Newspace parameters
Level: | \( N \) | \(=\) | \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 930.bn (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.42608738798\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | −2.15286 | − | 0.604297i | 0.500000 | + | 0.866025i | 2.63601 | + | 2.37347i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | 1.75431 | − | 1.38651i |
19.2 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | −1.44692 | − | 1.70482i | 0.500000 | + | 0.866025i | −3.41731 | − | 3.07696i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | 2.22971 | − | 0.168512i |
19.3 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | −0.509764 | + | 2.17719i | 0.500000 | + | 0.866025i | 0.159624 | + | 0.143726i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | −1.46175 | − | 1.69213i |
19.4 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | −0.181057 | + | 2.22873i | 0.500000 | + | 0.866025i | 3.89646 | + | 3.50839i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | −1.69665 | − | 1.45649i |
19.5 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | 0.230445 | − | 2.22416i | 0.500000 | + | 0.866025i | 0.872484 | + | 0.785588i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | 1.66393 | + | 1.49376i |
19.6 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | 1.47095 | + | 1.68413i | 0.500000 | + | 0.866025i | −2.07600 | − | 1.86924i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | −2.22710 | + | 0.200114i |
19.7 | −0.587785 | + | 0.809017i | 0.406737 | − | 0.913545i | −0.309017 | − | 0.951057i | 2.21090 | + | 0.334560i | 0.500000 | + | 0.866025i | −0.274259 | − | 0.246944i | 0.951057 | + | 0.309017i | −0.669131 | − | 0.743145i | −1.57020 | + | 1.59200i |
19.8 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | −2.19398 | − | 0.431813i | 0.500000 | + | 0.866025i | 2.07600 | + | 1.86924i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | −1.63893 | + | 1.52115i |
19.9 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | −1.83960 | + | 1.27116i | 0.500000 | + | 0.866025i | −3.89646 | − | 3.50839i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | −0.0529000 | + | 2.23544i |
19.10 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | −1.63062 | + | 1.53006i | 0.500000 | + | 0.866025i | −0.159624 | − | 0.143726i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | 0.279393 | + | 2.21854i |
19.11 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | −1.39519 | − | 1.74741i | 0.500000 | + | 0.866025i | 0.274259 | + | 0.246944i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | −2.23376 | + | 0.101626i |
19.12 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | 1.59977 | + | 1.56229i | 0.500000 | + | 0.866025i | −2.63601 | − | 2.37347i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | 2.20424 | − | 0.375951i |
19.13 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | 1.81096 | − | 1.31165i | 0.500000 | + | 0.866025i | −0.872484 | − | 0.785588i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | 0.00330584 | − | 2.23607i |
19.14 | 0.587785 | − | 0.809017i | −0.406737 | + | 0.913545i | −0.309017 | − | 0.951057i | 2.19988 | + | 0.400657i | 0.500000 | + | 0.866025i | 3.41731 | + | 3.07696i | −0.951057 | − | 0.309017i | −0.669131 | − | 0.743145i | 1.61720 | − | 1.54424i |
49.1 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | −2.15286 | + | 0.604297i | 0.500000 | − | 0.866025i | 2.63601 | − | 2.37347i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | 1.75431 | + | 1.38651i |
