Properties

Label 930.2
Level 930
Weight 2
Dimension 5265
Nonzero newspaces 24
Newform subspaces 108
Sturm bound 92160
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 930 = 2 \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 108 \)
Sturm bound: \(92160\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(930))\).

Total New Old
Modular forms 24000 5265 18735
Cusp forms 22081 5265 16816
Eisenstein series 1919 0 1919

Trace form

\( 5265 q + q^{2} + 5 q^{3} + q^{4} + 9 q^{5} + 5 q^{6} + 8 q^{7} + q^{8} + q^{9} - 7 q^{10} - 20 q^{11} - 11 q^{12} - 18 q^{13} - 24 q^{14} - 19 q^{15} + q^{16} - 30 q^{17} - 15 q^{18} - 12 q^{19} - 7 q^{20}+ \cdots - 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(930))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
930.2.a \(\chi_{930}(1, \cdot)\) 930.2.a.a 1 1
930.2.a.b 1
930.2.a.c 1
930.2.a.d 1
930.2.a.e 1
930.2.a.f 1
930.2.a.g 1
930.2.a.h 1
930.2.a.i 1
930.2.a.j 1
930.2.a.k 1
930.2.a.l 1
930.2.a.m 1
930.2.a.n 1
930.2.a.o 1
930.2.a.p 2
930.2.a.q 2
930.2.a.r 2
930.2.d \(\chi_{930}(559, \cdot)\) 930.2.d.a 2 1
930.2.d.b 2
930.2.d.c 2
930.2.d.d 2
930.2.d.e 2
930.2.d.f 2
930.2.d.g 4
930.2.d.h 6
930.2.d.i 6
930.2.e \(\chi_{930}(929, \cdot)\) 930.2.e.a 32 1
930.2.e.b 32
930.2.h \(\chi_{930}(371, \cdot)\) 930.2.h.a 4 1
930.2.h.b 4
930.2.h.c 16
930.2.h.d 16
930.2.i \(\chi_{930}(211, \cdot)\) 930.2.i.a 2 2
930.2.i.b 2
930.2.i.c 2
930.2.i.d 2
930.2.i.e 2
930.2.i.f 2
930.2.i.g 2
930.2.i.h 2
930.2.i.i 2
930.2.i.j 4
930.2.i.k 4
930.2.i.l 4
930.2.i.m 4
930.2.i.n 6
930.2.j \(\chi_{930}(497, \cdot)\) 930.2.j.a 4 2
930.2.j.b 4
930.2.j.c 8
930.2.j.d 8
930.2.j.e 8
930.2.j.f 8
930.2.j.g 40
930.2.j.h 40
930.2.k \(\chi_{930}(247, \cdot)\) 930.2.k.a 32 2
930.2.k.b 32
930.2.n \(\chi_{930}(481, \cdot)\) 930.2.n.a 8 4
930.2.n.b 8
930.2.n.c 12
930.2.n.d 12
930.2.n.e 12
930.2.n.f 12
930.2.n.g 16
930.2.n.h 16
930.2.o \(\chi_{930}(161, \cdot)\) 930.2.o.a 4 2
930.2.o.b 4
930.2.o.c 4
930.2.o.d 36
930.2.o.e 40
930.2.r \(\chi_{930}(119, \cdot)\) 930.2.r.a 64 2
930.2.r.b 64
930.2.s \(\chi_{930}(439, \cdot)\) 930.2.s.a 4 2
930.2.s.b 8
930.2.s.c 24
930.2.s.d 28
930.2.v \(\chi_{930}(401, \cdot)\) 930.2.v.a 80 4
930.2.v.b 80
930.2.y \(\chi_{930}(29, \cdot)\) 930.2.y.a 128 4
930.2.y.b 128
930.2.z \(\chi_{930}(109, \cdot)\) 930.2.z.a 8 4
930.2.z.b 16
930.2.z.c 32
930.2.z.d 72
930.2.be \(\chi_{930}(37, \cdot)\) 930.2.be.a 64 4
930.2.be.b 64
930.2.bf \(\chi_{930}(377, \cdot)\) 930.2.bf.a 256 4
930.2.bg \(\chi_{930}(121, \cdot)\) 930.2.bg.a 8 8
930.2.bg.b 16
930.2.bg.c 16
930.2.bg.d 16
930.2.bg.e 16
930.2.bg.f 16
930.2.bg.g 24
930.2.bg.h 24
930.2.bg.i 24
930.2.bj \(\chi_{930}(277, \cdot)\) 930.2.bj.a 128 8
930.2.bj.b 128
930.2.bk \(\chi_{930}(47, \cdot)\) 930.2.bk.a 512 8
930.2.bn \(\chi_{930}(19, \cdot)\) 930.2.bn.a 112 8
930.2.bn.b 144
930.2.bo \(\chi_{930}(179, \cdot)\) 930.2.bo.a 256 8
930.2.bo.b 256
930.2.br \(\chi_{930}(11, \cdot)\) 930.2.br.a 176 8
930.2.br.b 176
930.2.bs \(\chi_{930}(107, \cdot)\) 930.2.bs.a 1024 16
930.2.bt \(\chi_{930}(13, \cdot)\) 930.2.bt.a 256 16
930.2.bt.b 256

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(930))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(930)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(186))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(465))\)\(^{\oplus 2}\)