 1.18918i 0.286367 + 0.958120i \(0.407552\pi\)
−0.972940 + 0.231059i \(0.925781\pi\)
\(398\) 7.63424 + 13.2229i 0.382670 + 0.662804i
\(399\) −0.143373 + 0.190765i −0.00717761 + 0.00955021i
\(400\) −0.669131 0.743145i −0.0334565 0.0371572i
\(401\) −3.23828 9.96640i −0.161712 0.497698i 0.837067 0.547100i \(-0.184268\pi\)
−0.998779 + 0.0494023i \(0.984268\pi\)
\(402\) −2.89352 9.42149i −0.144316 0.469901i
\(403\) 12.1950 + 30.0585i 0.607478 + 1.49732i
\(404\) 10.1764i 0.506297i
\(405\) −0.582208 + 8.98115i −0.0289302 + 0.446277i
\(406\) 0.310898 0.279934i 0.0154296 0.0138929i
\(407\) 0.899650 + 1.23826i 0.0445940 + 0.0613784i
\(408\) −5.04455 + 5.42340i −0.249742 + 0.268498i
\(409\) 8.60533 + 4.96829i 0.425506 + 0.245666i 0.697430 0.716653i \(-0.254327\pi\)
−0.271924 + 0.962319i \(0.587660\pi\)
\(410\) 7.40963 0.778784i 0.365936 0.0384614i
\(411\) −16.0412 5.50065i −0.791252 0.271327i
\(412\) 1.06585 10.1409i 0.0525107 0.499606i
\(413\) 0.678840 + 0.611231i 0.0334036 + 0.0300767i
\(414\) −4.87755 27.2571i −0.239719 1.33961i
\(415\) −3.18627 + 14.9902i −0.156408 + 0.735840i
\(416\) 5.69874 1.21131i 0.279404 0.0593891i
\(417\) 1.81212 + 2.07926i 0.0887397 + 0.101822i
\(418\) −0.885008 0.287556i −0.0432871 0.0140648i
\(419\) 14.2183 + 4.61982i 0.694611 + 0.225693i 0.634981 0.772528i \(-0.281008\pi\)
0.0596301 + 0.998221i \(0.481008\pi\)
\(420\) 0.267759 + 0.307232i 0.0130653 + 0.0149914i
\(421\) −10.5391 + 2.24015i −0.513643 + 0.109178i −0.457439 0.889241i \(-0.651233\pi\)
−0.0562045 + 0.998419i \(0.517900\pi\)
\(422\) 3.51511 16.5373i 0.171113 0.805023i
\(423\) 4.34296 + 24.2696i 0.211162 + 1.18003i
\(424\) −1.37696 1.23982i −0.0668711 0.0602110i
\(425\) 0.446997 4.25290i 0.0216826 0.206296i
\(426\) 22.9223 + 7.86026i 1.11059 + 0.380831i
\(427\) 1.29693 0.136313i 0.0627630 0.00659666i
\(428\) 16.1029 + 9.29702i 0.778363 + 0.449388i
\(429\) 10.9219 11.7422i 0.527315 0.566917i
\(430\) 0.568369 + 0.782292i 0.0274092 + 0.0377255i
\(431\) 28.8964 26.0184i 1.39189 1.25326i 0.461275 0.887257i \(-0.347392\pi\)
0.930613 0.366005i \(-0.119275\pi\)
\(432\) 4.85808 + 1.84365i 0.233735 + 0.0887024i
\(433\) 15.0113i 0.721398i 0.932682 + 0.360699i \(0.117462\pi\)
−0.932682 + 0.360699i \(0.882538\pi\)
\(434\) 0.734140 + 1.08502i 0.0352398 + 0.0520826i
\(435\) 0.904135 + 2.94392i 0.0433500 + 0.141150i
\(436\) 3.61225 + 11.1174i 0.172995 + 0.532425i
\(437\) 3.61645 + 4.01648i 0.172998 + 0.192134i
\(438\) 17.4841 23.2636i 0.835422 1.11158i
\(439\) −2.56978 4.45100i −0.122649 0.212435i 0.798162 0.602442i \(-0.205806\pi\)
−0.920812 + 0.390008i \(0.872472\pi\)
\(440\) −0.794588 + 1.37627i −0.0378805 + 0.0656109i
\(441\) 13.4323 + 15.9256i 0.639631 + 0.758364i
\(442\) 20.1559 + 14.6441i 0.958720 + 0.696551i
\(443\) −27.6026 2.90115i −1.31144 0.137838i −0.577129 0.816653i \(-0.695827\pi\)