49.2 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | −1.44692 | + | 1.70482i | 0.500000 | − | 0.866025i | −3.41731 | + | 3.07696i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | 2.22971 | + | 0.168512i |
49.3 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | −0.509764 | − | 2.17719i | 0.500000 | − | 0.866025i | 0.159624 | − | 0.143726i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | −1.46175 | + | 1.69213i |
49.4 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | −0.181057 | − | 2.22873i | 0.500000 | − | 0.866025i | 3.89646 | − | 3.50839i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | −1.69665 | + | 1.45649i |
49.5 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | 0.230445 | + | 2.22416i | 0.500000 | − | 0.866025i | 0.872484 | − | 0.785588i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | 1.66393 | − | 1.49376i |
49.6 | −0.587785 | − | 0.809017i | 0.406737 | + | 0.913545i | −0.309017 | + | 0.951057i | 1.47095 | − | 1.68413i | 0.500000 | − | 0.866025i | −2.07600 | + | 1.86924i | 0.951057 | − | 0.309017i | −0.669131 | + | 0.743145i | −2.22710 | − | 0.200114i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
31.g | even | 15 | 1 | inner |
155.u | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 930.2.bn.a | ✓ | 112 |
5.b | even | 2 | 1 | inner | 930.2.bn.a | ✓ | 112 |
31.g | even | 15 | 1 | inner | 930.2.bn.a | ✓ | 112 |
155.u | even | 30 | 1 | inner | 930.2.bn.a | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
930.2.bn.a | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
930.2.bn.a | ✓ | 112 | 5.b | even | 2 | 1 | inner |
930.2.bn.a | ✓ | 112 | 31.g | even | 15 | 1 | inner |
930.2.bn.a | ✓ | 112 | 155.u | even | 30 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(14\!\cdots\!30\)\( T_{7}^{94} + \)\(36\!\cdots\!28\)\( T_{7}^{92} + \)\(36\!\cdots\!88\)\( T_{7}^{90} - \)\(11\!\cdots\!79\)\( T_{7}^{88} - \)\(92\!\cdots\!06\)\( T_{7}^{86} - \)\(15\!\cdots\!71\)\( T_{7}^{84} - \)\(11\!\cdots\!68\)\( T_{7}^{82} + \)\(52\!\cdots\!42\)\( T_{7}^{80} + \)\(25\!\cdots\!64\)\( T_{7}^{78} + \)\(32\!\cdots\!51\)\( T_{7}^{76} + \)\(19\!\cdots\!92\)\( T_{7}^{74} - \)\(69\!\cdots\!43\)\( T_{7}^{72} - \)\(14\!\cdots\!96\)\( T_{7}^{70} - \)\(15\!\cdots\!59\)\( T_{7}^{68} - \)\(75\!\cdots\!22\)\( T_{7}^{66} + \)\(75\!\cdots\!31\)\( T_{7}^{64} + \)\(43\!\cdots\!52\)\( T_{7}^{62} + \)\(35\!\cdots\!38\)\( T_{7}^{60} + \)\(12\!\cdots\!24\)\( T_{7}^{58} - \)\(11\!\cdots\!15\)\( T_{7}^{56} - \)\(36\!\cdots\!22\)\( T_{7}^{54} - \)\(18\!\cdots\!04\)\( T_{7}^{52} - \)\(27\!\cdots\!96\)\( T_{7}^{50} + \)\(14\!\cdots\!87\)\( T_{7}^{48} + \)\(98\!\cdots\!46\)\( T_{7}^{46} + \)\(26\!\cdots\!52\)\( T_{7}^{44} + \)\(19\!\cdots\!00\)\( T_{7}^{42} - \)\(98\!\cdots\!31\)\( T_{7}^{40} - \)\(37\!\cdots\!86\)\( T_{7}^{38} - \)\(55\!\cdots\!68\)\( T_{7}^{36} - \)\(32\!\cdots\!46\)\( T_{7}^{34} + \)\(16\!\cdots\!68\)\( T_{7}^{32} + \)\(43\!\cdots\!70\)\( T_{7}^{30} + \)\(68\!\cdots\!54\)\( T_{7}^{28} + \)\(75\!\cdots\!40\)\( T_{7}^{26} + \)\(54\!\cdots\!41\)\( T_{7}^{24} + \)\(20\!\cdots\!22\)\( T_{7}^{22} + \)\(35\!\cdots\!79\)\( T_{7}^{20} + \)\(30\!\cdots\!70\)\( T_{7}^{18} + \)\(63\!\cdots\!73\)\( T_{7}^{16} - \)\(59\!\cdots\!96\)\( T_{7}^{14} + \)\(10\!\cdots\!48\)\( T_{7}^{12} - \)\(22\!\cdots\!24\)\( T_{7}^{10} + \)\(62\!\cdots\!24\)\( T_{7}^{8} - \)\(63\!\cdots\!00\)\( T_{7}^{6} + \)\(18\!\cdots\!92\)\( T_{7}^{4} - \)\(20\!\cdots\!96\)\( T_{7}^{2} + \)\(81\!\cdots\!36\)\( \)">\(T_{7}^{112} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(930, [\chi])\).