Newspace parameters
Level: | \( N \) | \(=\) | \( 93 = 3 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 93.n (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.53406645855\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −3.14762 | + | 2.28688i | 0.704489 | + | 1.58231i | 3.44162 | − | 10.5922i | 3.39584 | + | 5.88177i | −5.83601 | − | 3.36942i | 5.72390 | + | 6.35704i | 8.58109 | + | 26.4099i | −2.00739 | + | 2.22943i | −24.1397 | − | 10.7477i |
13.2 | −2.19842 | + | 1.59725i | 0.704489 | + | 1.58231i | 1.04579 | − | 3.21862i | −4.22402 | − | 7.31621i | −4.07610 | − | 2.35334i | −1.04976 | − | 1.16587i | −0.517049 | − | 1.59131i | −2.00739 | + | 2.22943i | 20.9720 | + | 9.33732i |
13.3 | −1.31388 | + | 0.954589i | 0.704489 | + | 1.58231i | −0.421031 | + | 1.29580i | 2.68233 | + | 4.64594i | −2.43606 | − | 1.40646i | −3.70180 | − | 4.11127i | −2.69120 | − | 8.28266i | −2.00739 | + | 2.22943i | −7.95922 | − | 3.54367i |
13.4 | 0.438624 | − | 0.318679i | 0.704489 | + | 1.58231i | −1.14523 | + | 3.52467i | −1.56109 | − | 2.70388i | 0.813253 | + | 0.469532i | 7.06741 | + | 7.84916i | 1.29107 | + | 3.97350i | −2.00739 | + | 2.22943i | −1.54640 | − | 0.688501i |
13.5 | 1.42893 | − | 1.03818i | 0.704489 | + | 1.58231i | −0.272043 | + | 0.837261i | 3.69711 | + | 6.40358i | 2.64938 | + | 1.52962i | −4.88801 | − | 5.42868i | 2.66371 | + | 8.19804i | −2.00739 | + | 2.22943i | 11.9310 | + | 5.31200i |
13.6 | 2.70969 | − | 1.96871i | 0.704489 | + | 1.58231i | 2.23056 | − | 6.86495i | −0.695623 | − | 1.20485i | 5.02405 | + | 2.90063i | 0.652428 | + | 0.724595i | −3.33091 | − | 10.2515i | −2.00739 | + | 2.22943i | −4.25693 | − | 1.89531i |
22.1 | −1.06480 | + | 3.27712i | 0.360114 | − | 1.69420i | −6.36964 | − | 4.62782i | −3.91137 | − | 6.77469i | 5.16865 | + | 2.98412i | 9.66339 | − | 4.30242i | 10.7976 | − | 7.84490i | −2.74064 | − | 1.22021i | 26.3663 | − | 5.60433i |
22.2 | −1.00524 | + | 3.09380i | 0.360114 | − | 1.69420i | −5.32503 | − | 3.86886i | 3.52360 | + | 6.10306i | 4.87952 | + | 2.81719i | −10.3732 | + | 4.61844i | 6.79541 | − | 4.93716i | −2.74064 | − | 1.22021i | −22.4237 | + | 4.76631i |
22.3 | −0.379628 | + | 1.16837i | 0.360114 | − | 1.69420i | 2.01509 | + | 1.46405i | 0.344159 | + | 0.596100i | 1.84275 | + | 1.06391i | 6.16016 | − | 2.74268i | −6.45105 | + | 4.68696i | −2.74064 | − | 1.22021i | −0.827121 | + | 0.175810i |
22.4 | 0.354096 | − | 1.08979i | 0.360114 | − | 1.69420i | 2.17380 | + | 1.57936i | 4.18594 | + | 7.25026i | −1.71882 | − | 0.992360i | 0.00755191 | − | 0.00336233i | 6.19905 | − | 4.50387i | −2.74064 | − | 1.22021i | 9.38353 | − | 1.99453i |
22.5 | 0.551190 | − | 1.69639i | 0.360114 | − | 1.69420i | 0.662149 | + | 0.481079i | −3.20115 | − | 5.54456i | −2.67553 | − | 1.54472i | −2.32756 | + | 1.03630i | 6.95320 | − | 5.05179i | −2.74064 | − | 1.22021i | −11.1702 | + | 2.37429i |
