Properties

Label 9295.2.a.g.1.1
Level $9295$
Weight $2$
Character 9295.1
Self dual yes
Analytic conductor $74.221$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9295 = 5 \cdot 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9295.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(74.2209486788\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9295.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.41421 q^{2} -2.82843 q^{3} +3.82843 q^{4} +1.00000 q^{5} +6.82843 q^{6} +2.00000 q^{7} -4.41421 q^{8} +5.00000 q^{9} +O(q^{10})\) \(q-2.41421 q^{2} -2.82843 q^{3} +3.82843 q^{4} +1.00000 q^{5} +6.82843 q^{6} +2.00000 q^{7} -4.41421 q^{8} +5.00000 q^{9} -2.41421 q^{10} -1.00000 q^{11} -10.8284 q^{12} -4.82843 q^{14} -2.82843 q^{15} +3.00000 q^{16} +6.82843 q^{17} -12.0711 q^{18} +3.82843 q^{20} -5.65685 q^{21} +2.41421 q^{22} -2.82843 q^{23} +12.4853 q^{24} +1.00000 q^{25} -5.65685 q^{27} +7.65685 q^{28} -3.65685 q^{29} +6.82843 q^{30} +1.58579 q^{32} +2.82843 q^{33} -16.4853 q^{34} +2.00000 q^{35} +19.1421 q^{36} +7.65685 q^{37} -4.41421 q^{40} -6.00000 q^{41} +13.6569 q^{42} -6.00000 q^{43} -3.82843 q^{44} +5.00000 q^{45} +6.82843 q^{46} -2.82843 q^{47} -8.48528 q^{48} -3.00000 q^{49} -2.41421 q^{50} -19.3137 q^{51} +11.6569 q^{53} +13.6569 q^{54} -1.00000 q^{55} -8.82843 q^{56} +8.82843 q^{58} -1.65685 q^{59} -10.8284 q^{60} -9.31371 q^{61} +10.0000 q^{63} -9.82843 q^{64} -6.82843 q^{66} -12.4853 q^{67} +26.1421 q^{68} +8.00000 q^{69} -4.82843 q^{70} -11.3137 q^{71} -22.0711 q^{72} +1.17157 q^{73} -18.4853 q^{74} -2.82843 q^{75} -2.00000 q^{77} +4.00000 q^{79} +3.00000 q^{80} +1.00000 q^{81} +14.4853 q^{82} +6.00000 q^{83} -21.6569 q^{84} +6.82843 q^{85} +14.4853 q^{86} +10.3431 q^{87} +4.41421 q^{88} +13.3137 q^{89} -12.0711 q^{90} -10.8284 q^{92} +6.82843 q^{94} -4.48528 q^{96} -3.65685 q^{97} +7.24264 q^{98} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + 2q^{4} + 2q^{5} + 8q^{6} + 4q^{7} - 6q^{8} + 10q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + 2q^{4} + 2q^{5} + 8q^{6} + 4q^{7} - 6q^{8} + 10q^{9} - 2q^{10} - 2q^{11} - 16q^{12} - 4q^{14} + 6q^{16} + 8q^{17} - 10q^{18} + 2q^{20} + 2q^{22} + 8q^{24} + 2q^{25} + 4q^{28} + 4q^{29} + 8q^{30} + 6q^{32} - 16q^{34} + 4q^{35} + 10q^{36} + 4q^{37} - 6q^{40} - 12q^{41} + 16q^{42} - 12q^{43} - 2q^{44} + 10q^{45} + 8q^{46} - 6q^{49} - 2q^{50} - 16q^{51} + 12q^{53} + 16q^{54} - 2q^{55} - 12q^{56} + 12q^{58} + 8q^{59} - 16q^{60} + 4q^{61} + 20q^{63} - 14q^{64} - 8q^{66} - 8q^{67} + 24q^{68} + 16q^{69} - 4q^{70} - 30q^{72} + 8q^{73} - 20q^{74} - 4q^{77} + 8q^{79} + 6q^{80} + 2q^{81} + 12q^{82} + 12q^{83} - 32q^{84} + 8q^{85} + 12q^{86} + 32q^{87} + 6q^{88} + 4q^{89} - 10q^{90} - 16q^{92} + 8q^{94} + 8q^{96} + 4q^{97} + 6q^{98} - 10q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) −2.82843 −1.63299 −0.816497 0.577350i \(-0.804087\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 3.82843 1.91421
\(5\) 1.00000 0.447214
\(6\) 6.82843 2.78769
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −4.41421 −1.56066
\(9\) 5.00000 1.66667
\(10\) −2.41421 −0.763441
\(11\) −1.00000 −0.301511
\(12\) −10.8284 −3.12590
\(13\) 0 0
\(14\) −4.82843 −1.29045
\(15\) −2.82843 −0.730297
\(16\) 3.00000 0.750000
\(17\) 6.82843 1.65614 0.828068 0.560627i \(-0.189440\pi\)
0.828068 + 0.560627i \(0.189440\pi\)
\(18\) −12.0711 −2.84518
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 3.82843 0.856062
\(21\) −5.65685 −1.23443
\(22\) 2.41421 0.514712
\(23\) −2.82843 −0.589768 −0.294884 0.955533i \(-0.595281\pi\)
−0.294884 + 0.955533i \(0.595281\pi\)
\(24\) 12.4853 2.54855
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 7.65685 1.44701
\(29\) −3.65685 −0.679061 −0.339530 0.940595i \(-0.610268\pi\)
−0.339530 + 0.940595i \(0.610268\pi\)
\(30\) 6.82843 1.24669
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.58579 0.280330
\(33\) 2.82843 0.492366
\(34\) −16.4853 −2.82720
\(35\) 2.00000 0.338062
\(36\) 19.1421 3.19036
\(37\) 7.65685 1.25878 0.629390 0.777090i \(-0.283305\pi\)
0.629390 + 0.777090i \(0.283305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −4.41421 −0.697948
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 13.6569 2.10730
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) −3.82843 −0.577157
\(45\) 5.00000 0.745356
\(46\) 6.82843 1.00680
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) −8.48528 −1.22474
\(49\) −3.00000 −0.428571
\(50\) −2.41421 −0.341421
\(51\) −19.3137 −2.70446
\(52\) 0 0
\(53\) 11.6569 1.60119 0.800596 0.599204i \(-0.204516\pi\)
0.800596 + 0.599204i \(0.204516\pi\)
\(54\) 13.6569 1.85846
\(55\) −1.00000 −0.134840
\(56\) −8.82843 −1.17975
\(57\) 0 0
\(58\) 8.82843 1.15923
\(59\) −1.65685 −0.215704 −0.107852 0.994167i \(-0.534397\pi\)
−0.107852 + 0.994167i \(0.534397\pi\)
\(60\) −10.8284 −1.39794
\(61\) −9.31371 −1.19250 −0.596249 0.802799i \(-0.703343\pi\)