−0.734309 + 0.678816i \(0.762494\pi\)
\(444\) 1.51278 + 0.703085i 0.0717934 + 0.0333669i
\(445\) 7.45146 16.7363i 0.353233 0.793375i
\(446\) 12.6392 + 2.68655i 0.598484 + 0.127212i
\(447\) −14.1343 25.4227i −0.668527 1.20245i
\(448\) 0.214950 0.0957017i 0.0101554 0.00452148i
\(449\) −5.18694 + 15.9638i −0.244787 + 0.753376i 0.750885 + 0.660433i \(0.229627\pi\)
−0.995671 + 0.0929430i \(0.970373\pi\)
\(450\) −2.88168 + 0.834232i −0.135844 + 0.0393261i
\(451\) −4.81579 10.8164i −0.226767 0.509326i
\(452\) 1.99449 + 9.38334i 0.0938130 + 0.441355i
\(453\) −1.12094 12.6278i −0.0526666 0.593305i
\(454\) −1.73800 0.773810i −0.0815686 0.0363167i
\(455\) 0.917259 1.01872i 0.0430018 0.0477583i
\(456\) −0.995333 + 0.194785i −0.0466108 + 0.00912164i
\(457\) −10.2081 + 14.0503i −0.477516 + 0.657245i −0.978025 0.208486i \(-0.933146\pi\)
0.500509 + 0.865731i \(0.333146\pi\)
\(458\) −2.18564 20.7949i −0.102128 0.971683i
\(459\) 8.04204 + 20.7141i 0.375370 + 0.966850i
\(460\) 7.99343 4.61501i 0.372696 0.215176i
\(461\) −7.22933 + 5.25242i −0.336704 + 0.244629i −0.743270 0.668992i \(-0.766726\pi\)
0.406566 + 0.913621i \(0.366726\pi\)
\(462\) 0.332858 0.555565i 0.0154860 0.0258472i
\(463\) 32.0277 10.4064i 1.48845 0.483628i 0.551827 0.833958i \(-0.313931\pi\)
0.936626 + 0.350330i \(0.113931\pi\)
\(464\) 1.77803 0.0825428
\(465\) −9.52079 + 1.53446i −0.441516 + 0.0711591i
\(466\) 9.78060 0.453077
\(467\) 20.2617 6.58343i 0.937600 0.304645i 0.199933 0.979810i \(-0.435927\pi\)
0.737667 + 0.675165i \(0.235927\pi\)
\(468\) 4.18528 16.9697i 0.193465 0.784424i
\(469\) −1.08317 + 0.786968i −0.0500160 + 0.0363388i
\(470\) −7.11733 + 4.10919i −0.328298 + 0.189543i
\(471\) 4.59131 20.0030i 0.211556 0.921688i
\(472\) 0.405810 + 3.86102i 0.0186789 + 0.177718i
\(473\) 0.903238 1.24320i 0.0415309 0.0571624i
\(474\) 4.22116 + 21.5697i 0.193884 + 0.990731i
\(475\) 0.391814 0.435153i 0.0179777 0.0199662i
\(476\) 0.919194 + 0.409251i 0.0421312 + 0.0187580i
\(477\) −5.14858 + 2.09538i −0.235737 + 0.0959411i
\(478\) 2.18531 + 10.2811i 0.0999536 + 0.470245i
\(479\) 10.1769 + 22.8578i 0.464997 + 1.04440i 0.982080 + 0.188465i \(0.0603510\pi\)
−0.517083 + 0.855935i \(0.672982\pi\)
\(480\) −0.0280299 + 1.73182i −0.00127938 + 0.0790466i
\(481\) 1.73397 5.33660i 0.0790620 0.243328i
\(482\) 14.2719 6.35424i 0.650065 0.289428i
\(483\) −3.28763 + 1.82782i −0.149592 + 0.0831688i
\(484\) −8.28933 1.76195i −0.376788 0.0800887i
\(485\) 2.85091 6.40324i 0.129453 0.290756i
\(486\) 11.3330 10.7035i 0.514074 0.485519i
\(487\) −40.0422 4.20860i −1.81448 0.190710i −0.864421 0.502768i \(-0.832315\pi\)
−0.950063 + 0.312058i \(0.898982\pi\)
\(488\) 4.48389 + 3.25773i 0.202976 + 0.147471i
\(489\) 1.14473 + 2.68733i 0.0517666 + 0.121525i
