Properties

Label 930.2.a.l
Level $930$
Weight $2$
Character orbit 930.a
Self dual yes
Analytic conductor $7.426$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 930.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(7.42608738798\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 6 q^{11} - q^{12} - 2 q^{13} + q^{15} + q^{16} - 4 q^{17} + q^{18} - q^{20} - 6 q^{22} + 2 q^{23} - q^{24} + q^{25} - 2 q^{26} - q^{27} - 8 q^{29} + q^{30} + q^{31} + q^{32} + 6 q^{33} - 4 q^{34} + q^{36} - 6 q^{37} + 2 q^{39} - q^{40} - 2 q^{41} + 4 q^{43} - 6 q^{44} - q^{45} + 2 q^{46} + 4 q^{47} - q^{48} - 7 q^{49} + q^{50} + 4 q^{51} - 2 q^{52} - 6 q^{53} - q^{54} + 6 q^{55} - 8 q^{58} + q^{60} + 4 q^{61} + q^{62} + q^{64} + 2 q^{65} + 6 q^{66} - 4 q^{67} - 4 q^{68} - 2 q^{69} - 8 q^{71} + q^{72} - 4 q^{73} - 6 q^{74} - q^{75} + 2 q^{78} - 4 q^{79} - q^{80} + q^{81} - 2 q^{82} + 4 q^{85} + 4 q^{86} + 8 q^{87} - 6 q^{88} - 2 q^{89} - q^{90} + 2 q^{92} - q^{93} + 4 q^{94} - q^{96} + 14 q^{97} - 7 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −1.00000 −1.00000 0 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)
\(31\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 930.2.a.l 1
3.b odd 2 1 2790.2.a.j 1
4.b odd 2 1 7440.2.a.r 1
5.b even 2 1 4650.2.a.r 1
5.c odd 4 2 4650.2.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.l 1 1.a even 1 1 trivial
2790.2.a.j 1 3.b odd 2 1
4650.2.a.r 1 5.b even 2 1
4650.2.d.a 2 5.c odd 4 2
7440.2.a.r 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(930))\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11} + 6 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 2 \) Copy content Toggle raw display
$29$ \( T + 8 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 4 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less