−0.596249 + 0.802799i \(0.703343\pi\)
\(62\) 0 0
\(63\) 10.0000 1.25988
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) −6.82843 −0.840521
\(67\) −12.4853 −1.52532 −0.762660 0.646800i \(-0.776107\pi\)
−0.762660 + 0.646800i \(0.776107\pi\)
\(68\) 26.1421 3.17020
\(69\) 8.00000 0.963087
\(70\) −4.82843 −0.577107
\(71\) −11.3137 −1.34269 −0.671345 0.741145i \(-0.734283\pi\)
−0.671345 + 0.741145i \(0.734283\pi\)
\(72\) −22.0711 −2.60110
\(73\) 1.17157 0.137122 0.0685611 0.997647i \(-0.478159\pi\)
0.0685611 + 0.997647i \(0.478159\pi\)
\(74\) −18.4853 −2.14887
\(75\) −2.82843 −0.326599
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 3.00000 0.335410
\(81\) 1.00000 0.111111
\(82\) 14.4853 1.59963
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −21.6569 −2.36296
\(85\) 6.82843 0.740647
\(86\) 14.4853 1.56199
\(87\) 10.3431 1.10890
\(88\) 4.41421 0.470557
\(89\) 13.3137 1.41125 0.705625 0.708585i \(-0.250666\pi\)
0.705625 + 0.708585i \(0.250666\pi\)
\(90\) −12.0711 −1.27240
\(91\) 0 0
\(92\) −10.8284 −1.12894
\(93\) 0 0
\(94\) 6.82843 0.704298
\(95\) 0 0
\(96\) −4.48528 −0.457777
\(97\) −3.65685 −0.371297 −0.185649 0.982616i \(-0.559439\pi\)
−0.185649 + 0.982616i \(0.559439\pi\)
\(98\) 7.24264 0.731617
\(99\) −5.00000 −0.502519
\(100\) 3.82843 0.382843
\(101\) 9.31371 0.926749 0.463374 0.886163i \(-0.346639\pi\)
0.463374 + 0.886163i \(0.346639\pi\)
\(102\) 46.6274 4.61680
\(103\) 6.82843 0.672825 0.336412 0.941715i \(-0.390786\pi\)
0.336412 + 0.941715i \(0.390786\pi\)
\(104\) 0 0
\(105\) −5.65685 −0.552052
\(106\) −28.1421 −2.73341
\(107\) 7.65685 0.740216 0.370108 0.928989i \(-0.379321\pi\)
0.370108 + 0.928989i \(0.379321\pi\)
\(108\) −21.6569 −2.08393
\(109\) 7.65685 0.733394 0.366697 0.930341i \(-0.380489\pi\)
0.366697 + 0.930341i \(0.380489\pi\)
\(110\) 2.41421 0.230186
\(111\) −21.6569 −2.05558
\(112\) 6.00000 0.566947
\(113\) 19.6569 1.84916 0.924581 0.380986i \(-0.124416\pi\)
0.924581 + 0.380986i \(0.124416\pi\)
\(114\) 0 0
\(115\) −2.82843 −0.263752
\(116\) −14.0000 −1.29987
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 13.6569 1.25192
\(120\) 12.4853 1.13975
\(121\) 1.00000 0.0909091
\(122\) 22.4853 2.03572
\(123\) 16.9706 1.53018
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) −24.1421 −2.15075
\(127\) 4.34315 0.385392 0.192696 0.981259i \(-0.438277\pi\)
0.192696 + 0.981259i \(0.438277\pi\)
\(128\) 20.5563 1.81694
\(129\) 16.9706 1.49417
\(130\) 0 0
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 10.8284 0.942494
\(133\) 0 0
\(134\) 30.1421 2.60388
\(135\) −5.65685 −0.486864
\(136\) −30.1421 −2.58467
\(137\) 10.9706 0.937278 0.468639 0.883390i \(-0.344744\pi\)
0.468639 + 0.883390i \(0.344744\pi\)
\(138\) −19.3137 −1.64409
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 7.65685 0.647122
\(141\) 8.00000 0.673722
\(142\) 27.3137 2.29212
\(143\) 0 0
\(144\) 15.0000 1.25000
\(145\) −3.65685 −0.303685
\(146\) −2.82843 −0.234082
\(147\) 8.48528 0.699854
\(148\) 29.3137 2.40957
\(149\) −0.343146 −0.0281116 −0.0140558 0.999901i \(-0.504474\pi\)
−0.0140558 + 0.999901i \(0.504474\pi\)
\(150\) 6.82843 0.557539
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 34.1421 2.76023
\(154\) 4.82843 0.389086
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −9.65685 −0.768258
\(159\) −32.9706 −2.61474
\(160\) 1.58579 0.125367
\(161\) −5.65685 −0.445823
\(162\) −2.41421 −0.189679
\(163\) −16.4853 −1.29123 −0.645613 0.763664i \(-0.723398\pi\)
−0.645613 + 0.763664i \(0.723398\pi\)
\(164\) −22.9706 −1.79370
\(165\) 2.82843 0.220193
\(166\) −14.4853 −1.12428
\(167\) 22.9706 1.77752 0.888758 0.458377i \(-0.151569\pi\)
0.888758 + 0.458377i \(0.151569\pi\)
\(168\) 24.9706 1.92652
\(169\) 0 0
\(170\) −16.4853 −1.26436
\(171\) 0 0
\(172\) −22.9706 −1.75149
\(173\) −22.1421 −1.68344 −0.841718 0.539918i \(-0.818455\pi\)
−0.841718 + 0.539918i \(0.818455\pi\)
\(174\) −24.9706 −1.89301
\(175\) 2.00000 0.151186
\(176\) −3.00000 −0.226134
\(177\) 4.68629 0.352243
\(178\) −32.1421 −2.40915
\(179\) 9.65685 0.721787 0.360894 0.932607i \(-0.382472\pi\)
0.360894 + 0.932607i \(0.382472\pi\)
\(180\) 19.1421 1.42677
\(181\) 21.3137 1.58424 0.792118 0.610368i \(-0.208979\pi\)
0.792118 + 0.610368i \(0.208979\pi\)
\(182\) 0 0
\(183\) 26.3431 1.94734
\(184\) 12.4853 0.920427
\(185\) 7.65685 0.562943
\(186\) 0 0
\(187\) −6.82843 −0.499344
\(188\) −10.8284 −0.789744
\(189\) −11.3137 −0.822951
\(190\) 0 0
\(191\) 3.31371 0.239772 0.119886 0.992788i \(-0.461747\pi\)
0.119886 + 0.992788i \(0.461747\pi\)
\(192\) 27.7990 2.00622
\(193\) 1.17157 0.0843317 0.0421658 0.999111i \(-0.486574\pi\)
0.0421658 + 0.999111i \(0.486574\pi\)
\(194\) 8.82843 0.633844
\(195\) 0 0
\(196\) −11.4853 −0.820377
\(197\) 10.8284 0.771493 0.385747 0.922605i \(-0.373944\pi\)
0.385747 + 0.922605i \(0.373944\pi\)
\(198\) 12.0711 0.857853
\(199\) 10.3431 0.733206 0.366603 0.930377i \(-0.380521\pi\)
0.366603 + 0.930377i \(0.380521\pi\)