\(490\) −3.47232 + 6.01423i −0.156863 + 0.271695i
\(491\) 9.92842 + 17.1965i 0.448063 + 0.776068i 0.998260 0.0589669i \(-0.0187807\pi\)
−0.550197 + 0.835035i \(0.685447\pi\)
\(492\) −10.3159 7.75306i −0.465076 0.349535i
\(493\) 5.08767 + 5.65043i 0.229137 + 0.254483i
\(494\) 1.05421 + 3.24452i 0.0474310 + 0.145978i
\(495\) 2.67599 + 3.94568i 0.120277 + 0.177345i
\(496\) −0.766906 + 5.51469i −0.0344351 + 0.247617i
\(497\) 3.29189i 0.147661i
\(498\) 21.7241 15.2525i 0.973480 0.683481i
\(499\) 8.13030 7.32055i 0.363962 0.327713i −0.466777 0.884375i \(-0.654585\pi\)
0.830739 + 0.556662i \(0.187918\pi\)
\(500\) −0.587785 0.809017i −0.0262866 0.0361803i
\(501\) −10.6952 9.94806i −0.477825 0.444447i
\(502\) 10.4483 + 6.03236i 0.466333 + 0.269237i
\(503\) 2.89209 0.303971i 0.128952 0.0135534i −0.0398326 0.999206i \(-0.512682\pi\)
0.168784 + 0.985653i \(0.446016\pi\)
\(504\) 0.0228434 0.705505i 0.00101753 0.0314257i
\(505\) −1.06373 + 10.1207i −0.0473352 + 0.450365i
\(506\) −10.9005 9.81489i −0.484588 0.436325i
\(507\) −36.0095 4.37501i −1.59924 0.194301i
\(508\) 2.83257 13.3262i 0.125675 0.591253i
\(509\) 10.8821 2.31307i 0.482343 0.102525i 0.0396784 0.999213i \(-0.487367\pi\)
0.442664 + 0.896687i \(0.354033\pi\)
\(510\) −5.58381 + 4.86639i −0.247255 + 0.215488i
\(511\) −3.75980 1.22163i −0.166324 0.0540419i
\(512\) 0.951057 + 0.309017i 0.0420312 + 0.0136568i
\(513\) −0.776295 + 2.94194i −0.0342742 + 0.129890i
\(514\) −1.88322 + 0.400292i −0.0830654 + 0.0176561i
\(515\) 2.12003 9.97394i 0.0934195 0.439504i
\(516\) 0.202001 1.66261i 0.00889258 0.0731923i
\(517\) 9.70580 + 8.73914i 0.426861 + 0.384347i
\(518\) 0.0236878 0.225374i 0.00104078 0.00990237i
\(519\) 11.9182 34.7563i 0.523151 1.52563i
\(520\) 5.79414 0.608989i 0.254090 0.0267059i
\(521\) 18.8898 + 10.9060i 0.827575 + 0.477801i 0.853022 0.521875i \(-0.174767\pi\)
−0.0254466 + 0.999676i \(0.508101\pi\)
\(522\) 2.32612 4.80016i 0.101812 0.210097i
\(523\) −16.0372 22.0733i −0.701256 0.965196i −0.999941 0.0108445i \(-0.996548\pi\)
0.298685 0.954352i \(-0.403452\pi\)
\(524\) 2.21817 1.99725i 0.0969011 0.0872501i
\(525\) 0.234177 + 0.333538i 0.0102203 + 0.0145568i
\(526\) 1.76588i 0.0769960i
\(527\) −19.7197 + 13.3427i −0.859005 + 0.581216i
\(528\) 2.63124 0.808104i 0.114510 0.0351682i
\(529\) 19.2188 + 59.1493i 0.835599 + 2.57171i
\(530\) −1.23982 1.37696i −0.0538543 0.0598113i
\(531\) 10.9546 + 3.95566i 0.475387 + 0.171661i
\(532\) 0.0688883 + 0.119318i 0.00298669 + 0.00517309i
\(533\) −21.7034 + 37.5913i −0.940077 + 1.62826i
\(534\) −29.1931 + 12.4355i −1.26331 + 0.538137i
\(535\) 15.0429 + 10.9293i 0.650361 + 0.472515i
\(536\) −5.65908 0.594794i −0.244435 0.0256912i
\(537\) −2.09484 + 4.50733i −0.0903990 + 0.194506i
\(538\) −5.86945 + 13.1830i −0.253050 + 0.568360i