22.6 | 1.10898 | − | 3.41310i | 0.360114 | − | 1.69420i | −7.18331 | − | 5.21898i | 1.09496 | + | 1.89653i | −5.38311 | − | 3.10794i | 4.68036 | − | 2.08383i | −14.1656 | + | 10.2919i | −2.74064 | − | 1.22021i | 7.68734 | − | 1.63399i |
34.1 | −2.93428 | + | 2.13188i | 1.72256 | + | 0.181049i | 2.82902 | − | 8.70683i | −1.33804 | + | 2.31756i | −5.44045 | + | 3.14105i | −11.6250 | + | 2.47096i | 5.77759 | + | 17.7816i | 2.93444 | + | 0.623735i | −1.01456 | − | 9.65292i |
34.2 | −2.00288 | + | 1.45518i | 1.72256 | + | 0.181049i | 0.657913 | − | 2.02485i | 3.52838 | − | 6.11133i | −3.71354 | + | 2.14401i | 5.21989 | − | 1.10952i | −1.43133 | − | 4.40519i | 2.93444 | + | 0.623735i | 1.82615 | + | 17.3747i |
34.3 | −0.429658 | + | 0.312165i | 1.72256 | + | 0.181049i | −1.14891 | + | 3.53598i | −2.43322 | + | 4.21446i | −0.796629 | + | 0.459934i | −8.91470 | + | 1.89488i | −1.26663 | − | 3.89828i | 2.93444 | + | 0.623735i | −0.270154 | − | 2.57034i |
34.4 | 0.773018 | − | 0.561630i | 1.72256 | + | 0.181049i | −0.953940 | + | 2.93593i | −0.901489 | + | 1.56142i | 1.43325 | − | 0.827489i | 10.0656 | − | 2.13952i | 2.09256 | + | 6.44023i | 2.93444 | + | 0.623735i | 0.180076 | + | 1.71331i |
34.5 | 2.05224 | − | 1.49104i | 1.72256 | + | 0.181049i | 0.752428 | − | 2.31573i | 2.48305 | − | 4.30077i | 3.80507 | − | 2.19686i | −7.51879 | + | 1.59817i | 1.22686 | + | 3.77588i | 2.93444 | + | 0.623735i | −1.31680 | − | 12.5286i |
34.6 | 3.12423 | − | 2.26989i | 1.72256 | + | 0.181049i | 3.37236 | − | 10.3791i | −4.63323 | + | 8.02500i | 5.79264 | − | 3.34438i | −0.284519 | + | 0.0604764i | −8.24985 | − | 25.3904i | 2.93444 | + | 0.623735i | 3.74054 | + | 35.5888i |
43.1 | −3.14762 | − | 2.28688i | 0.704489 | − | 1.58231i | 3.44162 | + | 10.5922i | 3.39584 | − | 5.88177i | −5.83601 | + | 3.36942i | 5.72390 | − | 6.35704i | 8.58109 | − | 26.4099i | −2.00739 | − | 2.22943i | −24.1397 | + | 10.7477i |
43.2 | −2.19842 | − | 1.59725i | 0.704489 | − | 1.58231i | 1.04579 | + | 3.21862i | −4.22402 | + | 7.31621i | −4.07610 | + | 2.35334i | −1.04976 | + | 1.16587i | −0.517049 | + | 1.59131i | −2.00739 | − | 2.22943i | 20.9720 | − | 9.33732i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.h | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 93.3.n.b | ✓ | 48 |
3.b | odd | 2 | 1 | 279.3.bc.d | 48 | ||
31.h | odd | 30 | 1 | inner | 93.3.n.b | ✓ | 48 |
93.p | even | 30 | 1 | 279.3.bc.d | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
93.3.n.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
93.3.n.b | ✓ | 48 | 31.h | odd | 30 | 1 | inner |
279.3.bc.d | 48 | 3.b | odd | 2 | 1 | ||
279.3.bc.d | 48 | 93.p | even | 30 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} + 6 T_{2}^{47} + 57 T_{2}^{46} + 236 T_{2}^{45} + 1550 T_{2}^{44} + 5582 T_{2}^{43} + \cdots + 13347506923776 \)
acting on \(S_{3}^{\mathrm{new}}(93, [\chi])\).