\(200\) −4.41421 −0.312132
\(201\) 35.3137 2.49084
\(202\) −22.4853 −1.58206
\(203\) −7.31371 −0.513322
\(204\) −73.9411 −5.17691
\(205\) −6.00000 −0.419058
\(206\) −16.4853 −1.14858
\(207\) −14.1421 −0.982946
\(208\) 0 0
\(209\) 0 0
\(210\) 13.6569 0.942412
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 44.6274 3.06502
\(213\) 32.0000 2.19260
\(214\) −18.4853 −1.26363
\(215\) −6.00000 −0.409197
\(216\) 24.9706 1.69903
\(217\) 0 0
\(218\) −18.4853 −1.25198
\(219\) −3.31371 −0.223920
\(220\) −3.82843 −0.258113
\(221\) 0 0
\(222\) 52.2843 3.50909
\(223\) 10.8284 0.725125 0.362563 0.931959i \(-0.381902\pi\)
0.362563 + 0.931959i \(0.381902\pi\)
\(224\) 3.17157 0.211910
\(225\) 5.00000 0.333333
\(226\) −47.4558 −3.15672
\(227\) −25.3137 −1.68013 −0.840065 0.542486i \(-0.817483\pi\)
−0.840065 + 0.542486i \(0.817483\pi\)
\(228\) 0 0
\(229\) −1.31371 −0.0868123 −0.0434062 0.999058i \(-0.513821\pi\)
−0.0434062 + 0.999058i \(0.513821\pi\)
\(230\) 6.82843 0.450253
\(231\) 5.65685 0.372194
\(232\) 16.1421 1.05978
\(233\) −6.14214 −0.402385 −0.201192 0.979552i \(-0.564482\pi\)
−0.201192 + 0.979552i \(0.564482\pi\)
\(234\) 0 0
\(235\) −2.82843 −0.184506
\(236\) −6.34315 −0.412904
\(237\) −11.3137 −0.734904
\(238\) −32.9706 −2.13716
\(239\) 23.3137 1.50804 0.754019 0.656852i \(-0.228113\pi\)
0.754019 + 0.656852i \(0.228113\pi\)
\(240\) −8.48528 −0.547723
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) −2.41421 −0.155192
\(243\) 14.1421 0.907218
\(244\) −35.6569 −2.28270
\(245\) −3.00000 −0.191663
\(246\) −40.9706 −2.61219
\(247\) 0 0
\(248\) 0 0
\(249\) −16.9706 −1.07547
\(250\) −2.41421 −0.152688
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 38.2843 2.41168
\(253\) 2.82843 0.177822
\(254\) −10.4853 −0.657905
\(255\) −19.3137 −1.20947
\(256\) −29.9706 −1.87316
\(257\) −9.31371 −0.580973 −0.290487 0.956879i \(-0.593817\pi\)
−0.290487 + 0.956879i \(0.593817\pi\)
\(258\) −40.9706 −2.55072
\(259\) 15.3137 0.951548
\(260\) 0 0
\(261\) −18.2843 −1.13177
\(262\) 27.3137 1.68745
\(263\) −10.9706 −0.676474 −0.338237 0.941061i \(-0.609831\pi\)
−0.338237 + 0.941061i \(0.609831\pi\)
\(264\) −12.4853 −0.768416
\(265\) 11.6569 0.716075
\(266\) 0 0
\(267\) −37.6569 −2.30456
\(268\) −47.7990 −2.91979
\(269\) 17.3137 1.05564 0.527818 0.849358i \(-0.323010\pi\)
0.527818 + 0.849358i \(0.323010\pi\)
\(270\) 13.6569 0.831130
\(271\) −7.31371 −0.444276 −0.222138 0.975015i \(-0.571304\pi\)
−0.222138 + 0.975015i \(0.571304\pi\)
\(272\) 20.4853 1.24210
\(273\) 0 0
\(274\) −26.4853 −1.60003
\(275\) −1.00000 −0.0603023
\(276\) 30.6274 1.84355
\(277\) 6.82843 0.410280 0.205140 0.978733i \(-0.434235\pi\)
0.205140 + 0.978733i \(0.434235\pi\)
\(278\) 9.65685 0.579180
\(279\) 0 0
\(280\) −8.82843 −0.527599
\(281\) −17.3137 −1.03285 −0.516425 0.856333i \(-0.672737\pi\)
−0.516425 + 0.856333i \(0.672737\pi\)
\(282\) −19.3137 −1.15011
\(283\) 32.6274 1.93950 0.969749 0.244103i \(-0.0784935\pi\)
0.969749 + 0.244103i \(0.0784935\pi\)
\(284\) −43.3137 −2.57020
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 7.92893 0.467217
\(289\) 29.6274 1.74279
\(290\) 8.82843 0.518423
\(291\) 10.3431 0.606326
\(292\) 4.48528 0.262481
\(293\) 9.17157 0.535809 0.267905 0.963445i \(-0.413669\pi\)
0.267905 + 0.963445i \(0.413669\pi\)
\(294\) −20.4853 −1.19473
\(295\) −1.65685 −0.0964658
\(296\) −33.7990 −1.96453
\(297\) 5.65685 0.328244
\(298\) 0.828427 0.0479895
\(299\) 0 0
\(300\) −10.8284 −0.625180
\(301\) −12.0000 −0.691669
\(302\) −28.9706 −1.66707
\(303\) −26.3431 −1.51337
\(304\) 0 0
\(305\) −9.31371 −0.533301
\(306\) −82.4264 −4.71200
\(307\) 16.3431 0.932753 0.466376 0.884586i \(-0.345559\pi\)
0.466376 + 0.884586i \(0.345559\pi\)
\(308\) −7.65685 −0.436290
\(309\) −19.3137 −1.09872
\(310\) 0 0
\(311\) 4.68629 0.265735 0.132868 0.991134i \(-0.457581\pi\)
0.132868 + 0.991134i \(0.457581\pi\)
\(312\) 0 0
\(313\) −1.31371 −0.0742552 −0.0371276 0.999311i \(-0.511821\pi\)
−0.0371276 + 0.999311i \(0.511821\pi\)
\(314\) 33.7990 1.90739
\(315\) 10.0000 0.563436
\(316\) 15.3137 0.861463
\(317\) 1.31371 0.0737852 0.0368926 0.999319i \(-0.488254\pi\)
0.0368926 + 0.999319i \(0.488254\pi\)
\(318\) 79.5980 4.46363
\(319\) 3.65685 0.204745
\(320\) −9.82843 −0.549426
\(321\) −21.6569 −1.20877
\(322\) 13.6569 0.761067
\(323\) 0 0
\(324\) 3.82843 0.212690
\(325\) 0 0
\(326\) 39.7990 2.20426
\(327\) −21.6569 −1.19763
\(328\) 26.4853 1.46241
\(329\) −5.65685 −0.311872
\(330\) −6.82843 −0.375893
\(331\) 7.31371 0.401998 0.200999 0.979591i \(-0.435581\pi\)
0.200999 + 0.979591i \(0.435581\pi\)
\(332\) 22.9706 1.26067
\(333\) 38.2843 2.09797
\(334\) −55.4558 −3.03441
\(335\) −12.4853 −0.682144
\(336\) −16.9706 −0.925820
\(337\) −20.4853 −1.11590 −0.557952 0.829873i \(-0.688413\pi\)
−0.557952 + 0.829873i \(0.688413\pi\)
\(338\) 0 0
\(339\) −55.5980 −3.01967
\(340\) 26.1421 1.41776
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 26.4853 1.42799