\(539\) 10.7951 + 2.29456i 0.464977 + 0.0988339i
\(540\) 4.63876 + 2.34135i 0.199620 + 0.100756i
\(541\) 10.2641 4.56986i 0.441287 0.196474i −0.174052 0.984737i \(-0.555686\pi\)
0.615339 + 0.788263i \(0.289019\pi\)
\(542\) −1.37860 + 4.24289i −0.0592159 + 0.182248i
\(543\) 15.0387 + 0.243403i 0.645371 + 0.0104454i
\(544\) 1.73934 + 3.90661i 0.0745734 + 0.167495i
\(545\) 2.43038 + 11.4340i 0.104106 + 0.489780i
\(546\) −2.36503 + 0.209940i −0.101214 + 0.00898458i
\(547\) 1.09364 + 0.486922i 0.0467608 + 0.0208193i 0.429984 0.902837i \(-0.358519\pi\)
−0.383223 + 0.923656i \(0.625186\pi\)
\(548\) −6.55129 + 7.27594i −0.279857 + 0.310813i
\(549\) 14.6610 7.84323i 0.625718 0.334741i
\(550\) −0.934094 + 1.28567i −0.0398299 + 0.0548211i
\(551\) 0.108828 + 1.03543i 0.00463624 + 0.0441109i
\(552\) −15.5817 3.57648i −0.663200 0.152225i
\(553\) 2.58573 1.49287i 0.109956 0.0634833i
\(554\) −8.62861 + 6.26905i −0.366594 + 0.266346i
\(555\) 1.43100 + 0.857362i 0.0607427 + 0.0363930i
\(556\) 1.51445 0.492075i 0.0642270 0.0208686i
\(557\) 25.7087 1.08931 0.544656 0.838659i \(-0.316660\pi\)
0.544656 + 0.838659i \(0.316660\pi\)
\(558\) 13.8848 + 9.28510i 0.587789 + 0.393070i
\(559\) −5.63360 −0.238276
\(560\) 0.223776 0.0727091i 0.00945625 0.00307252i
\(561\) 10.0972 + 6.04955i 0.426302 + 0.255412i
\(562\) 5.96927 4.33693i 0.251798 0.182942i
\(563\) −5.87739 + 3.39331i −0.247702 + 0.143011i −0.618712 0.785618i \(-0.712345\pi\)
0.371009 + 0.928629i \(0.379012\pi\)
\(564\) 13.8739 + 3.18449i 0.584195 + 0.134091i
\(565\) 1.00274 + 9.54042i 0.0421855 + 0.401369i
\(566\) −3.03325 + 4.17492i −0.127497 + 0.175485i
\(567\) −1.87478 0.984657i −0.0787332 0.0413517i
\(568\) 9.36159 10.3971i 0.392804 0.436253i
\(569\) −22.0862 9.83340i −0.925901 0.412238i −0.112309 0.993673i \(-0.535825\pi\)
−0.813592 + 0.581436i \(0.802491\pi\)
\(570\) −1.01024 + 0.0896772i −0.0423144 + 0.00375616i
\(571\) −7.17071 33.7356i −0.300085 1.41179i −0.827158 0.561969i \(-0.810044\pi\)
0.527073 0.849820i \(-0.323289\pi\)
\(572\) −3.76582 8.45818i −0.157457 0.353654i
\(573\) −25.2799 0.409159i −1.05608 0.0170929i
\(574\) −0.541715 + 1.66723i −0.0226108 + 0.0695888i
\(575\) 8.43204 3.75419i 0.351641 0.156560i
\(576\) 2.07849 2.16330i 0.0866037 0.0901377i
\(577\) −21.5034 4.57069i −0.895198 0.190280i −0.262733 0.964869i \(-0.584624\pi\)
−0.632466 + 0.774588i \(0.717957\pi\)
\(578\) −0.523440 + 1.17567i −0.0217722 + 0.0489012i
\(579\) 15.0632 32.4105i 0.626005 1.34693i
\(580\) 1.76829 + 0.185854i 0.0734241 + 0.00771718i
\(581\) −2.91721 2.11947i −0.121026 0.0879306i
\(582\) −11.1692 + 4.75779i −0.462978 + 0.197217i
\(583\) −1.47228 + 2.55006i −0.0609755 + 0.105613i
\(584\) −8.40083 14.5507i −0.347629 0.602111i
\(585\) 5.93617 16.4392i 0.245430 0.679679i
\(586\) 2.98349 + 3.31350i 0.123247 + 0.136880i
