Properties

Label 93.2.e.a
Level $93$
Weight $2$
Character orbit 93.e
Analytic conductor $0.743$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,2,Mod(25,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 93.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.742608738798\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + (\beta_{2} + 1) q^{3} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{5} - \beta_1 q^{6} + (2 \beta_{2} + 2 \beta_1 + 2) q^{7} - 2 \beta_{3} q^{8} + \beta_{2} q^{9} + (2 \beta_{3} + 2 \beta_{2} + 2 \beta_1) q^{10}+ \cdots - \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{5} + 4 q^{7} - 2 q^{9} - 4 q^{10} + 2 q^{13} - 8 q^{14} + 8 q^{15} - 16 q^{16} - 8 q^{17} + 2 q^{19} - 4 q^{21} + 4 q^{22} - 8 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{27} - 8 q^{29} - 8 q^{30}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/93\mathbb{Z}\right)^\times\).

\(n\) \(32\) \(34\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
−0.707107 + 1.22474i
−1.41421 0.500000 + 0.866025i 0 1.70711 2.95680i −0.707107 1.22474i 2.41421 + 4.18154i 2.82843 −0.500000 + 0.866025i −2.41421 + 4.18154i
25.2 1.41421 0.500000 + 0.866025i 0 0.292893 0.507306i 0.707107 + 1.22474i −0.414214 0.717439i −2.82843 −0.500000 + 0.866025i 0.414214 0.717439i
67.1 −1.41421 0.500000 0.866025i 0 1.70711 + 2.95680i −0.707107 + 1.22474i 2.41421 4.18154i 2.82843 −0.500000 0.866025i −2.41421 4.18154i
67.2 1.41421 0.500000 0.866025i 0 0.292893 + 0.507306i 0.707107 1.22474i −0.414214 + 0.717439i −2.82843 −0.500000 0.866025i 0.414214 + 0.717439i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 93.2.e.a 4
3.b odd 2 1 279.2.h.b 4
4.b odd 2 1 1488.2.q.g 4
31.c even 3 1 inner 93.2.e.a 4
31.c even 3 1 2883.2.a.b 2
31.e odd 6 1 2883.2.a.c 2
93.g even 6 1 8649.2.a.i 2
93.h odd 6 1 279.2.h.b 4
93.h odd 6 1 8649.2.a.h 2
124.i odd 6 1 1488.2.q.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
93.2.e.a 4 1.a even 1 1 trivial
93.2.e.a 4 31.c even 3 1 inner
279.2.h.b 4 3.b odd 2 1
279.2.h.b 4 93.h odd 6 1
1488.2.q.g 4 4.b odd 2 1
1488.2.q.g 4 124.i odd 6 1
2883.2.a.b 2 31.c even 3 1
2883.2.a.c 2 31.e odd 6 1
8649.2.a.h 2 93.h odd 6 1
8649.2.a.i 2 93.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(93, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{4} - 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$17$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T + 31)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$43$ \( T^{4} + 6 T^{3} + \cdots + 3969 \) Copy content Toggle raw display
$47$ \( (T^{2} - 4 T + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T - 56)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$79$ \( T^{4} + 20 T^{3} + \cdots + 4624 \) Copy content Toggle raw display
$83$ \( T^{4} - 12 T^{3} + \cdots + 1156 \) Copy content Toggle raw display
$89$ \( (T^{2} + 16 T - 34)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 6 T - 63)^{2} \) Copy content Toggle raw display
show more
show less