\(345\) 8.00000 0.430706
\(346\) 53.4558 2.87380
\(347\) 10.9706 0.588931 0.294465 0.955662i \(-0.404858\pi\)
0.294465 + 0.955662i \(0.404858\pi\)
\(348\) 39.5980 2.12267
\(349\) −26.9706 −1.44370 −0.721851 0.692049i \(-0.756708\pi\)
−0.721851 + 0.692049i \(0.756708\pi\)
\(350\) −4.82843 −0.258090
\(351\) 0 0
\(352\) −1.58579 −0.0845227
\(353\) −21.3137 −1.13441 −0.567207 0.823575i \(-0.691976\pi\)
−0.567207 + 0.823575i \(0.691976\pi\)
\(354\) −11.3137 −0.601317
\(355\) −11.3137 −0.600469
\(356\) 50.9706 2.70143
\(357\) −38.6274 −2.04438
\(358\) −23.3137 −1.23217
\(359\) −0.686292 −0.0362211 −0.0181105 0.999836i \(-0.505765\pi\)
−0.0181105 + 0.999836i \(0.505765\pi\)
\(360\) −22.0711 −1.16325
\(361\) −19.0000 −1.00000
\(362\) −51.4558 −2.70446
\(363\) −2.82843 −0.148454
\(364\) 0 0
\(365\) 1.17157 0.0613229
\(366\) −63.5980 −3.32432
\(367\) −8.48528 −0.442928 −0.221464 0.975169i \(-0.571084\pi\)
−0.221464 + 0.975169i \(0.571084\pi\)
\(368\) −8.48528 −0.442326
\(369\) −30.0000 −1.56174
\(370\) −18.4853 −0.961004
\(371\) 23.3137 1.21039
\(372\) 0 0
\(373\) 35.7990 1.85360 0.926801 0.375554i \(-0.122547\pi\)
0.926801 + 0.375554i \(0.122547\pi\)
\(374\) 16.4853 0.852434
\(375\) −2.82843 −0.146059
\(376\) 12.4853 0.643879
\(377\) 0 0
\(378\) 27.3137 1.40487
\(379\) −33.6569 −1.72884 −0.864418 0.502773i \(-0.832313\pi\)
−0.864418 + 0.502773i \(0.832313\pi\)
\(380\) 0 0
\(381\) −12.2843 −0.629342
\(382\) −8.00000 −0.409316
\(383\) 5.85786 0.299323 0.149661 0.988737i \(-0.452182\pi\)
0.149661 + 0.988737i \(0.452182\pi\)
\(384\) −58.1421 −2.96705
\(385\) −2.00000 −0.101929
\(386\) −2.82843 −0.143963
\(387\) −30.0000 −1.52499
\(388\) −14.0000 −0.710742
\(389\) 20.6274 1.04585 0.522926 0.852378i \(-0.324840\pi\)
0.522926 + 0.852378i \(0.324840\pi\)
\(390\) 0 0
\(391\) −19.3137 −0.976736
\(392\) 13.2426 0.668854
\(393\) 32.0000 1.61419
\(394\) −26.1421 −1.31702
\(395\) 4.00000 0.201262
\(396\) −19.1421 −0.961929
\(397\) 9.31371 0.467442 0.233721 0.972304i \(-0.424910\pi\)
0.233721 + 0.972304i \(0.424910\pi\)
\(398\) −24.9706 −1.25166
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) 5.31371 0.265354 0.132677 0.991159i \(-0.457643\pi\)
0.132677 + 0.991159i \(0.457643\pi\)
\(402\) −85.2548 −4.25212
\(403\) 0 0
\(404\) 35.6569 1.77399
\(405\) 1.00000 0.0496904
\(406\) 17.6569 0.876295
\(407\) −7.65685 −0.379536
\(408\) 85.2548 4.22074
\(409\) −1.02944 −0.0509024 −0.0254512 0.999676i \(-0.508102\pi\)
−0.0254512 + 0.999676i \(0.508102\pi\)
\(410\) 14.4853 0.715377
\(411\) −31.0294 −1.53057
\(412\) 26.1421 1.28793
\(413\) −3.31371 −0.163057
\(414\) 34.1421 1.67799
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) 11.3137 0.554035
\(418\) 0 0
\(419\) −25.6569 −1.25342 −0.626710 0.779253i \(-0.715599\pi\)
−0.626710 + 0.779253i \(0.715599\pi\)
\(420\) −21.6569 −1.05675
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 38.6274 1.88035
\(423\) −14.1421 −0.687614
\(424\) −51.4558 −2.49892
\(425\) 6.82843 0.331227
\(426\) −77.2548 −3.74301
\(427\) −18.6274 −0.901444
\(428\) 29.3137 1.41693
\(429\) 0 0
\(430\) 14.4853 0.698542
\(431\) 11.3137 0.544962 0.272481 0.962161i \(-0.412156\pi\)
0.272481 + 0.962161i \(0.412156\pi\)
\(432\) −16.9706 −0.816497
\(433\) −7.65685 −0.367965 −0.183982 0.982930i \(-0.558899\pi\)
−0.183982 + 0.982930i \(0.558899\pi\)
\(434\) 0 0
\(435\) 10.3431 0.495916
\(436\) 29.3137 1.40387
\(437\) 0 0
\(438\) 8.00000 0.382255
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 4.41421 0.210439
\(441\) −15.0000 −0.714286
\(442\) 0 0
\(443\) −26.8284 −1.27466 −0.637329 0.770592i \(-0.719961\pi\)
−0.637329 + 0.770592i \(0.719961\pi\)
\(444\) −82.9117 −3.93481
\(445\) 13.3137 0.631130
\(446\) −26.1421 −1.23787
\(447\) 0.970563 0.0459060
\(448\) −19.6569 −0.928699
\(449\) −28.6274 −1.35101 −0.675506 0.737355i \(-0.736075\pi\)
−0.675506 + 0.737355i \(0.736075\pi\)
\(450\) −12.0711 −0.569036
\(451\) 6.00000 0.282529
\(452\) 75.2548 3.53969
\(453\) −33.9411 −1.59469
\(454\) 61.1127 2.86816
\(455\) 0 0
\(456\) 0 0
\(457\) −0.485281 −0.0227005 −0.0113503 0.999936i \(-0.503613\pi\)
−0.0113503 + 0.999936i \(0.503613\pi\)
\(458\) 3.17157 0.148198
\(459\) −38.6274 −1.80297
\(460\) −10.8284 −0.504878
\(461\) −12.6274 −0.588117 −0.294059 0.955787i \(-0.595006\pi\)
−0.294059 + 0.955787i \(0.595006\pi\)
\(462\) −13.6569 −0.635374
\(463\) 6.14214 0.285449 0.142725 0.989762i \(-0.454414\pi\)
0.142725 + 0.989762i \(0.454414\pi\)
\(464\) −10.9706 −0.509296
\(465\) 0 0
\(466\) 14.8284 0.686914
\(467\) −14.8284 −0.686178 −0.343089 0.939303i \(-0.611473\pi\)
−0.343089 + 0.939303i \(0.611473\pi\)
\(468\) 0 0
\(469\) −24.9706 −1.15303
\(470\) 6.82843 0.314972
\(471\) 39.5980 1.82458
\(472\) 7.31371 0.336641
\(473\) 6.00000 0.275880
\(474\) 27.3137 1.25456
\(475\) 0 0
\(476\) 52.2843 2.39645
\(477\) 58.2843 2.66865
\(478\) −56.2843 −2.57438
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) −4.48528 −0.204724