\(587\) 11.4484 + 35.2347i 0.472528 + 1.45429i 0.849263 + 0.527970i \(0.177047\pi\)
−0.376735 + 0.926321i \(0.622953\pi\)
\(588\) 11.4984 3.53138i 0.474186 0.145632i
\(589\) −3.25842 0.109067i −0.134261 0.00449404i
\(590\) 3.88229i 0.159831i
\(591\) 2.33701 + 3.32859i 0.0961317 + 0.136920i
\(592\) 0.715742 0.644457i 0.0294168 0.0264870i
\(593\) 1.72205 + 2.37020i 0.0707161 + 0.0973323i 0.842910 0.538055i \(-0.180841\pi\)
−0.772194 + 0.635387i \(0.780841\pi\)
\(594\) 1.26070 8.16079i 0.0517272 0.334841i
\(595\) 0.871380 + 0.503091i 0.0357231 + 0.0206247i
\(596\) −16.7018 + 1.75543i −0.684131 + 0.0719050i
\(597\) 8.57815 25.0159i 0.351080 1.02383i
\(598\) −5.62098 + 53.4801i −0.229859 + 2.18696i
\(599\) 24.6722 + 22.2149i 1.00808 + 0.907677i 0.995736 0.0922467i \(-0.0294049\pi\)
0.0123414 + 0.999924i \(0.496072\pi\)
\(600\) −0.208901 + 1.71941i −0.00852836 + 0.0701945i
\(601\) 2.06812 9.72973i 0.0843603 0.396884i −0.915626 0.402030i \(-0.868305\pi\)
0.999987 + 0.00514613i \(0.00163807\pi\)
\(602\) −0.222547 + 0.0473039i −0.00907035 + 0.00192796i
\(603\) −9.00934 + 14.4997i −0.366889 + 0.590475i
\(604\) −6.96109 2.26180i −0.283243 0.0920312i
\(605\) −8.05975 2.61877i −0.327675 0.106468i
\(606\) 13.2879 11.5806i 0.539784 0.470432i
\(607\) 45.4447 9.65957i 1.84454 0.392070i 0.853007 0.521900i \(-0.174776\pi\)
0.991536 + 0.129830i \(0.0414431\pi\)
\(608\) −0.121744 + 0.572761i −0.00493737 + 0.0232285i
\(609\) −0.719322 0.0873948i −0.0291484 0.00354141i
\(610\) 4.11880 + 3.70858i 0.166765 + 0.150156i
\(611\) 5.00490 47.6185i 0.202477 1.92644i
\(612\) 12.8222 + 0.415169i 0.518309 + 0.0167822i
\(613\) −0.770411 + 0.0809734i −0.0311166 + 0.00327049i −0.120074 0.992765i \(-0.538313\pi\)
0.0889574 + 0.996035i \(0.471647\pi\)
\(614\) 20.0357 + 11.5676i 0.808573 + 0.466830i
\(615\) −9.44896 8.78889i −0.381019 0.354402i
\(616\) −0.219784 0.302507i −0.00885537 0.0121884i
\(617\) 30.1490 27.1463i 1.21375 1.09287i 0.220684 0.975345i \(-0.429171\pi\)
0.993070 0.117524i \(-0.0374957\pi\)
\(618\) −14.4544 + 10.1485i −0.581442 + 0.408231i
\(619\) 43.2387i 1.73791i 0.494890 + 0.868956i \(0.335209\pi\)
−0.494890 + 0.868956i \(0.664791\pi\)
\(620\) −1.33915 + 5.40432i −0.0537815 + 0.217043i
\(621\) −30.0404 + 37.3871i −1.20548 + 1.50029i
\(622\) 3.33457 + 10.2627i 0.133704 + 0.411498i
\(623\) 2.88433 + 3.20338i 0.115558 + 0.128341i
\(624\) −8.06676 6.06270i −0.322929 0.242702i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 9.81231 16.9954i 0.392179 0.679273i
\(627\) 0.631649 + 1.48284i 0.0252256 + 0.0592187i
\(628\) −9.58606 6.96468i −0.382526 0.277921i
\(629\) 4.09608 + 0.430515i 0.163321 + 0.0171658i
\(630\) 0.0964637 0.699253i 0.00384320 0.0278589i
\(631\) −11.4622 + 25.7445i −0.456302 + 1.02487i 0.528140 + 0.849158i \(0.322890\pi\)
−0.984441 + 0.175713i \(0.943777\pi\)
\(632\) 12.4122 + 2.63830i 0.493732 + 0.104946i
\(633\) −25.5937 + 14.2293i −1.01726 + 0.565566i
\(634\) 15.6635 6.97386i 0.622079 0.276967i
\(635\) 4.21001 12.9571i 0.167069 0.514186i
\(636\) −0.0519360 + 3.20887i −0.00205940 + 0.127240i
\(637\) −16.4565 36.9619i −0.652031 1.46448i
\(638\) −0.587474 2.76385i −0.0232583 0.109422i
\(639\) −15.8218 38.8758i −0.625899 1.53790i
\(640\) 0.913545 + 0.406737i 0.0361111 + 0.0160777i
\(641\) −27.1348 + 30.1363i −1.07176 + 1.19031i −0.0908480 + 0.995865i \(0.528958\pi\)
−0.980913 + 0.194447i \(0.937709\pi\)
\(642\) −6.18529 31.6063i −0.244114 1.24740i
\(643\) −4.57473 + 6.29658i −0.180410 + 0.248313i −0.889638 0.456666i \(-0.849044\pi\)
0.709228 + 0.704979i \(0.249044\pi\)
\(644\) 0.227009 + 2.15985i 0.00894542 + 0.0851100i
\(645\) 0.374684 1.63239i 0.0147532 0.0642752i
\(646\) −2.16855 + 1.25201i −0.0853206 + 0.0492598i
\(647\) 0.364013 0.264471i 0.0143108 0.0103974i −0.580607 0.814184i \(-0.697185\pi\)
0.594918 + 0.803787i \(0.297185\pi\)
\(648\) −3.12109 8.44149i −0.122608 0.331613i
\(649\) 5.86767 1.90652i 0.230326 0.0748376i
\(650\) 5.82606 0.228517
\(651\) 0.581323 2.19334i 0.0227839 0.0859638i
\(652\) 1.68643 0.0660457
\(653\) −11.7108 + 3.80507i −0.458279 + 0.148904i −0.529054 0.848588i \(-0.677453\pi\)
0.0707745 + 0.997492i \(0.477453\pi\)
\(654\) 10.4058 17.3681i 0.406899 0.679146i
\(655\) 2.41478 1.75444i 0.0943534 0.0685518i
\(656\) −6.45227 + 3.72522i −0.251919 + 0.145446i
\(657\) −50.2731 + 3.64373i −1.96134 + 0.142156i
\(658\) −0.202128 1.92312i −0.00787978 0.0749711i
\(659\) 9.03461 12.4351i 0.351938 0.484402i −0.595942 0.803027i \(-0.703221\pi\)
0.947881 + 0.318626i \(0.103221\pi\)
\(660\) 2.70129 0.528638i 0.105148 0.0205772i
\(661\) −29.1471 + 32.3712i −1.13369 + 1.25909i −0.171960 + 0.985104i \(0.555010\pi\)
−0.961733 + 0.273989i \(0.911657\pi\)
\(662\) −12.7003 5.65454i −0.493611 0.219770i
\(663\) −3.81556 42.9835i −0.148184 1.66934i
\(664\) −3.18627 14.9902i −0.123651 0.581733i
\(665\) 0.0560388 + 0.125865i 0.00217309 + 0.00488084i
\(666\) −0.803470 2.77542i −0.0311338 0.107545i
\(667\) −5.07134 + 15.6080i −0.196363 + 0.604344i
\(668\) −7.70401 + 3.43004i −0.298077 + 0.132712i
\(669\) −10.8753 19.5609i −0.420463 0.756269i
\(670\) −5.56591 1.18307i −0.215030 0.0457060i
\(671\) 3.58247 8.04635i 0.138300 0.310626i
\(672\) −0.369572 0.171764i −0.0142566 0.00662592i
\(673\) 8.32249 + 0.874729i 0.320808 + 0.0337183i 0.263564 0.964642i \(-0.415102\pi\)
0.0572443 + 0.998360i \(0.481769\pi\)
\(674\) −4.58194 3.32897i −0.176490 0.128227i
\(675\) 4.36861 + 2.81341i 0.168148 + 0.108288i
\(676\) −10.4715 + 18.1371i −0.402749 + 0.697582i
\(677\) 6.75184 + 11.6945i 0.259494 + 0.449458i 0.966107 0.258144i \(-0.0831108\pi\)
−0.706612 + 0.707601i \(0.749777\pi\)