\(481\) 0 0
\(482\) 14.4853 0.659786
\(483\) 16.0000 0.728025
\(484\) 3.82843 0.174019
\(485\) −3.65685 −0.166049
\(486\) −34.1421 −1.54872
\(487\) 24.4853 1.10953 0.554767 0.832006i \(-0.312807\pi\)
0.554767 + 0.832006i \(0.312807\pi\)
\(488\) 41.1127 1.86108
\(489\) 46.6274 2.10856
\(490\) 7.24264 0.327189
\(491\) −0.686292 −0.0309719 −0.0154860 0.999880i \(-0.504930\pi\)
−0.0154860 + 0.999880i \(0.504930\pi\)
\(492\) 64.9706 2.92910
\(493\) −24.9706 −1.12462
\(494\) 0 0
\(495\) −5.00000 −0.224733
\(496\) 0 0
\(497\) −22.6274 −1.01498
\(498\) 40.9706 1.83593
\(499\) −9.65685 −0.432300 −0.216150 0.976360i \(-0.569350\pi\)
−0.216150 + 0.976360i \(0.569350\pi\)
\(500\) 3.82843 0.171212
\(501\) −64.9706 −2.90267
\(502\) −28.9706 −1.29302
\(503\) 16.6274 0.741380 0.370690 0.928757i \(-0.379121\pi\)
0.370690 + 0.928757i \(0.379121\pi\)
\(504\) −44.1421 −1.96625
\(505\) 9.31371 0.414455
\(506\) −6.82843 −0.303561
\(507\) 0 0
\(508\) 16.6274 0.737722
\(509\) 13.3137 0.590120 0.295060 0.955479i \(-0.404660\pi\)
0.295060 + 0.955479i \(0.404660\pi\)
\(510\) 46.6274 2.06470
\(511\) 2.34315 0.103655
\(512\) 31.2426 1.38074
\(513\) 0 0
\(514\) 22.4853 0.991783
\(515\) 6.82843 0.300896
\(516\) 64.9706 2.86017
\(517\) 2.82843 0.124394
\(518\) −36.9706 −1.62439
\(519\) 62.6274 2.74904
\(520\) 0 0
\(521\) 25.3137 1.10901 0.554507 0.832179i \(-0.312907\pi\)
0.554507 + 0.832179i \(0.312907\pi\)
\(522\) 44.1421 1.93205
\(523\) −41.5980 −1.81895 −0.909476 0.415756i \(-0.863517\pi\)
−0.909476 + 0.415756i \(0.863517\pi\)
\(524\) −43.3137 −1.89217
\(525\) −5.65685 −0.246885
\(526\) 26.4853 1.15481
\(527\) 0 0
\(528\) 8.48528 0.369274
\(529\) −15.0000 −0.652174
\(530\) −28.1421 −1.22242
\(531\) −8.28427 −0.359507
\(532\) 0 0
\(533\) 0 0
\(534\) 90.9117 3.93413
\(535\) 7.65685 0.331035
\(536\) 55.1127 2.38051
\(537\) −27.3137 −1.17867
\(538\) −41.7990 −1.80208
\(539\) 3.00000 0.129219
\(540\) −21.6569 −0.931963
\(541\) −6.00000 −0.257960 −0.128980 0.991647i \(-0.541170\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(542\) 17.6569 0.758427
\(543\) −60.2843 −2.58705
\(544\) 10.8284 0.464265
\(545\) 7.65685 0.327984
\(546\) 0 0
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) 42.0000 1.79415
\(549\) −46.5685 −1.98750
\(550\) 2.41421 0.102942
\(551\) 0 0
\(552\) −35.3137 −1.50305
\(553\) 8.00000 0.340195
\(554\) −16.4853 −0.700392
\(555\) −21.6569 −0.919282
\(556\) −15.3137 −0.649446
\(557\) −9.85786 −0.417691 −0.208846 0.977949i \(-0.566971\pi\)
−0.208846 + 0.977949i \(0.566971\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 6.00000 0.253546
\(561\) 19.3137 0.815425
\(562\) 41.7990 1.76318
\(563\) 0.343146 0.0144619 0.00723093 0.999974i \(-0.497698\pi\)
0.00723093 + 0.999974i \(0.497698\pi\)
\(564\) 30.6274 1.28965
\(565\) 19.6569 0.826970
\(566\) −78.7696 −3.31093
\(567\) 2.00000 0.0839921
\(568\) 49.9411 2.09548
\(569\) 31.6569 1.32712 0.663562 0.748121i \(-0.269044\pi\)
0.663562 + 0.748121i \(0.269044\pi\)
\(570\) 0 0
\(571\) −21.9411 −0.918208 −0.459104 0.888383i \(-0.651829\pi\)
−0.459104 + 0.888383i \(0.651829\pi\)
\(572\) 0 0
\(573\) −9.37258 −0.391545
\(574\) 28.9706 1.20921
\(575\) −2.82843 −0.117954
\(576\) −49.1421 −2.04759
\(577\) 26.9706 1.12280 0.561400 0.827545i \(-0.310263\pi\)
0.561400 + 0.827545i \(0.310263\pi\)
\(578\) −71.5269 −2.97513
\(579\) −3.31371 −0.137713
\(580\) −14.0000 −0.581318
\(581\) 12.0000 0.497844
\(582\) −24.9706 −1.03506
\(583\) −11.6569 −0.482778
\(584\) −5.17157 −0.214001
\(585\) 0 0
\(586\) −22.1421 −0.914683
\(587\) 2.14214 0.0884154 0.0442077 0.999022i \(-0.485924\pi\)
0.0442077 + 0.999022i \(0.485924\pi\)
\(588\) 32.4853 1.33967
\(589\) 0 0
\(590\) 4.00000 0.164677
\(591\) −30.6274 −1.25984
\(592\) 22.9706 0.944084
\(593\) −3.51472 −0.144332 −0.0721661 0.997393i \(-0.522991\pi\)
−0.0721661 + 0.997393i \(0.522991\pi\)
\(594\) −13.6569 −0.560348
\(595\) 13.6569 0.559876
\(596\) −1.31371 −0.0538116
\(597\) −29.2548 −1.19732
\(598\) 0 0
\(599\) −5.65685 −0.231133 −0.115566 0.993300i \(-0.536868\pi\)
−0.115566 + 0.993300i \(0.536868\pi\)
\(600\) 12.4853 0.509709
\(601\) 23.9411 0.976579 0.488289 0.872682i \(-0.337621\pi\)
0.488289 + 0.872682i \(0.337621\pi\)
\(602\) 28.9706 1.18075
\(603\) −62.4264 −2.54220
\(604\) 45.9411 1.86932
\(605\) 1.00000 0.0406558
\(606\) 63.5980 2.58349
\(607\) 38.2843 1.55391 0.776955 0.629556i \(-0.216763\pi\)
0.776955 + 0.629556i \(0.216763\pi\)
\(608\) 0 0
\(609\) 20.6863 0.838251
\(610\) 22.4853 0.910402
\(611\) 0 0
\(612\) 130.711 5.28367
\(613\) 25.4558 1.02815 0.514076 0.857745i \(-0.328135\pi\)
0.514076 + 0.857745i \(0.328135\pi\)
\(614\) −39.4558 −1.59231
\(615\) 16.9706 0.684319
\(616\) 8.82843 0.355707
\(617\) −0.343146 −0.0138145 −0.00690726 0.999976i \(-0.502199\pi\)
−0.00690726 + 0.999976i \(0.502199\pi\)
\(618\) 46.6274 1.87563
\(619\) 14.3431 0.576500 0.288250 0.957555i \(-0.406927\pi\)