\(678\) 9.98261 13.2824i 0.383380 0.510108i
\(679\) 1.10354 + 1.22560i 0.0423499 + 0.0470343i
\(680\) 1.32146 + 4.06702i 0.0506755 + 0.155963i
\(681\) 0.967422 + 3.14999i 0.0370717 + 0.120708i
\(682\) 8.82570 0.629984i 0.337953 0.0241233i
\(683\) 4.90180i 0.187562i −0.995593 0.0937811i \(-0.970105\pi\)
0.995593 0.0937811i \(-0.0298954\pi\)
\(684\) 1.38702 + 1.07800i 0.0530339 + 0.0412182i
\(685\) −7.27594 + 6.55129i −0.277999 + 0.250312i
\(686\) −1.92856 2.65443i −0.0736326 0.101347i
\(687\) −24.6658 + 26.5182i −0.941059 + 1.01173i
\(688\) −0.837418 0.483483i −0.0319263 0.0184326i
\(689\) 10.7359 1.12838i 0.409004 0.0429880i
\(690\) −15.1225 5.18562i −0.575703 0.197413i
\(691\) −1.20449 + 11.4599i −0.0458208 + 0.435956i 0.947429 + 0.319965i \(0.103671\pi\)
−0.993250 + 0.115991i \(0.962996\pi\)
\(692\) −15.7647 14.1946i −0.599285 0.539599i
\(693\) −1.10422 + 0.197596i −0.0419458 + 0.00750604i
\(694\) −0.832141 + 3.91491i −0.0315876 + 0.148608i
\(695\) 1.55759 0.331076i 0.0590828 0.0125584i
\(696\) −2.02337 2.32166i −0.0766956 0.0880023i
\(697\) −30.3011 9.84544i −1.14774 0.372922i
\(698\) 16.2249 + 5.27180i 0.614123 + 0.199541i
\(699\) −11.1302 12.7710i −0.420982 0.483045i
\(700\) 0.230150 0.0489199i 0.00869885 0.00184900i
\(701\) −3.35523 + 15.7851i −0.126725 + 0.596196i 0.868254 + 0.496119i \(0.165242\pi\)
−0.994980 + 0.100077i \(0.968091\pi\)
\(702\) −26.9210 + 13.8463i −1.01607 + 0.522596i
\(703\) 0.419108 + 0.377366i 0.0158069 + 0.0142326i
\(704\) 0.166114 1.58047i 0.00626066 0.0595662i
\(705\) 13.4650 + 4.61726i 0.507121 + 0.173896i
\(706\) −13.0243 + 1.36890i −0.490174 + 0.0515194i
\(707\) −2.07364 1.19722i −0.0779872 0.0450259i
\(708\) 4.57973 4.92368i 0.172117 0.185043i
\(709\) −2.19797 3.02524i −0.0825464 0.113615i 0.765747 0.643142i \(-0.222370\pi\)
−0.848293 + 0.529527i \(0.822370\pi\)
\(710\) 10.3971 9.36159i 0.390196 0.351334i
\(711\) 23.3611 30.0579i 0.876110 1.12726i
\(712\) 18.3201i 0.686576i
\(713\) −46.2221 22.4613i −1.73103 0.841183i
\(714\) −0.511649 1.66596i −0.0191480 0.0623470i
\(715\) −2.86107 8.80548i −0.106998 0.329306i
\(716\) 1.92016 + 2.13255i 0.0717597 + 0.0796973i
\(717\) 10.9377 14.5532i 0.408475 0.543498i
\(718\) −11.7610 20.3706i −0.438916 0.760224i
\(719\) −13.0738 + 22.6444i −0.487570 + 0.844495i −0.999898 0.0142945i \(-0.995450\pi\)
0.512328 + 0.858790i \(0.328783\pi\)
\(720\) 2.29323 1.93419i 0.0854636 0.0720831i
\(721\) 1.94100 + 1.41022i 0.0722867 + 0.0525194i
\(722\) 18.5549 + 1.95020i 0.690543 + 0.0725789i
\(723\) −24.5382 11.4045i −0.912587 0.424137i
\(724\) 3.53198 7.93296i 0.131265 0.294826i
\(725\) 1.73917 + 0.369672i 0.0645912 + 0.0137293i
\(726\) 7.13248 + 12.8289i 0.264711 + 0.476125i
\(727\) −25.5520 + 11.3765i −0.947671 + 0.421931i −0.821583 0.570089i \(-0.806909\pi\)