0.288250 + 0.957555i \(0.406927\pi\)
\(620\) 0 0
\(621\) 16.0000 0.642058
\(622\) −11.3137 −0.453638
\(623\) 26.6274 1.06680
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 3.17157 0.126762
\(627\) 0 0
\(628\) −53.5980 −2.13879
\(629\) 52.2843 2.08471
\(630\) −24.1421 −0.961846
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) −17.6569 −0.702352
\(633\) 45.2548 1.79872
\(634\) −3.17157 −0.125959
\(635\) 4.34315 0.172352
\(636\) −126.225 −5.00516
\(637\) 0 0
\(638\) −8.82843 −0.349521
\(639\) −56.5685 −2.23782
\(640\) 20.5563 0.812561
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 52.2843 2.06350
\(643\) 1.45584 0.0574129 0.0287064 0.999588i \(-0.490861\pi\)
0.0287064 + 0.999588i \(0.490861\pi\)
\(644\) −21.6569 −0.853400
\(645\) 16.9706 0.668215
\(646\) 0 0
\(647\) 27.1127 1.06591 0.532955 0.846144i \(-0.321081\pi\)
0.532955 + 0.846144i \(0.321081\pi\)
\(648\) −4.41421 −0.173407
\(649\) 1.65685 0.0650372
\(650\) 0 0
\(651\) 0 0
\(652\) −63.1127 −2.47168
\(653\) 11.6569 0.456168 0.228084 0.973641i \(-0.426754\pi\)
0.228084 + 0.973641i \(0.426754\pi\)
\(654\) 52.2843 2.04448
\(655\) −11.3137 −0.442063
\(656\) −18.0000 −0.702782
\(657\) 5.85786 0.228537
\(658\) 13.6569 0.532400
\(659\) 45.9411 1.78961 0.894806 0.446455i \(-0.147314\pi\)
0.894806 + 0.446455i \(0.147314\pi\)
\(660\) 10.8284 0.421496
\(661\) −44.6274 −1.73581 −0.867903 0.496734i \(-0.834532\pi\)
−0.867903 + 0.496734i \(0.834532\pi\)
\(662\) −17.6569 −0.686253
\(663\) 0 0
\(664\) −26.4853 −1.02783
\(665\) 0 0
\(666\) −92.4264 −3.58145
\(667\) 10.3431 0.400488
\(668\) 87.9411 3.40254
\(669\) −30.6274 −1.18412
\(670\) 30.1421 1.16449
\(671\) 9.31371 0.359552
\(672\) −8.97056 −0.346047
\(673\) −12.4853 −0.481272 −0.240636 0.970615i \(-0.577356\pi\)
−0.240636 + 0.970615i \(0.577356\pi\)
\(674\) 49.4558 1.90497
\(675\) −5.65685 −0.217732
\(676\) 0 0
\(677\) 22.8284 0.877368 0.438684 0.898641i \(-0.355445\pi\)
0.438684 + 0.898641i \(0.355445\pi\)
\(678\) 134.225 5.15490
\(679\) −7.31371 −0.280674
\(680\) −30.1421 −1.15590
\(681\) 71.5980 2.74364
\(682\) 0 0
\(683\) 7.79899 0.298420 0.149210 0.988806i \(-0.452327\pi\)
0.149210 + 0.988806i \(0.452327\pi\)
\(684\) 0 0
\(685\) 10.9706 0.419164
\(686\) 48.2843 1.84350
\(687\) 3.71573 0.141764
\(688\) −18.0000 −0.686244
\(689\) 0 0
\(690\) −19.3137 −0.735260
\(691\) 39.3137 1.49556 0.747782 0.663944i \(-0.231119\pi\)
0.747782 + 0.663944i \(0.231119\pi\)
\(692\) −84.7696 −3.22245
\(693\) −10.0000 −0.379869
\(694\) −26.4853 −1.00537
\(695\) −4.00000 −0.151729
\(696\) −45.6569 −1.73062
\(697\) −40.9706 −1.55187
\(698\) 65.1127 2.46455
\(699\) 17.3726 0.657091
\(700\) 7.65685 0.289402
\(701\) −12.6274 −0.476931 −0.238465 0.971151i \(-0.576644\pi\)
−0.238465 + 0.971151i \(0.576644\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.82843 0.370423
\(705\) 8.00000 0.301297
\(706\) 51.4558 1.93657
\(707\) 18.6274 0.700556
\(708\) 17.9411 0.674269
\(709\) −24.6274 −0.924902 −0.462451 0.886645i \(-0.653030\pi\)
−0.462451 + 0.886645i \(0.653030\pi\)
\(710\) 27.3137 1.02507
\(711\) 20.0000 0.750059
\(712\) −58.7696 −2.20248
\(713\) 0 0
\(714\) 93.2548 3.48997
\(715\) 0 0
\(716\) 36.9706 1.38165
\(717\) −65.9411 −2.46262
\(718\) 1.65685 0.0618333
\(719\) 18.3431 0.684084 0.342042 0.939685i \(-0.388882\pi\)
0.342042 + 0.939685i \(0.388882\pi\)
\(720\) 15.0000 0.559017
\(721\) 13.6569 0.508608
\(722\) 45.8701 1.70711
\(723\) 16.9706 0.631142
\(724\) 81.5980 3.03257
\(725\) −3.65685 −0.135812
\(726\) 6.82843 0.253427
\(727\) −19.5147 −0.723761 −0.361880 0.932225i \(-0.617865\pi\)
−0.361880 + 0.932225i \(0.617865\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) −2.82843 −0.104685
\(731\) −40.9706 −1.51535
\(732\) 100.853 3.72763
\(733\) 17.4558 0.644746 0.322373 0.946613i \(-0.395519\pi\)
0.322373 + 0.946613i \(0.395519\pi\)
\(734\) 20.4853 0.756126
\(735\) 8.48528 0.312984
\(736\) −4.48528 −0.165330
\(737\) 12.4853 0.459901
\(738\) 72.4264 2.66605
\(739\) −29.9411 −1.10140 −0.550701 0.834703i \(-0.685640\pi\)
−0.550701 + 0.834703i \(0.685640\pi\)
\(740\) 29.3137 1.07759
\(741\) 0 0
\(742\) −56.2843 −2.06626
\(743\) 49.5980 1.81957 0.909787 0.415076i \(-0.136245\pi\)
0.909787 + 0.415076i \(0.136245\pi\)
\(744\) 0 0
\(745\) −0.343146 −0.0125719
\(746\) −86.4264 −3.16430
\(747\) 30.0000 1.09764
\(748\) −26.1421 −0.955851
\(749\) 15.3137 0.559551
\(750\) 6.82843 0.249339
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) −8.48528 −0.309426
\(753\) −33.9411 −1.23688
\(754\) 0 0
\(755\) 12.0000 0.436725
\(756\) −43.3137 −1.57530
\(757\) 13.3137 0.483895 0.241947 0.970289i \(-0.422214\pi\)
0.241947 + 0.970289i \(0.422214\pi\)
\(758\) 81.2548 2.95131
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 29.6569 1.07435
\(763\) 15.3137 0.554393
\(764\) 12.6863 0.458974
\(765\) 34.1421 1.23441
\(766\) −14.1421 −0.510976
\(767\) 0 0
\(768\) 84.7696 3.05886
\(769\) 18.9706 0.684096 0.342048 0.939682i \(-0.388879\pi\)
0.342048 + 0.939682i \(0.388879\pi\)
\(770\) 4.82843 0.174004
\(771\) 26.3431 0.948725
\(772\) 4.48528 0.161429
\(773\) −26.2843 −0.945380 −0.472690 0.881229i \(-0.656717\pi\)
−0.472690 + 0.881229i \(0.656717\pi\)
\(774\) 72.4264 2.60331
\(775\) 0 0
\(776\) 16.1421 0.579469
\(777\) −43.3137 −1.55387
\(778\) −49.7990 −1.78538
\(779\) 0 0
\(780\) 0 0
\(781\) 11.3137 0.404836
\(782\) 46.6274 1.66739
\(783\) 20.6863 0.739268
\(784\) −9.00000 −0.321429
\(785\) −14.0000 −0.499681
\(786\) −77.2548 −2.75559
\(787\) 14.9706 0.533643 0.266821 0.963746i \(-0.414027\pi\)
0.266821 + 0.963746i \(0.414027\pi\)
\(788\) 41.4558 1.47680
\(789\) 31.0294 1.10468
\(790\) −9.65685 −0.343575
\(791\) 39.3137 1.39783
\(792\) 22.0711 0.784261
\(793\) 0 0
\(794\) −22.4853 −0.797973
\(795\) −32.9706 −1.16935
\(796\) 39.5980 1.40351
\(797\) 32.6274 1.15572 0.577861 0.816135i \(-0.303887\pi\)
0.577861 + 0.816135i \(0.303887\pi\)
\(798\) 0 0
\(799\) −19.3137 −0.683270
\(800\) 1.58579 0.0560660
\(801\) 66.5685 2.35208
\(802\) −12.8284 −0.452988
\(803\) −1.17157 −0.0413439
\(804\) 135.196 4.76799
\(805\) −5.65685 −0.199378
\(806\) 0 0
\(807\) −48.9706 −1.72385
\(808\) −41.1127 −1.44634
\(809\) −10.9706 −0.385704 −0.192852 0.981228i \(-0.561774\pi\)
−0.192852 + 0.981228i \(0.561774\pi\)
\(810\) −2.41421 −0.0848268
\(811\) −53.9411 −1.89413 −0.947065 0.321043i \(-0.895967\pi\)
−0.947065 + 0.321043i \(0.895967\pi\)
\(812\) −28.0000 −0.982607
\(813\) 20.6863 0.725500
\(814\) 18.4853 0.647909
\(815\) −16.4853 −0.577454
\(816\) −57.9411 −2.02835
\(817\) 0 0
\(818\) 2.48528 0.0868958
\(819\) 0 0
\(820\) −22.9706 −0.802167
\(821\) 41.3137 1.44186 0.720929 0.693009i \(-0.243715\pi\)
0.720929 + 0.693009i \(0.243715\pi\)
\(822\) 74.9117 2.61285
\(823\) 19.5147 0.680240 0.340120 0.940382i \(-0.389532\pi\)
0.340120 + 0.940382i \(0.389532\pi\)
\(824\) −30.1421 −1.05005
\(825\) 2.82843 0.0984732
\(826\) 8.00000 0.278356
\(827\) −22.2843 −0.774900 −0.387450 0.921891i \(-0.626644\pi\)
−0.387450 + 0.921891i \(0.626644\pi\)
\(828\) −54.1421 −1.88157
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) −14.4853 −0.502791
\(831\) −19.3137 −0.669985
\(832\) 0 0
\(833\) −20.4853 −0.709773
\(834\) −27.3137 −0.945796
\(835\) 22.9706 0.794929
\(836\) 0 0
\(837\) 0 0
\(838\) 61.9411 2.13972
\(839\) −26.3431 −0.909466 −0.454733 0.890628i \(-0.650265\pi\)
−0.454733 + 0.890628i \(0.650265\pi\)
\(840\) 24.9706 0.861566
\(841\) −15.6274 −0.538876
\(842\) −14.4853 −0.499196
\(843\) 48.9706 1.68664
\(844\) −61.2548 −2.10848
\(845\) 0 0
\(846\) 34.1421 1.17383
\(847\) 2.00000 0.0687208
\(848\) 34.9706 1.20089
\(849\) −92.2843 −3.16719
\(850\) −16.4853 −0.565440
\(851\) −21.6569 −0.742387
\(852\) 122.510 4.19711
\(853\) 15.5147 0.531214 0.265607 0.964081i \(-0.414428\pi\)
0.265607 + 0.964081i \(0.414428\pi\)
\(854\) 44.9706 1.53886
\(855\) 0 0
\(856\) −33.7990 −1.15523
\(857\) 24.7696 0.846112 0.423056 0.906104i \(-0.360957\pi\)
0.423056 + 0.906104i \(0.360957\pi\)
\(858\) 0 0
\(859\) 24.2843 0.828569 0.414284 0.910148i \(-0.364032\pi\)
0.414284 + 0.910148i \(0.364032\pi\)
\(860\) −22.9706 −0.783290
\(861\) 33.9411 1.15671
\(862\) −27.3137 −0.930309
\(863\) 9.17157 0.312204 0.156102 0.987741i \(-0.450107\pi\)
0.156102 + 0.987741i \(0.450107\pi\)
\(864\) −8.97056 −0.305185
\(865\) −22.1421 −0.752855
\(866\) 18.4853 0.628155
\(867\) −83.7990 −2.84596
\(868\) 0 0
\(869\) −4.00000 −0.135691
\(870\) −24.9706 −0.846581
\(871\) 0 0
\(872\) −33.7990 −1.14458
\(873\) −18.2843 −0.618829
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) −12.6863 −0.428630
\(877\) 49.4558 1.67001 0.835003 0.550246i \(-0.185466\pi\)
0.835003 + 0.550246i \(0.185466\pi\)
\(878\) 38.6274 1.30361
\(879\) −25.9411 −0.874972
\(880\) −3.00000 −0.101130
\(881\) −7.37258 −0.248389 −0.124194 0.992258i \(-0.539635\pi\)
−0.124194 + 0.992258i \(0.539635\pi\)
\(882\) 36.2132 1.21936
\(883\) 37.1716 1.25092 0.625462 0.780255i \(-0.284911\pi\)
0.625462 + 0.780255i \(0.284911\pi\)
\(884\) 0 0
\(885\) 4.68629 0.157528
\(886\) 64.7696 2.17598
\(887\) 38.2843 1.28546 0.642730 0.766093i \(-0.277802\pi\)
0.642730 + 0.766093i \(0.277802\pi\)
\(888\) 95.5980 3.20806
\(889\) 8.68629 0.291329
\(890\) −32.1421 −1.07741
\(891\) −1.00000 −0.0335013
\(892\) 41.4558 1.38804
\(893\) 0 0
\(894\) −2.34315 −0.0783665
\(895\) 9.65685 0.322793
\(896\) 41.1127 1.37348
\(897\) 0 0
\(898\) 69.1127 2.30632
\(899\) 0 0
\(900\) 19.1421 0.638071
\(901\) 79.5980 2.65179
\(902\) −14.4853 −0.482307
\(903\) 33.9411 1.12949
\(904\) −86.7696 −2.88591
\(905\) 21.3137 0.708492
\(906\) 81.9411 2.72231
\(907\) −27.5147 −0.913611 −0.456806 0.889567i \(-0.651007\pi\)
−0.456806 + 0.889567i \(0.651007\pi\)
\(908\) −96.9117 −3.21613
\(909\) 46.5685 1.54458
\(910\) 0 0
\(911\) −9.94113 −0.329364 −0.164682 0.986347i \(-0.552660\pi\)
−0.164682 + 0.986347i \(0.552660\pi\)
\(912\) 0 0