−0.126088 + 0.992019i \(0.540242\pi\)
\(728\) −0.423607 + 1.30373i −0.0156999 + 0.0483194i
\(729\) −26.8728 2.61765i −0.995289 0.0969500i
\(730\) −6.83385 15.3491i −0.252932 0.568095i
\(731\) −0.859727 4.04470i −0.0317982 0.149599i
\(732\) −0.848809 9.56210i −0.0313729 0.353425i
\(733\) 44.4161 + 19.7753i 1.64054 + 0.730418i 0.999318 0.0369334i \(-0.0117589\pi\)
0.641227 + 0.767351i \(0.278426\pi\)
\(734\) −12.3948 + 13.7658i −0.457500 + 0.508106i
\(735\) 11.8045 2.31013i 0.435417 0.0852103i
\(736\) −5.42527 + 7.46724i −0.199978 + 0.275246i
\(737\) 0.945231 + 8.99327i 0.0348180 + 0.331271i
\(738\) 1.61576 + 22.2929i 0.0594769 + 0.820611i
\(739\) 15.3823 8.88098i 0.565847 0.326692i −0.189642 0.981853i \(-0.560733\pi\)
0.755489 + 0.655161i \(0.227399\pi\)
\(740\) 0.779186 0.566111i 0.0286434 0.0208107i
\(741\) 3.03686 5.06875i 0.111562 0.186205i
\(742\) 0.414630 0.134721i 0.0152215 0.00494578i
\(743\) 46.6306 1.71071 0.855356 0.518040i \(-0.173338\pi\)
0.855356 + 0.518040i \(0.173338\pi\)
\(744\) 8.07355 5.27426i 0.295991 0.193364i
\(745\) −16.7938 −0.615275
\(746\) 3.56127 1.15713i 0.130387 0.0423654i
\(747\) −44.6377 11.0091i −1.63321 0.402803i
\(748\) 5.49794 3.99449i 0.201024 0.146053i
\(749\) −3.78888 + 2.18751i −0.138443 + 0.0799299i
\(750\) −0.387484 + 1.68815i −0.0141489 + 0.0616426i
\(751\) −2.34540 22.3150i −0.0855849 0.814286i −0.950156 0.311775i \(-0.899076\pi\)
0.864571 0.502511i \(-0.167590\pi\)
\(752\) 4.83064 6.64881i 0.176155 0.242457i
\(753\) −4.01332 20.5077i −0.146253 0.747342i
\(754\) −6.93144 + 7.69815i −0.252428 + 0.280350i
\(755\) −6.68654 2.97704i −0.243348 0.108346i
\(756\) −0.947210 + 0.773027i −0.0344497 + 0.0281147i
\(757\) −0.327100 1.53889i −0.0118887 0.0559318i 0.971803 0.235793i \(-0.0757686\pi\)
−0.983692 + 0.179861i \(0.942435\pi\)
\(758\) 1.02260 + 2.29680i 0.0371426 + 0.0834235i
\(759\) −0.411145 + 25.4026i −0.0149236 + 0.922056i
\(760\) −0.180947 + 0.556897i −0.00656364 + 0.0202008i
\(761\) −41.7285 + 18.5787i −1.51266 + 0.673478i −0.984454 0.175641i \(-0.943800\pi\)
−0.528202 + 0.849119i \(0.677134\pi\)
\(762\) −20.6241 + 11.4664i −0.747132 + 0.415383i
\(763\) −2.69033 0.571848i −0.0973965 0.0207023i
\(764\) −5.93724 + 13.3353i −0.214802 + 0.482453i
\(765\) 12.7086 + 1.75318i 0.459481 + 0.0633865i
\(766\) −5.03836 0.529553i −0.182043 0.0191335i
\(767\) −18.2987 13.2948i −0.660728 0.480047i
\(768\) −0.678790 1.59350i −0.0244937 0.0575005i
\(769\) 25.3988 43.9920i 0.915905 1.58639i 0.110333 0.993895i \(-0.464808\pi\)
0.805571 0.592499i \(-0.201859\pi\)
\(770\) −0.186960 0.323824i −0.00673756 0.0116698i
\(771\) 2.66576 + 2.00350i 0.0960052 + 0.0721542i
\(772\) −13.8071 15.3344i −0.496929 0.551896i
\(773\) −2.16622 6.66695i −0.0779137 0.239794i 0.904512 0.426448i \(-0.140235\pi\)