\(913\) −6.00000 −0.198571
\(914\) 1.17157 0.0387522
\(915\) 26.3431 0.870878
\(916\) −5.02944 −0.166177
\(917\) −22.6274 −0.747223
\(918\) 93.2548 3.07787
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 12.4853 0.411628
\(921\) −46.2254 −1.52318
\(922\) 30.4853 1.00398
\(923\) 0 0
\(924\) 21.6569 0.712458
\(925\) 7.65685 0.251756
\(926\) −14.8284 −0.487292
\(927\) 34.1421 1.12137
\(928\) −5.79899 −0.190361
\(929\) −5.31371 −0.174337 −0.0871686 0.996194i \(-0.527782\pi\)
−0.0871686 + 0.996194i \(0.527782\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −23.5147 −0.770250
\(933\) −13.2548 −0.433944
\(934\) 35.7990 1.17138
\(935\) −6.82843 −0.223313
\(936\) 0 0
\(937\) −1.45584 −0.0475604 −0.0237802 0.999717i \(-0.507570\pi\)
−0.0237802 + 0.999717i \(0.507570\pi\)
\(938\) 60.2843 1.96835
\(939\) 3.71573 0.121258
\(940\) −10.8284 −0.353184
\(941\) 6.68629 0.217967 0.108983 0.994044i \(-0.465240\pi\)
0.108983 + 0.994044i \(0.465240\pi\)
\(942\) −95.5980 −3.11475
\(943\) 16.9706 0.552638
\(944\) −4.97056 −0.161778
\(945\) −11.3137 −0.368035
\(946\) −14.4853 −0.470957
\(947\) −41.1716 −1.33790 −0.668948 0.743309i \(-0.733255\pi\)
−0.668948 + 0.743309i \(0.733255\pi\)
\(948\) −43.3137 −1.40676
\(949\) 0 0
\(950\) 0 0
\(951\) −3.71573 −0.120491
\(952\) −60.2843 −1.95382
\(953\) 53.1716 1.72240 0.861198 0.508269i \(-0.169715\pi\)
0.861198 + 0.508269i \(0.169715\pi\)
\(954\) −140.711 −4.55568
\(955\) 3.31371 0.107229
\(956\) 89.2548 2.88671
\(957\) −10.3431 −0.334346
\(958\) −86.9117 −2.80799
\(959\) 21.9411 0.708516
\(960\) 27.7990 0.897209
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 38.2843 1.23369
\(964\) −22.9706 −0.739832
\(965\) 1.17157 0.0377143
\(966\) −38.6274 −1.24282
\(967\) 14.9706 0.481421 0.240710 0.970597i \(-0.422620\pi\)
0.240710 + 0.970597i \(0.422620\pi\)
\(968\) −4.41421 −0.141878
\(969\) 0 0
\(970\) 8.82843 0.283464
\(971\) −8.68629 −0.278756 −0.139378 0.990239i \(-0.544510\pi\)
−0.139378 + 0.990239i \(0.544510\pi\)
\(972\) 54.1421 1.73661
\(973\) −8.00000 −0.256468
\(974\) −59.1127 −1.89409
\(975\) 0 0
\(976\) −27.9411 −0.894374
\(977\) −32.3431 −1.03475 −0.517374 0.855759i \(-0.673091\pi\)
−0.517374 + 0.855759i \(0.673091\pi\)
\(978\) −112.569 −3.59955
\(979\) −13.3137 −0.425508
\(980\) −11.4853 −0.366884
\(981\) 38.2843 1.22232
\(982\) 1.65685 0.0528723
\(983\) 21.8579 0.697158 0.348579 0.937279i \(-0.386664\pi\)
0.348579 + 0.937279i \(0.386664\pi\)
\(984\) −74.9117 −2.38810
\(985\) 10.8284 0.345022
\(986\) 60.2843 1.91984
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) 16.9706 0.539633
\(990\) 12.0711 0.383644
\(991\) −57.9411 −1.84056 −0.920280 0.391260i \(-0.872039\pi\)
−0.920280 + 0.391260i \(0.872039\pi\)
\(992\) 0 0
\(993\) −20.6863 −0.656460
\(994\) 54.6274 1.73268
\(995\) 10.3431 0.327900
\(996\) −64.9706 −2.05867
\(997\) −41.4558 −1.31292 −0.656460 0.754361i \(-0.727947\pi\)
−0.656460 + 0.754361i \(0.727947\pi\)
\(998\) 23.3137 0.737983
\(999\) −43.3137 −1.37039
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9295.2.a.g.1.1 2
13.12 even 2 55.2.a.b.1.2 2
39.38 odd 2 495.2.a.b.1.1 2
52.51 odd 2 880.2.a.m.1.2 2
65.12 odd 4 275.2.b.d.199.4 4
65.38 odd 4 275.2.b.d.199.1 4
65.64 even 2 275.2.a.c.1.1 2
91.90 odd 2 2695.2.a.f.1.2 2
104.51 odd 2 3520.2.a.bo.1.1 2
104.77 even 2 3520.2.a.bn.1.2 2
143.25 even 10 605.2.g.f.251.2 8
143.38 even 10 605.2.g.f.366.1 8
143.51 odd 10 605.2.g.l.511.1 8
143.64 even 10 605.2.g.f.81.1 8
143.90 odd 10 605.2.g.l.81.2 8
143.103 even 10 605.2.g.f.511.2 8
143.116 odd 10 605.2.g.l.366.2 8
143.129 odd 10 605.2.g.l.251.1 8
143.142 odd 2 605.2.a.d.1.1 2
156.155 even 2 7920.2.a.ch.1.2 2
195.38 even 4 2475.2.c.l.199.4 4
195.77 even 4 2475.2.c.l.199.1 4
195.194 odd 2 2475.2.a.x.1.2 2
260.103 even 4 4400.2.b.q.4049.3 4
260.207 even 4 4400.2.b.q.4049.2 4
260.259 odd 2 4400.2.a.bn.1.1 2
429.428 even 2 5445.2.a.y.1.2 2
572.571 even 2 9680.2.a.bn.1.2 2
715.714 odd 2 3025.2.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.a.b.1.2 2 13.12 even 2
275.2.a.c.1.1 2 65.64 even 2
275.2.b.d.199.1 4 65.38 odd 4
275.2.b.d.199.4 4 65.12 odd 4
495.2.a.b.1.1 2 39.38 odd 2
605.2.a.d.1.1 2 143.142 odd 2
605.2.g.f.81.1 8 143.64 even 10
605.2.g.f.251.2 8 143.25 even 10
605.2.g.f.366.1 8 143.38 even 10
605.2.g.f.511.2 8 143.103 even 10
605.2.g.l.81.2 8 143.90 odd 10
605.2.g.l.251.1 8 143.129 odd 10
605.2.g.l.366.2 8 143.116 odd 10
605.2.g.l.511.1 8 143.51 odd 10
880.2.a.m.1.2 2 52.51 odd 2
2475.2.a.x.1.2 2 195.194 odd 2
2475.2.c.l.199.1 4 195.77 even 4
2475.2.c.l.199.4 4 195.38 even 4
2695.2.a.f.1.2 2 91.90 odd 2
3025.2.a.o.1.2 2 715.714 odd 2
3520.2.a.bn.1.2 2 104.77 even 2
3520.2.a.bo.1.1 2 104.51 odd 2
4400.2.a.bn.1.1 2 260.259 odd 2
4400.2.b.q.4049.2 4 260.207 even 4
4400.2.b.q.4049.3 4 260.103 even 4
5445.2.a.y.1.2 2 429.428 even 2
7920.2.a.ch.1.2 2 156.155 even 2
9295.2.a.g.1.1 2 1.1 even 1 trivial
9680.2.a.bn.1.2 2 572.571 even 2